PT-symmetry and Waveguides / (2) The transverse case. Course 2 : PT symmetry basics : the transverse case

Size: px
Start display at page:

Download "PT-symmetry and Waveguides / (2) The transverse case. Course 2 : PT symmetry basics : the transverse case"

Transcription

1 PT-symmetry and Waveguides / () The transverse case Course : PT symmetry basics : the transverse case Imperfect PT symmetry [ plasmonics] Application example : switching below the exceptional point From here on : Credits to : Anatole Lupu and Aloyse Degiron (IEF, Orsay, France) Mondher Besbes and Jean-Paul Hugonin (my lab : LCF, IOGS, Palaiseau) My inspiration?

2 The observables of a quantum system are defined to be the self-adjoint operators A on H, a fixed complex Hilbert space. Φ Φ Φ Φ The Hamiltonian H is the operator associated to the total energy In a finite-dimensional space Φ }, the Hamiltonian matrix H = is Hermitian : This grants diagonal terms are real in any basis. Thus granting (eigen)energies are real, using the basis of H eigenstates }, The spectrum is real 3 Energy-conserving systems Linear systems Open systems Losses and/or Gain from an outside reservoir Hermiticity Real eigenvalues allowed Non-Hermiticity Real spectrum? Nature of this boundary 4

3 @ Hermitian operator H Real Eigenvalues Hermitian operator Real Eigenvalues C. M. Bender and S. Boettcher, Phys. Rev. Lett. 8, 543 (998) Real E But Hamiltonians with D degree of freedom are not that simple Harmonic osc 5 PT -Symmetric Non-Hermitian x Hamiltonian t s t P P P T Real Eigenvalues as long as r < s det ² ² t and T t det ² whose sign is or! or 6

4 Analogy : Time evolution in Quantum mechanics of Two-modes systems Spatial evolution of two guided modes in z-propagation PT -Symmetric Non-Hermitian Hamiltonian Coupled modes equations P P T Real Eigenvalues as long as r < s Real Eigenvalues as long as g < gain Gain [P sym] loss losses 7 Non conservative "atoms" (?!)(*) s A A t (*) Gain bosons t A Non-conservative Guides z A Evolution axis z Evanescent coupling 8

5 ω or Re(Energy) Split modes Too much damping Losses ω' or Im(Energy) Losses Change of behaviour in eigenvalues but in high loss regime The case of balanced gain/loss x GAIN T P P z LOSS L T ω Split modes coupling Gain/Loss Exceptional point (EP) : singularity of (eigenvalues)/ (gain) ω' Gain/Loss

6 The light s bet GAIN Betting that light given to other guide T Oops, losses.. Will come back re amplified??? T coupling LOSS Bet works? Below EP, oscillation, real ω. Bet lost? overall gain or loss? What are eigenstates Gain/Loss Eigenstates below/above EP c /c Gain/Loss

7 eigenstate behaviour vs. «gain loss» Symmetry breaking, pictorially A B Symmetry-breaking of eigenstates A B ("winner-takes-all") 3 Danger of unbalanced eigenstates with gain/loss Loss state Gain state c >+ > > c > -δc >+ δc > (c δc) >+ δc > δc/c) High growth of unbalanced part Can be misleading (Reciprocity based on exact eigenmodes) 4

8 Trajectory of eigenvalues in complex plane Eigenvalues in complex plane Im EP Re Note (tracking tool for real wg, hint from J P Hugonin): Product of eigenvalues Π=(ω ω ) is continuous at EP! Sum Σ=(ω +ω ) continuous as well PT symmetry in Optics «unnamed» (& very strong κ) Ctyroky & Nolting : Kulishov/Greenberg/Poladian/Agarwal: (tomorrow) Gratings with Δn= Δn r cos(kz)+ iδn i cos(kz+φ), «««nonreciprocity»»» "named" El Ganainy et al. (CREOL), «Theory of coupled optical PT-symmetric structures», Opt. Lett. 3, 63 (7) Klaiman et al. PRL 8; Guo et al. PRL 9; (topic starts to blow up) Observed with parametric gain/loss Rüter et al. (Clausthal u. CREOL, Technion) «Observation of parity time symmetry in optics», Nat. Phys. 6, 9 () 6

9 (Transmission matrix) distance L distance L (µm) map log(t ) of T T T 3 gain (cm - ) 7 PT-symmetry and Waveguides / () The transverse case Course : PT symmetry basics : the transverse case Imperfect PT symmetry [ plasmonics] Application example : switching below the exceptional point 8

10 3 FLAVOURS OF IMPERFECT PT SYMMETRY gain = Losses = or : fixed, variable / / 9 ixed losses : Survival of abrupt transition matched losses g= g distance (µm) (a) T 4 6 abrupt behaviour 8 GAIN g EP log(t) 3 gain (cm-) g LOSS fixed (metal) losses distance (µm) (b) GAIN FIXED LOSS +g g g and should be "matched" T «active- PT-structures» EP remains abrupt behaviour 3 gain (cm-) «passive- PT-structures» e.g. Guo et al. PRL 9 H. Benisty et al. Opt. Express, 9, 84,

11 PT Kogelnik 97 s + _ PT-sym, s Gain / no gain Device length L Commutation loci Electro-optic tuning ΔRe(n) Very few tunable ΔRe(n) proposals in plasmonics We d better tune ΔIm(n)! Fixed losses (Au)?? What are the new diagrams? ~ cm ~4 μm~ nm Au BCB Substrate Wideband mode (VIS-IR range) Courtesy of A. Degiron

12 Co directional coupling between plasmonic guide and dielectric guide Two Eigenmodes Air BCB SiO t t Degiron et al, New J. Phys. 9 (Duke U) Detuning control by BCB thickness 3 Experimental waveguides A combination of negative and positive lithography steps are used to fabricate plasmonic stripes coupled to SU8 waveguides, embedded in BCB polymer. CL = coupling length 4

13 Measurements vs. coupling length Arbitrary BCB thickness Simulations Experiments BCB t=6.6 μm Optimized BCB thickness BCB t=5.4 μm 5 Dephasing of beating is a first sign Gain g Losses -g T T Coupled Mode Theory d i dz M ig / M ig / Transmission.5 g= g < g crit g >> g crit Propagation distance 5 6

14 PT-symmetry and Waveguides / () The transverse case Course : PT symmetry basics : the transverse case Imperfect PT symmetry [ plasmonics] Application example : switching below the exceptional point 7 The exact transfer matrix of the arbitrarily detuned case Im detuning δ complex detuning Ω δ ² detuning & coupling =M(z) Transfer matrix cos Ω Ω sin Ω sin Ω Ω sin Ω Ω cos Ω sin Ω Ω exp (Kogelnik 976) 8

15 The exact transfer matrix of Im only detuning case Im detuning δ complex detuning Ω ² =M(z) detuning & coupling Transfer matrix cos Ω Ω sin Ω sin Ω Ω sin Ω Ω cos Ω sin Ω Ω exp 9 The exact transfer matrix of: Im only detuning & perfect PT case Im detuning if PT-sym!! δ complex detuning Ω detuning & coupling =M(z) Transfer matrix cos Ω sin Ω sin Ω sin Ω cos Ω sin Ω exp 3

16 The exact transfer matrix of no detuning perfect case Im detuning δ complex detuning Ω =M(z) Transfer matrix cos sin sin cos Simply rotation 3 Switching requirements cross Ω sin Ω cos Ω sin Ω? sin Ω cos Ω sin Ω etc. exp bar cos sin sin cos Change of beat length cos & sin cancellations 3

17 Switching and all the transfer matrix exp ) Ω Δ π sin π 33 Bar and Cross perfect switch states in ideal (gain=loss) PT symmetric coupler (PTSC) Bar Cross perfect switch Cross Bar perfect switch T T T T db db T T Smallest length Switch Not good Switch 34

18 What is the new concept replacing V π? Real index modulation Imaginary index modulation Δ(Im) replaces Δ(Re) Δ(Im)= g + χ (the «sum» of gain and loss) CMT solution tan iml iml iml (usual electro optic switch s product) So 33% shorter couplers are possible (insofar as measured by phase) 35 What about less perfect systems? = or alwaysexist levelishigher or lower than unity But if ±5 db are tolerable Then large margin exist! Extra db in T 36

19 References on switching and coupled guides/plasmonics [] H. Benisty, A. Degiron, A. Lupu, A. De Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, "Implementation of PT symmetric devices using plasmonics: principle and applications," Optics Express, vol. 9, pp ,. [] H. Benisty, C. Yan, A. T. Lupu, and A. Degiron, "Healing Near-PT-Symmetric Structures to Restore Their Characteristic Singularities: Analysis and Examples," IEEE J. Lightwave Technol., vol. 3, pp ,. [3] A. Lupu, H. Benisty, and A. Degiron, "Switching using PT symmetry in plasmonic systems: positive role of the losses," Opt. Express, vol., pp , 6 3. [4] A. Lupu, H. Benisty, and A. Degiron, "Using optical PT-symmetry for switching applications," Photonics and Nanostructures-Fundamentals and Applications, vol., pp. 35-3, 4. [5] H. Benisty, A. Lupu, and A. Degiron, "Transverse periodic PT symmetry for modal demultiplexing in optical waveguides," Phys. Rev. A, vol. 9, p. 5385, 5. [6] H. Benisty and M. Besbes, "Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition " J. Appl. Phys., vol. 8, pp. 638 (-8),. [7] H. Benisty and M. Besbes, "Confinement and optical properties of the plasmonic inverserib waveguide," J. Opt. Soc. Am. B, vol. 9, pp , March CONTEXT : Gain with plasmons SPASER (Stockman, Oulton with nanorods,...) Optical Amplifiers with LRSPP (Berini) 38

20 No électro-optic modulation in metals PT -symmetry offers a plausible alternative to elaborate active devices. Application example : Plasmonic modulator 3 Power (db) - SU8 WG SP WG Normalized Material Gain Lupu et al., Opt. Express Model Realisation : Gain with organics S. Chénais & S. Forget team, LPL, Paris 3 fvin Variable Stripe Length (VSL) technique: + Molecular film Thermally evaporated fvin layer on glass substrate Pump LASER Characteristics Frequency Doubled Q-switched Nd:YVO4 λ = 53 nm Hz, pulse duration < 5 ps Spectro (Ocean Optics) Cylindrical Lens Diverging Lens H. Rabbani-Haghighi, S. Forget, S. Chénais et al. Appl. Phys. Lett. 95, 3335 (9). Adjustable razor blades Sample Stripe quality (a) Without imaging (b) With imaging CCD (stripe length measurement) (a) (b) Pump Stripe Width : 3 µm 4

21 Gain with organics can be high & fast S. Chénais & S. Forget team, LPL, Paris 3 E=,4 mj/cm Gain= 5 cm Comparison : in a 5% doped DCM:PMMA of same thickness : Gain= 4 cm nanosec. pump probe gain 4 More miniature plasmonics? Example of Plasmonic Inverse Rib Optical WG n~ n~.4 JAP, H. Benisty and M. Besbes E-field in 3-5 nm tip... (+JOSA ) Like Oulton s nanorod/spaser, but deterministic Single WG? Gain brings just loss compensation Then yeah gain! 4

22 Two coupled «PIROWs» : good? A gain one and a normal one GAIN FIXED LOSSES METAL Can we have a good EP? H. Benisty and M. Besbes, "Confinement and optical properties of the plasmonic inverse-rib waveguide," JOSA. B, vol. 9, pp ,. Something wrong? 43 «Danger, LASER!» Fabry-Perot formula with gain Pole at = ² Well-known Threshold for lasing (no amplification limit within a linear saturation-free ansatz) But?? ω Gain Loss waveguide No mention of «lasing» or «threshold»?? Actually a sign that PT-symmetry needs our work to be a melting-pot! 44

23 CONCLUSION Basic (transverse) PT-symmetry New use of gain beyond plain loss compensation New entry for open systems (new inner products ) thanks to new quantum theory input OK for Adaptation to plasmonics (constant loss media) 45 References on switching and coupled guides/plasmonics [] H. Benisty, A. Degiron, A. Lupu, A. De Lustrac, S. Chénais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lérondel, "Implementation of PT symmetric devices using plasmonics: principle and applications," Optics Express, vol. 9, pp ,. [] H. Benisty, C. Yan, A. T. Lupu, and A. Degiron, "Healing Near-PT-Symmetric Structures to Restore Their Characteristic Singularities: Analysis and Examples," IEEE J. Lightwave Technol., vol. 3, pp ,. [3] A. Lupu, H. Benisty, and A. Degiron, "Switching using PT symmetry in plasmonic systems: positive role of the losses," Opt. Express, vol., pp , 6 3. [4] A. Lupu, H. Benisty, and A. Degiron, "Using optical PT-symmetry for switching applications," Photonics and Nanostructures-Fundamentals and Applications, vol., pp. 35-3, 4. [5] H. Benisty, A. Lupu, and A. Degiron, "Transverse periodic PT symmetry for modal demultiplexing in optical waveguides," Phys. Rev. A, vol. 9, p. 5385, 5. [6] H. Benisty and M. Besbes, "Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition " J. Appl. Phys., vol. 8, pp. 638 (-8),. [7] H. Benisty and M. Besbes, "Confinement and optical properties of the plasmonic inverserib waveguide," J. Opt. Soc. Am. B, vol. 9, pp , March 9. 46

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating

Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Time Domain Modeling of All-Optical Switch based on PT-Symmetric Bragg Grating Sendy Phang 1, Ana Vukovic 1, Hadi Susanto 2, Trevor M. Benson 1, and Phillip Sewell 1 1 School of Electrical and Electronic

More information

Confinement and optical properties of the plasmonic inverse-rib waveguide

Confinement and optical properties of the plasmonic inverse-rib waveguide Confinement and optical properties of the plasmonic inverse-rib waveguide Henri Benisty, Mondher Besbes To cite this version: Henri Benisty, Mondher Besbes. Confinement and optical properties of the plasmonic

More information

1.A Periodicity (for electrons)

1.A Periodicity (for electrons) PT-symmetry and Waveguides / (1) Waveguides & Bragg structures Henri BENISTY Laboratoire Charles Fabry Institut d Optique Graduate School Palaiseau, France [south of Paris].. Now part of a big «cluster»

More information

Parity Time (PT) Optics

Parity Time (PT) Optics PT-Quantum Mechanics In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-hermitian, can still exhibit entirely real spectra if they obey parity-time requirements or PT

More information

Controlling Light at Exceptional Points

Controlling Light at Exceptional Points Controlling Light at Exceptional Points Bo Peng Sahin Kaya Ozdemir Micro/Nano-Photonics Lab. Electrical & Systems Engineering, Washington University, St. Louis, USA In collaboration with L. Yang and C.

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

Dark modes and electromagnetically induced transparency metamaterials and applications

Dark modes and electromagnetically induced transparency metamaterials and applications ! " # Dark modes and electromagnetically induced transparency metamaterials and applications Institut d'electronique Fondamentale, CNRS UMR 8622 Université Paris-Sud Group Photonic Crystals and Metamaterials

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures

PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures PT-symmetry and Waveguides/ (3) Waveguides & Bragg structures Course 3 : Bragg with gain/loss (complex ) modulation Unidirectionality of plane-wave coupling History of gain-modulation (1970 s & 1990 s)

More information

A microring multimode laser using hollow polymer optical fibre

A microring multimode laser using hollow polymer optical fibre PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 923 927 A microring multimode laser using hollow polymer optical fibre M KAILASNATH, V P N NAMPOORI and P RADHAKRISHNAN

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): In the paper by Youngsun Choi et al. the authors propose a non-resonant non-reciprocal device based on a coupled waveguide containing distributed

More information

Nonreciprocal light transmission in parity-time-symmetric whispering-gallery microcavities

Nonreciprocal light transmission in parity-time-symmetric whispering-gallery microcavities Nonreciprocal light transmission in parity-time-symmetric whispering-gallery microcavities Bo Peng 1, Şahin Kaya Özdemir 1 *, Fuchuan Lei 1,2, Faraz Monifi 1, Mariagiovanna Gianfreda 3,4, Gui Lu Long 2,

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays

Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays Miguel Levy and Pradeep Kumar Department of Physics, Michigan Technological University, Houghton, Michigan 49931 ABSTRACT We show that

More information

The physics of the perfect lens

The physics of the perfect lens The physics of the perfect lens J.B. Pendry and S.A. Ramakrishna, The Blackett Laboratory, Imperial College, London MURI-Teleconference #2 Pendry s proposal for a perfect lens Consider Veselago s slab

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Symmetry recovery of exceptional points and their dynamical encircling in a two-state system

Symmetry recovery of exceptional points and their dynamical encircling in a two-state system Symmetry recovery of exceptional points and their dynamical encircling in a two-state system Xu-Lin Zhang, 1,2 Shubo Wang, 1 Wen-Jie Chen, 1 Bo Hou, 1,3 and C. T. Chan 1,* 1 Department of Physics and Institute

More information

Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained

Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained Article type: Original Paper Experimental demonstration of PT-symmetric stripe lasers Zhiyuan Gu 1,, Nan Zhang 1,, Quan Lyu 1,, Meng Li 1, Ke Xu 1, Shumin Xiao 2 1, 3, *, Qinghai Song *Corresponding Author:

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Lecture 10: Surface Plasmon Excitation. 5 nm

Lecture 10: Surface Plasmon Excitation. 5 nm Excitation Lecture 10: Surface Plasmon Excitation 5 nm Summary The dispersion relation for surface plasmons Useful for describing plasmon excitation & propagation This lecture: p sp Coupling light to surface

More information

arxiv: v1 [quant-ph] 28 May 2018

arxiv: v1 [quant-ph] 28 May 2018 PT -symmetric photonic quantum systems with gain and loss do not exist Stefan Scheel and Alexander Szameit Institut für Physik, Universität Rostock, Albert-Einstein-Straße, D-89 Rostock, Germany arxiv:8.876v

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Oscillateur paramétrique optique en

Oscillateur paramétrique optique en C. Ozanam 1, X. Lafosse 2, I. Favero 1, S. Ducci 1, G. Leo 1 1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire MPQ, CNRS-UMR 7162, Paris, France, 2 Laboratoire de Photonique et Nanostructures,

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides

Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides Tzung-Yi Lin, Fu-Chen Hsiao, Yao-Wun Jhang, 2 Chieh Hu, 2 and Shuo-Yen Tseng,3, Department of Photonics,

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Transverse periodic PT-symmetry for modal demultiplexing in optical waveguides

Transverse periodic PT-symmetry for modal demultiplexing in optical waveguides - - Transverse periodic PT-symmetry for modal demultiplexing in optical waveguides Henri Benisty,* Anatole Lupu,3 and Aloyse Degiron,3 Laboratoire Charles Fabry de l Institut d Optique, CNRS, Univ. Paris

More information

Plasmonic nanoguides and circuits

Plasmonic nanoguides and circuits Plasmonic nanoguides and circuits Introduction: need for plasmonics? Strip SPPs Cylindrical SPPs Gap SPP waveguides Channel plasmon polaritons Dielectric-loaded SPP waveguides PLASMOCOM 1. Intro: need

More information

Surface-Plasmon Sensors

Surface-Plasmon Sensors Surface-Plasmon Sensors Seok Ho Song Physics Department in Hanyang University Dongho Shin, Jaewoong Yun, Kihyong Choi Gwansu Lee, Samsung Electro-Mechanics Contents Dispersion relation of surface plasmons

More information

arxiv: v3 [quant-ph] 24 Dec 2013

arxiv: v3 [quant-ph] 24 Dec 2013 PT symmetry via electromagnetically induced transparency arxiv:1307.2695v3 [quant-ph] 24 Dec 2013 Hui-jun Li, 1,2, Jian-peng Dou, 1 and Guoxiang Huang 2,3,4 1 Institute of Nonlinear Physics and Department

More information

Photonic Crystals: Periodic Surprises in Electromagnetism. You can leave home without them. Complete Band Gaps: Steven G.

Photonic Crystals: Periodic Surprises in Electromagnetism. You can leave home without them. Complete Band Gaps: Steven G. Photonic Crystals: Periodic Surprises in lectromagnetism Steven G. ohnson MIT Complete Band Gaps: You can leave home without them. How else can we confine light? Total Internal Reflection n o n i > n o

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 TUNABLE WAVELENGTH DEMULTIPLEXER FOR DWDM APPLICATION USING 1-D PHOTONIC CRYSTAL A. Kumar 1, B. Suthar 2, *, V. Kumar 3, Kh. S. Singh

More information

GRATING CLASSIFICATION

GRATING CLASSIFICATION GRATING CLASSIFICATION SURFACE-RELIEF GRATING TYPES GRATING CLASSIFICATION Transmission or Reflection Classification based on Regime DIFFRACTION BY GRATINGS Acousto-Optics Diffractive Optics Integrated

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

WAVE INTERFERENCES IN RANDOM LASERS

WAVE INTERFERENCES IN RANDOM LASERS WAVE INTERFERENCES IN RANDOM LASERS Philippe Jacquod U of Arizona P. Stano and Ph. Jacquod, Nature Photonics (2013) What is a laser? Light Amplification by Stimulated Emission of Radiation Three main components

More information

Modeling the Local Response of Gain Media in Time-Domain

Modeling the Local Response of Gain Media in Time-Domain Modeling the Local Response of Gain Media in Time-Domain Nikita Arnold, 1 Ludmila Prokopeva, 2 and Alexander V. Kildsihev 2 1 Institute of Applied Physics, Johannes Kepler University, Linz, Austria nikita.arnold@jku.at

More information

Waveguiding-assisted random lasing in epitaxial ZnO thin film

Waveguiding-assisted random lasing in epitaxial ZnO thin film Waveguiding-assisted random lasing in epitaxial ZnO thin film P.-H. Dupont a), C. Couteau a)*, D. J. Rogers b), F. Hosseini Téhérani b), and G. Lérondel a) a) Laboratoire de Nanotechnologie et d Instrumentation

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

Sources supercontinuum visibles à base de fibres optiques microstructurées

Sources supercontinuum visibles à base de fibres optiques microstructurées Sources supercontinuum visibles à base de fibres optiques microstructurées P. Leproux XLIM - Université de Limoges Journées Thématiques CMDO+, Palaiseau, 24-25 nov. 2008 Palaiseau, 25/11/2008 - P. Leproux

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane Optimum Access Waveguide Width for 1xN Multimode Interference Couplers on Silicon Nanomembrane Amir Hosseini 1,*, Harish Subbaraman 2, David Kwong 1, Yang Zhang 1, and Ray T. Chen 1,* 1 Microelectronic

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

THz QCL sources based on intracavity difference-frequency mixing

THz QCL sources based on intracavity difference-frequency mixing THz QCL sources based on intracavity difference-frequency mixing Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin IQCLSW, Sept. 3, 218 Problems with traditional

More information

Probing the Optical Conductivity of Harmonically-confined Quantum Gases!

Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Probing the Optical Conductivity of Harmonically-confined Quantum Gases! Eugene Zaremba Queen s University, Kingston, Ontario, Canada Financial support from NSERC Work done in collaboration with Ed Taylor

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS which is a special case of Eq. (3.30. Note that this treatment of dispersion is equivalent to solving the differential equation (1.94 for an incremental

More information

Attenuation of Surface Plasmon Intensity by Transverse and Longitudinal. Slits

Attenuation of Surface Plasmon Intensity by Transverse and Longitudinal. Slits Attenuation of Surface Plasmon Intensity by Transverse and Longitudinal Slits Michael I. Haftel, 1 Brian S. Dennis, 2 Vladimir Aksyuk, 3 Timothy Su, 2 and Girsh Blumberg 2 1 University of Colorado at Colorado

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

by applying two pairs of confocal cylindrical lenses

by applying two pairs of confocal cylindrical lenses Title:Design of optical circulators with a small-aperture Faraday rotator by applying two pairs of confocal Author(s): Yung Hsu Class: 2nd year of Department of Photonics Student ID: M0100579 Course: Master

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES

OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES J. Ward, D. O Shea, B. Shortt, S. Nic Chormaic Dept of Applied Physics and Instrumentation, Cork Institute of Technology,Cork,

More information

Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic dielectric coupling

Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic dielectric coupling Appl. Phys. B DOI 10.1007/s00340-013-5457-7 Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic dielectric coupling Linfei Gao Feifei Hu Xingjun Wang Liangxiao

More information

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. Plasmonics The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime. A possible way out is the conversion of light into plasmons. They have much shorter

More information

PT -symmetry in Rydberg atoms

PT -symmetry in Rydberg atoms July 2016 EPL, 115 (2016) 14005 doi: 10.1209/0295-5075/115/14005 www.eplournal.org PT -symmetry in Rydberg atoms Ziauddin 1,2,3(a),You-LinChuang 1,3 and Ray-Kuang Lee 1,3(b) 1 Institute of Photonics and

More information

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers

Gain Apodization in Highly Doped, Distributed-Feedback (DFB) Fiber Lasers Gain Apodization in Highly Doped Distributed- Feedback (DFB) Fiber Lasers Introduction Fiber lasers have been the subect of much research over the past ten years. They can provide high reliability fiber

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Integrated optical circuits for classical and quantum light. Part 2: Integrated quantum optics. Alexander Szameit

Integrated optical circuits for classical and quantum light. Part 2: Integrated quantum optics. Alexander Szameit Integrated optical circuits for classical and quantum light Part 2: Integrated quantum optics Alexander Szameit Alexander Szameit alexander.szameit@uni-jena.de +49(0)3641 947985 +49(0)3641 947991 Outline

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Semiconductor Lasers II

Semiconductor Lasers II Semiconductor Lasers II Materials and Structures Edited by Eli Kapon Institute of Micro and Optoelectronics Department of Physics Swiss Federal Institute oftechnology, Lausanne OPTICS AND PHOTONICS ACADEMIC

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Efficient surface second-harmonic generation in slot micro/nano-fibers

Efficient surface second-harmonic generation in slot micro/nano-fibers Efficient surface second-harmonic generation in slot micro/nano-fibers Wei Luo, Fei Xu* and Yan-qing Lu* National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences,

More information

Quantum Photonic Integrated Circuits

Quantum Photonic Integrated Circuits Quantum Photonic Integrated Circuits IHFG Hauptseminar: Nanooptik und Nanophotonik Supervisor: Prof. Dr. Peter Michler 14.07.2016 Motivation and Contents 1 Quantum Computer Basics and Materials Photon

More information

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL. Title Polarization characteristics of photonic crystal fib Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori CitationOptics Express, 19(4): 3799-3808 Issue Date 2011-02-14 Doc URL http://hdl.handle.net/2115/45257

More information

Polarization control of defect modes in threedimensional woodpile photonic crystals

Polarization control of defect modes in threedimensional woodpile photonic crystals Polarization control of defect modes in threedimensional woodpile photonic crystals Michael James Ventura and Min Gu* Centre for Micro-Photonics and Centre for Ultrahigh-bandwidth Devices for Optical Systems,

More information

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES Progress In Electromagnetics Research, PIER 22, 197 212, 1999 A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES M. Akbari, M. Shahabadi, and K. Schünemann Arbeitsbereich Hochfrequenztechnik Technische

More information

Surface Plasmon Isolator based on Nonreciprocal Coupling. Abstract

Surface Plasmon Isolator based on Nonreciprocal Coupling. Abstract APS/123-QED Surface Plasmon Isolator based on Nonreciprocal Coupling Juan Montoya, Krishnan Parameswaren, Joel Hensley, and Mark Allen Physical Sciences Incorporated 20 New England Business Center, Andover,

More information

Recent progress on single-mode quantum cascade lasers

Recent progress on single-mode quantum cascade lasers Recent progress on single-mode quantum cascade lasers B. Hinkov 1,*, P. Jouy 1, A. Hugi 1, A. Bismuto 1,2, M. Beck 1, S. Blaser 2 and J. Faist 1 * bhinkov@phys.ethz.ch 1 Institute of Quantum Electronics,

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method 214 J. Opt. Soc. Am. A/ Vol. 23, No. 8/ August 26 Wang et al. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method Qian Wang, Gerald Farrell, and Yuliya Semenova

More information

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber ragg Grating F. Emami, Member IAENG, A. H. Jafari, M. Hatami, and A. R. Keshavarz Abstract In this paper we investigated

More information

Exploiting duality using metamaterials

Exploiting duality using metamaterials Exploiting duality using metamaterials Jensen Li School of Physics and Astronomy, University of Birmingham, UK Jan 12, 2015 Metamaterials with magnetic response Interesting physics by pairing up electric

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.5 Fabrication

More information

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer

More information

Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries

Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries Quantum Chaos: Fundamentals and Applications, Luchon, March 14-21 2015 Beyond the Parity and Bloch Theorem: Local Symmetry as a Systematic Pathway to the Breaking of Discrete Symmetries P. Schmelcher Center

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Quantum Nanoplasmonics and the Spaser

Quantum Nanoplasmonics and the Spaser Photo Credit: I. Tsukerman, Seefeld, Austria, January, Department 2009 of Physics and Astronomy US Israel Binational Science Foundation Quantum Nanoplasmonics and the Spaser Mark I. Stockman Department

More information

Resonantly Trapped Bound State in the Continuum Laser Abstract

Resonantly Trapped Bound State in the Continuum Laser Abstract Resonantly Trapped Bound State in the Continuum Laser T. Lepetit*, Q. Gu*, A. Kodigala*, B. Bahari, Y. Fainman, B. Kanté Department of Electrical and Computer Engineering, University of California San

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

Dr. Tao Li

Dr. Tao Li Tao Li taoli@nju.edu.cn Nat. Lab. of Solid State Microstructures Department of Materials Science and Engineering Nanjing University Concepts Basic principles Surface Plasmon Metamaterial Summary Light

More information

Tunneling in classical mechanics

Tunneling in classical mechanics Tunneling in classical mechanics Carl M. Bender, Washington University and Daniel W. Hook, Imperial College London To be discussed arxiv: hep-th/1011.0121 The point of this talk: Quantum mechanics is a

More information

Vertically Emitting Microdisk Lasers

Vertically Emitting Microdisk Lasers Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Vertically Emitting Microdisk Lasers Lukas Mahler *,1, Alessandro Tredicucci 1 and Fabio Beltram 1 1 NEST-INFM and Scuola Normale Superiore,

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information