Flood River Discharge Measurement Method in Japan

Size: px
Start display at page:

Download "Flood River Discharge Measurement Method in Japan"

Transcription

1 Flood River Discharge Measurement Method in Japan Hydrologic Engineering Research Team Hydraulic Engineering Research Group Public Work Research Institute (PWRI)

2 Contents 1. Overview of River Discharge Observation in Japan 2. Standard Flood Discharge Measurement Method in Japan 3. Other Flood Discharge Measurement Method in Japan 1. Non-Contact Surface Current meter 2. Pressure-flood current meter 3. Measurement using ADCP

3 Feature of River in Japan Catchment area is small Rivers have very steep bed slope Annual precipitation is big Japan Annual precipitation[mm/year] Other countries Most of Floods are Flash Floods in Japan

4 River Discharge Observation framework in Japan Oversee River Bureau,MLIT PWRI Technical Support Manual Preparation Regional Bureaus Check the data,has responsibility in the data. Local Work offices Order observation Local survey company Observed data River Discharge Observation Flood Discharge Measurement Low-flow discharge Measurement

5 Feature of Flood River Discharge Measurement in Japan Problem There are a lot of debris flows. Current velocity is high. Contact current meter is almost impossible Measurement using Floats has become standard in Japan.

6 Historical back ground of Flood Discharge Measurement in Japan Ministry of construction staffs observed by themselves often using bamboo which grow naturally around observatory at its early period Increased observatory(about 1400 place in Japan for MLIT) Decreased staffs Local construction office can t observe discharge by itself Since an office cannot apply a large amount of cost, the quality of data may have fallen off. ex:discharge and WL observatory relevant to Tone River basin (We can see a lot of observatory )

7 Measurement using Floats Characteristic 1. Standard method of Flood River Discharge Measurement to make rating curve 2. Plunge floats from a bridge

8 Operational Problem of Measurement using Floats.1 It is difficult to observe the WL raising time or peak time. Decreasing expert observers (It became impossible to contract with one contractor who have know-how for long time,because bid system was changed) The example by which the data of a rise term is not observed

9 Technical Problem of Measurement using Floats.1 Now averaged (max.&min.) conversion factor for each type of float is as follows: 1) Surface float: 0.85 ( valid for h 0.7m ) 2) 0.5 m float: 0.88 ( valid for h = m ) 3) 1 m float: 0.91 ( valid for h = m ) 4) 2 m float: 0.94 ( valid for h = m ) 5) 4 m float: 0.94 ( valid for h 5.2m ) This standard was decided about 40 years ago, Then, research was progressed and the problems mentioned later was pointed out. So,we should re-check these factors. We are going to check these factors from this year to next year

10 Technical Problem of Measurement using Floats.2(Hypothesis on Disturbed flow in the downstream of bridge piers) Actual discharge value:q Q Non-back flow field Back flow field Discharge observed value based on the current standard Q Q 1 =A 1 V 1 Q=Q 1 +Q 2 Q 2 =A 2 V 2 =A 1 V 1 +A 2 V 2 Q 1 =A 1 Non-back flow field Q 1 Discharge of non-back flow field,a 1 river area of non-back flow field, V 1 average velocity of non-back flow field, Q 2 Discharge of back flow field,a 2 river area of back flow field, V 2 average velocity of back flow field V 1 Q Non-back flow field Q 1 =A 1 (V 1 +V ) Back flow field Q 2 =A 2 (V 1 +V ) Q = Q 1 +Q 2 =(V 1 +V )(A 1 +A 2 ) Non-back flow field Q 1 =A 1 (V 1 +V ) Q 1 Discharge of non-back flow field,a 1 river area of non-back flow field,v 1 average velocity of non-back flow field, V acceleration by aboideau rising effect,q 2 Discharge of back flow field,a 2 river area of back flow field comparison of Discharge observed value of current standard and Actual discharge observed value Q =Q+(V 1 -V )A 2 +V (A 1 +A 2 ) Discharge observed value based on the current standard has overestimates the river discharge The part become exorbitance caused bythe underline part Tone River downstream construction office Tone River downstream part river bed and discharge observation research report in 1999

11 Hypothesis on Disturbed flow in the downstream of bridge pies vertically averaged current velocity [m/s] It is shown that current velocity become low around the bridge piers. transverse direction distance [m] Vertically averaged current velocity observation data by ADCP (10/3/2003 at Isikariohasi observatory)

12 Technical Problem of Measurement using Floats.3 (Hypothesis on parallel spiral flow) Parallel spiral flow is created in the downstream of bridge basements. Floats are apt to be concentrated in the lines. Velocity is about +10% more than the average. According to Dr. Ryosaku KINOSHITA (1998) A discussion on the flood discharge measurement in the downstream of river, Journal of Japan Society of Hydrology & Water Resources, vol.11, No.5, pp (in Japanese).

13 The observation by ADCP (19/12/2000,Mashimo discharge observatory) Hypothesis of parallel spiral flow The figure which changed the depth to width into 1 to 1 :uv component Contour diagram : w component Contour diagram Upstream Downstream From upstream and downstream the periodic structure appeared regularly. we can guess the existence of a parallel spiral flow.

14 Technical Problem of Measurement using Floats.4(other problem) When vegetation flourish on flood channel, floats don t run properly It is difficult to use floats in the middle water level or on the river terrace. Not flow floats these area

15 Other flood River Discharge Measurement Methods In order to supplement the drawback of float observation, we need to develop and put other techniques in operational. Development of other flood River Discharge Measurement Methods in Japan. Non-Contact Surface Velocity Measurement (supplement method for Measurement using floats). Pressure-type Flood Current Meter ( for investigation use only). ADCP (under investigation for high water)

16 Non-Contact Surface Velocity Measurement Characteristic 1. Measure river surface velocity (estimate cross-sectional total discharge by summing up each of the cross-sectional areas. Vertically averaged velocity is calculated using a conversion factor ) 2. 4 types of Non-Contact Surface current meter were developed(the PWRI and other six private companies developed them for four years. The current meters are attached on bridge or bank of river, and we can observe automatically even from a remote office.

17 Assortment of Non-Contact Surface Current Meter1 Doppler type 1. Radio wave-type current meter 2. Ultrasonic-type current meter

18 Assortment of Non-Contact Surface Current Meter2 Image processing type 1. PIV current meter 2. Optical Flow current meter

19 Problem of Non-Contact Surface Velocity Measurement 1. Conversion factor is subject to change We decided conversion factor from observed data at Uono-River and Tone-River, We must get more data and verify the factor using the data. Discharge by Non-Contact Surface Current Meter [m3/s] Discharge by float observation[m3/s] The Discharge by Non-contact Surface Current Meter using the conversion factor made from Uono-River and Tone-River data are settled in less than about 5% of float observation discharge.

20 Problem of Non-Contact Surface Velocity Measurement 1. Correction of Wind Effect. We made the algorithm to eliminate wind current and tested the effect in an indoor experiment, but we haven t developed method to eliminate the effect of windswell. The relative error of discharge measured value[%] Radio wave Ultra Sonic PIV Optical flow With no influence compensation of a wind With influence compensation of a wind

21 Problem of Non-Contact Surface Velocity Measurement 3 1. Cost is expensive

22 Out look of Non-Contact Surface Current Meter We will get data from new 6 sites in this year

23 Pressure-type Flood Current Meter Characteristics 1. Used for turbulence 2D constitution research mainly 2. hanged from a bridge 3. Measure vertical water velocity profile

24 Problem of Pressure-type Flood Current Meter 1. Cost is expensive (about 100,000,000 $850,000) 2. Possibility of miss by flowing objects or when current velocity is fast (more 4m/s)

25 Measurement using ADCP(by radiocontrolled boat) Characteristics 1. Used for turbulence 3D structure of turbulence in river flow 2. Measure vertical water velocity profile precisely 3. We can use it if current velocity is not so fast (less than 3 4m/s)

26 Problem of Measurement using ADCP(by radio-controlled boat) 1. Steering of radio-controlled boat is difficult. (Substantially only one company has the operation technology.) 2. It is difficult to use if current velocity is high

27 Conclusion Float observation is standard in Japan In order to supplement the drawback of float observation Non-Contact Surface Velocity Measurement, Pressure-type Flood Current Meter, Measurement using ADCP are now being developed.

28 Our interest How to rating curve management The other possibility of using Non-Contact Surface Velocity Measurement The other possibility of using ADCP

Study about Velocity Index in Actual River during Flooding

Study about Velocity Index in Actual River during Flooding Study about Velocity Index in Actual River during Flooding Atsuhiro Yorozuya 1, Kazuhiko Fukami 1 1 International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO, Public

More information

U.S. ARMY CORPS OF ENGINEERS

U.S. ARMY CORPS OF ENGINEERS CORPS FACTS Regulating Mississippi River Navigation Pools U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG Historical Background Federal improvements in the interest of navigation on the Mississippi River

More information

Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies

Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies Innovative Technologies and Methodologies to Help Solve Complex Problems in Spatial River Studies John V. Sloat Chief Technical officer WaterCube, LLC Overview Water depth, water-velocity, and water-surface

More information

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir ISSN 2320-9100 11 International Journal of Advance Research, IJOAR.org Volume 1, Issue 8,August 2013, Online: ISSN 2320-9100 MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS

MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS MARK HEGGLI, INNOVATIVE HYDROLOGY CONSULTING METEOROLOGIST/HYDROLOGIST TO THE WORLD BANK AREAS OF TECHNOLOGY ADVANCEMENT RECENT TECHNOLOGY

More information

A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY

A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY J. KASHIWADA, 1 Y. NIHEI, 2 E. TAKASHIMA, 3 Y. YAMASAKI, 4 and M. ICHIYAMA 5 1 Engineer, River

More information

A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY

A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY A DYNAMIC INTERPOLATION AND EXTRAPOLATION METHOD TO EVALUATE CROSS-SECTIONAL VELOCITY FROM POINT VELOCITY J. Kashiwada, 1 Y. Nihei, 2 E. Takashima, 3 Y. Yamasaki, 4 and M. Ichiyama 5 1 Engineer, River

More information

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS) Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in Debris Flow Fan Areas Kana Nakatani, Dr. 1

More information

Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River,

Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, Examination of Direct Discharge Measurement Data and Historic Daily Data for Selected Gages on the Middle Mississippi River, 1861-2008 - Richard J. Huizinga, P.E. U.S. Geological Survey Missouri Water

More information

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA Dr. Gamal A. Sallam 1 and Dr. Medhat Aziz 2 ABSTRACT Bridges are critical structures that require a substantial investment to construct and serve an important

More information

Study on river-discharge measurements with a bottom-mounted ADCP

Study on river-discharge measurements with a bottom-mounted ADCP Study on river-discharge measurements with a bottom-mounted ADCP Y. Nihei & T. Sakai Tokyo University of Science, Dept. of Civil Engineering, Chiba, Japan ABSTRACT: To examine the accuracy of discharge

More information

THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION

THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION Journal Engineering Science and Technology Vol. 11, No. 5 (2016) 745-754 School Engineering, Taylor s University THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION

More information

STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS

STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS B-10 Fourth International Conference on Scour and Erosion 008 STABILITY OF OLD STONE GROINS IN THE KATSURA RIVER DURING FLOODS Taisuke ISHIGAKI 1, Takahiro ASANO and Ryuji KAWANAKA 3 1 Member of JSCE,

More information

MORPHOLOGICAL RESPONSE OF RIVER CHANNEL DUE TO WEIR RECONSTRUCTION

MORPHOLOGICAL RESPONSE OF RIVER CHANNEL DUE TO WEIR RECONSTRUCTION D-12 Fourth International Conference on Scour and Erosion 28 MORPHOLOGICAL RESPONSE OF RIVER CHANNEL DUE TO WEIR RECONSTRUCTION Hao ZHANG 1, Keiichi KANDA 2, Yasunori MUTO 3 and Hajime NAKAGAWA 4 1 Member

More information

Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow

Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow Experimental Study for Investigating the Impact Force on a Wooden House by Driftwood in Steady and Unsteady Surge-type Flow K. Miyahara 1 and N. Tanaka 2 1 Graduate School of Science and Engineering, Saitama

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Flood Capacity of Shirakawa River at Tatsudajinnnai Area in Kumamoto Prefecture

Flood Capacity of Shirakawa River at Tatsudajinnnai Area in Kumamoto Prefecture International Journal of Economy, Energy and Environment 218; 3(5): 51-57 http://www.sciencepublishinggroup.com/j/ijeee doi: 1.11648/j.ijeee.21835.13 ISSN: 2575-513 (Print); ISSN: 2575-521 (Online) Flood

More information

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL Dawen YANG, Eik Chay LOW and Toshio KOIKE Department of

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

Field Observations and One-Dimensional Flow Modeling of Summit Creek in Mack Park, Smithfield, Utah

Field Observations and One-Dimensional Flow Modeling of Summit Creek in Mack Park, Smithfield, Utah Intermountain Center for River Rehabilitation and Restoration, Utah State University 31 July 2018 Field Observations and One-Dimensional Flow Modeling of Summit Creek in Mack Park, Smithfield, Utah I.

More information

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan Erosion, Debris Mows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 423 The effectiveness of check dams in controlling upstream channel

More information

Flood Frequency Mapping using Multirun results from Infoworks RS applied to the river basin of the Yser, Belgium

Flood Frequency Mapping using Multirun results from Infoworks RS applied to the river basin of the Yser, Belgium Flood Frequency Mapping using Multirun results from Infoworks RS applied to the river basin of the Yser, Belgium Ir. Sven Verbeke Aminal, division Water, Flemish Government, Belgium Introduction Aminal

More information

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth Advances in River Sediment Research Fukuoka et al. (eds) 2013 Taylor & Francis Group, London, ISBN 978-1-138-00062-9 Growing and decaying processes and resistance of sand waves in the vicinity of the Tone

More information

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently The Effects of Flooding on Structures Or What to Expect when the Drought Ends Violently Let s Define Flood Increase in discharge compared to normal level Direct runoff of rainfall (we re talking about

More information

Chapter 3 Erosion in the Las Vegas Wash

Chapter 3 Erosion in the Las Vegas Wash Chapter 3 Erosion in the Las Vegas Wash Introduction As described in Chapter 1, the Las Vegas Wash (Wash) has experienced considerable change as a result of development of the Las Vegas Valley (Valley).

More information

Evaluation of flood discharge hydrographs and bed variations in a channel network on the Ota River delta, Japan

Evaluation of flood discharge hydrographs and bed variations in a channel network on the Ota River delta, Japan 3 Floods: From Risk to Opportunity (IAHS Publ. 357, 3). Evaluation of flood discharge hydrographs and bed variations in a channel network on the Ota River delta, Japan T. GOTOH, S. FUKUOKA & R. TANAKA

More information

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS TASK QUARTERLY 15 No 3 4, 271 282 NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS MICHAŁ SZYDŁOWSKI Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza

More information

Tom Glass, B.S. Whitman College Sarah Wasssmund, B.S. Humboldt State University Edgar Verdin, B.S. Portland State University Kelsi Lakey, B.S.

Tom Glass, B.S. Whitman College Sarah Wasssmund, B.S. Humboldt State University Edgar Verdin, B.S. Portland State University Kelsi Lakey, B.S. Tom Glass, B.S. Whitman College Sarah Wasssmund, B.S. Humboldt State University Edgar Verdin, B.S. Portland State University Kelsi Lakey, B.S. Washington State University Overview 1. Background 2. History

More information

Working with Natural Stream Systems

Working with Natural Stream Systems Working with Natural Stream Systems Graydon Dutcher Delaware County Soil & Water Conservation District Stream Corridor Management Program Tropical Storm Sandy October 29,2012 What is a Watershed?

More information

The last three sections of the main body of this report consist of:

The last three sections of the main body of this report consist of: Threatened and Endangered Species Geological Hazards Floodplains Cultural Resources Hazardous Materials A Cost Analysis section that provides comparative conceptual-level costs follows the Environmental

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 04 Gradually Varied Flow Lecture No. # 07 Rapidly Varied Flow: Hydraulic Jump

More information

Rock Sizing for Waterway & Gully Chutes

Rock Sizing for Waterway & Gully Chutes Rock Sizing for Waterway & Gully Chutes WATERWAY MANAGEMENT PRACTICES Photo 1 Rock-lined waterway chute Photo 2 Rock-lined gully chute 1. Introduction A waterway chute is a stabilised section of channel

More information

CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER TONE RIVER

CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER TONE RIVER The 1 th Int. Conf. on Hydroscience and Engineering (ICHE-212), Nov. 4 Nov. 7, Orlando, USA 1 CHANGES IN RIVER BED AROUND THE FUKAWA CONTRACTION AREA BY FLOODS AND CHANNEL IMPROVEMENT WORKS IN THE LOWER

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P.

Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P. Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P. 1. Introduction M/s Welspun Energy Uttar Pradesh Ltd. (WEUPL) is putting up 1320 MW (2 x 660 MW) coal fired

More information

Hydraulic Processes Analysis System (HyPAS)

Hydraulic Processes Analysis System (HyPAS) Hydraulic Processes Analysis System (HyPAS) by Thad C. Pratt and Daryl S. Cook PURPOSE: This Coastal Engineering Technical Note (CETN) describes a PC-Windows-based system for analyzing, visualizing, and

More information

Water quality needs: Flow, velocity. Fish biologists need: Critical depth or velocity. Hydrology gives flows m 3 /s or day

Water quality needs: Flow, velocity. Fish biologists need: Critical depth or velocity. Hydrology gives flows m 3 /s or day Environmental Water Allocation Hydraulics Dr L Beevers Heriot Watt University, it UK l.beevers@hw.ac.uk Overview Why hydraulics in EWA? Different types of flows Theory Case studies Review Why do we need

More information

Title: Flow of fluids

Title: Flow of fluids Title: Flow of fluids Topics: Flow, continuity equation, mass flow rate Time: 90 Minutes Age: 12-15 hydrology, geography Differentiation: Guidelines, ICT support etc.: Use the applet. Use the maps geography.

More information

An environmentally sensitive erosion control technique in the Mekong River Delta: 10 years on

An environmentally sensitive erosion control technique in the Mekong River Delta: 10 years on 7 th Australian Stream Management Conference - Full Paper An environmentally sensitive erosion control technique in the Mekong River Delta: 10 years on John Tilleard 1, Tony Ladson 2 1 Moroka Pty Ltd,

More information

Progress Report. Flood Hazard Mapping in Thailand

Progress Report. Flood Hazard Mapping in Thailand Progress Report Flood Hazard Mapping in Thailand Prepared By: Mr. PAITOON NAKTAE Chief of Safety Standard sub-beuro Disaster Prevention beuro Department of Disaster Prevention and Mitigation THAILAND E-mail:

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE

PART 2:! FLUVIAL HYDRAULICS HYDROEUROPE PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE 2009 1 HYDROEUROPE 2009 2 About shear stress!! Extremely complex concept, can not be measured directly!! Computation is based on very primitive hypotheses that

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River September 2015 0 Table of Contents 1. Introduction... 2 2. Data collection... 3 2.1 Additional data...

More information

kein Wässerchen trüben

kein Wässerchen trüben Bundesamt für Wasserwirtschaft Institut für Wasserbau und hydrometrische Prüfung Federal Agency for Watermanagement Institute for Hydraulic Engineering and Calibration of Hydrometrical Current-Meters kein

More information

Rock Sizing for Batter Chutes

Rock Sizing for Batter Chutes Rock Sizing for Batter Chutes STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined batter chute Photo 2 Rock-lined batter chute 1. Introduction In the stormwater industry a chute is a steep drainage channel,

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Floods 2014 a wake up call to natural hazards

Floods 2014 a wake up call to natural hazards Floods 2014 a wake up call to natural hazards Floods affected 119 municipalities (out of 165) 22% of total population affected by floods More than 30 municipalities sustained extensive damage 57 lives

More information

IMPROVEMENT OF DISCHARGE OBSERVATION ACCURACY IN ICE-COVERED RIVERS FOR RIVER MANAGEMENT

IMPROVEMENT OF DISCHARGE OBSERVATION ACCURACY IN ICE-COVERED RIVERS FOR RIVER MANAGEMENT in the Environment: Proceedings of the 16th IAHR International Symposium on Dunedin, New Zealand, 2nd 6th December 2002 International Association of Hydraulic Engineering and Research IMPROVEMENT OF DISCHARGE

More information

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal

Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Method for predicting sediment runoff processes and channel changes in West Rapti River, Nepal Gopal Sharma* (MEE15628) ABSTRACT Supervisor: Dr. Atsuhiro Yorozuya** : Prof. Shinji Egashira*** Present study

More information

MEASUREMENT OF 3D FLOW FIELD IN A 90 BEND WITH ULTRASONIC DOPPLER VELOCITY PROFILER

MEASUREMENT OF 3D FLOW FIELD IN A 90 BEND WITH ULTRASONIC DOPPLER VELOCITY PROFILER MEASUREMENT OF 3D FLOW FIELD IN A 90 BEND WITH ULTRASONIC DOPPLER VELOCITY PROFILER Daniel S. Hersberger 1 1 Research associate, Laboratory of Hydraulic Constructions (LCH), Swiss Federal Institute of

More information

Pirai river (Bolivia)

Pirai river (Bolivia) Pirai river (Bolivia) Confluent of the Amazon river which average discharge is only 6 m3/s, but with peak discharge over 5000 m3/s, a challenge for river basin management and for flood control HYDROEUROPE

More information

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant The River Restoration Centre therrc.co.uk Understanding Fluvial Processes: supporting River Restoration Dr Jenny Mant Jenny@therrc.co.uk Understanding your catchment Hydrology Energy associated with the

More information

A distributed runoff model for flood prediction in ungauged basins

A distributed runoff model for flood prediction in ungauged basins Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off meeting held in Brasilia, 2 22 November 22). IAHS Publ. 39, 27. 267 A distributed runoff model for flood prediction in ungauged

More information

Suspended Sediment Rating Curve for Tigris River Upstream Al- Betera Regulator

Suspended Sediment Rating Curve for Tigris River Upstream Al- Betera Regulator International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 8 ǁ August. 2015 ǁ PP.61-65 Suspended Sediment Rating Curve for Tigris

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling

Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling Better estimation of Flood Wave Propagation Time in Meandering Reaches by using 2D-modelling J. Persson M. Jewert N. Isaksson Norconsult AB, Sweden Norconsult AB, Sweden Fortum Generation AB, Sweden ABSTRACT

More information

Tanjung Priok GFPPEP. Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta

Tanjung Priok GFPPEP. Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta Tanjung Priok GFPPEP Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta prepared by Department of Civil and Environmental Engineering

More information

Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation

Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation Engineering, 2013, 5, 997-1005 Published Online December 2013 (http://www.scirp.org/journal/eng) http://dx.doi.org/10.4236/eng.2013.512121 Analysis of the Cause for the Collapse of a Temporary Bridge Using

More information

Case Study: Hydraulic Model Study for Abandoned Channel Restoration

Case Study: Hydraulic Model Study for Abandoned Channel Restoration Engineering, 2013, 5, 989-996 Published Online December 2013 (http://www.scirp.org/journal/eng) http://dx.doi.org/10.4236/eng.2013.512120 Case Study: Hydraulic Model Study for Abandoned Channel Restoration

More information

UPPER COSUMNES RIVER FLOOD MAPPING

UPPER COSUMNES RIVER FLOOD MAPPING UPPER COSUMNES RIVER FLOOD MAPPING DRAFT BASIC DATA NARRATIVE FLOOD INSURANCE STUDY SACRAMENTO COUTY, CALIFORNIA Community No. 060262 November 2008 Prepared By: CIVIL ENGINEERING SOLUTIONS, INC. 1325 Howe

More information

Preparation of a Hydrodynamic model of. Detroit River- St. Clair River waterways. with Telemac-2D

Preparation of a Hydrodynamic model of. Detroit River- St. Clair River waterways. with Telemac-2D Preparation of a Hydrodynamic model of Detroit River- St. Clair River waterways with Telemac-2D Controlled Technical Report CHC-CTR-085 March 2009 CTR-CHC-085 NRC-CHC has prepared this report for the International

More information

8. Hydrometry - measurement and analysis

8. Hydrometry - measurement and analysis 130 8. Hydrometry - measurement and analysis 8.1 Definitions In English, the traditional word used to describe the measurement of water levels and flow volumes is Hydrography. That is ambiguous, for that

More information

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs

Ultrasonic Measuring System for Deposition of Sediments in Reservoirs MECAHITECH 11, vol. 3, year: 011 Ultrasonic Measuring System for Deposition of Sediments in Reservoirs M. Mărgăritescu* 1, A. Moldovanu * 1, P. Boeriu *, A.M.E. Rolea* 1 * 1 National Institute of Research

More information

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY M. Jovanović 1, R. Kapor, B. Zindović University of Belgrade Faculty of Civil Engineering E-mail:

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

NUMERICAL ANALYSIS OF THE BED MORPHOLOGY IN THE REACH BETWEEN CABRUTA AND CAICARA IN ORINOCO RIVER.

NUMERICAL ANALYSIS OF THE BED MORPHOLOGY IN THE REACH BETWEEN CABRUTA AND CAICARA IN ORINOCO RIVER. NUMERICAL ANALYSIS OF THE BED MORPHOLOGY IN THE REACH BETWEEN CABRUTA AND CAICARA IN ORINOCO RIVER. Raul A CABRITA F MEE13634 Supervisor: Shinji EGASHIRA ABSTRACT The present study aims to evaluate numerically

More information

Use of Space-for-Time Substitution in River Restoration: examples from SE England

Use of Space-for-Time Substitution in River Restoration: examples from SE England Use of Space-for-Time Substitution in River Restoration: examples from SE England Drs Andrew Brookes and Niamh Burke (Jacobs) Lizzie Rhymes and Graham Scholey (Environment Agency, SE) What is Space-for-Time

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Instream Erosion Control General

Instream Erosion Control General Instream Erosion Control General EROSION CONTROL TECHNIQUES Revegetation Temperate Climates Short-Term Non Vegetation Wet Tropics Long-Term Weed Control [1] Semi-Arid Zones Permanent [1] Weed control attributes

More information

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS

A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS A SIMPLE GIS METHOD FOR OBTAINING FLOODED AREAS ROMAN P., I. 1, OROS C., R. 2 ABSTRACT. A simple GIS method for obtaining flooded areas. This paper presents a method for obtaining flooded areas near to

More information

Licca Liber - the free Lech

Licca Liber - the free Lech Licca Liber - the free Lech Source: W. Schilling WWA Donauwörth The river Lech an overview Hydrography / Hydrology catchment area 4000 km² Length 256 km Delta H 1100 m Slope Ø 0,4 % discharge in Augsburg

More information

A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE

A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE A TIPPING-BUCKET SEDIMENT TRAP FOR CONTINUOUS MONITORING OF SEDIMENT DEPOSITION RATE YASUO NIHEI AND YUICHI IMASHIMIZU Department of Civil Eng., Tokyo University of Science, 2641 Yamazaki, Noda-shi 278-851,

More information

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE PUBLIC WORKS CANADA HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE KILOMETRE 207.9, LIARD HIGKWAY December 1978 I I f I I I I # Bolter Parish Trimble Ltd. ONLIULTINO Public Works, Canada, 9925-109 Street,

More information

QUANTITATIVE ANALYSIS OF HYDROLOGIC CYCLE IN COLD SNOWY BASIN

QUANTITATIVE ANALYSIS OF HYDROLOGIC CYCLE IN COLD SNOWY BASIN QUANTITATIVE ANALYSIS OF HYDROLOGIC CYCLE IN COLD SNOWY BASIN Tomohide USUTANI 1 and Makoto NAKATSUGAWA 2 1 Japan Weather Association, Sapporo, Japan 2 Toyohashi Office of River Works, Ministry of Land,

More information

FLOOD RISK MAPPING AND ANALYSIS OF THE M ZAB VALLEY, ALGERIA

FLOOD RISK MAPPING AND ANALYSIS OF THE M ZAB VALLEY, ALGERIA River Basin Management IX 69 FLOOD RISK MAPPING AND ANALYSIS OF THE M ZAB VALLEY, ALGERIA AMEL OUCHERIF & SAADIA BENMAMAR National Polytechnic School of Algiers, Algeria ABSTRACT To contribute to flood

More information

Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology

Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology The 2 nd Regional Stakeholder Forum The Pak Beng Hydropower Project 5 th May 2017

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria

Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria Birecik Dam & HEPP Downstream River Arrangement R. Naderer, G. Scharler Verbundplan GmbH, 5021 Salzburg, Austria e-mail: scharlerg@verbund.co.at Abstract Birecik Dam & HEPP on the Euphrates river in Turkey

More information

A FLOOD RETENTION BASIN IN AN ABANDONED STONE QUARRY - EVALUATING THE STABILITY OF A SUBMERGED ROCK SLOPE

A FLOOD RETENTION BASIN IN AN ABANDONED STONE QUARRY - EVALUATING THE STABILITY OF A SUBMERGED ROCK SLOPE A FLOOD RETENTION BASIN IN AN ABANDONED STONE QUARRY - EVALUATING THE STABILITY OF A SUBMERGED ROCK SLOPE Stephan Vollsinger 1*, Rainer Poisel 2, Alexander Preh 2, Michael Mölk 3 ABSTRACT Flood mitigation

More information

Beaver Creek Corridor Design and Analysis. By: Alex Previte

Beaver Creek Corridor Design and Analysis. By: Alex Previte Beaver Creek Corridor Design and Analysis By: Alex Previte Overview Introduction Key concepts Model Development Design Accuracy Conclusion Refresh v = Beaver Creek Site = Wittenberg Introduction Low head

More information

Swift Creek Sediment Management Action Plan (SCSMAP)

Swift Creek Sediment Management Action Plan (SCSMAP) Swift Creek Sediment Management Action Plan (SCSMAP) PHASE 2 PROJECT PLAN PROPOSAL Whatcom County Public Works Department 322 N. Commercial Street, Suite 210 Bellingham, WA 98225 (360) 676-6692 June 2013

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS

ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS Yasuo NIHEI (1) and Takeiro SAKAI (2) (1) Department of Civil Engineering, Tokyo University of Science, 2641 Yamazaki,

More information

Numerical modelling of river flow data collection and problem solving

Numerical modelling of river flow data collection and problem solving Numerical modelling of river flow data collection and problem solving R. Verhoeven 1, R. Banasiak 1,T. Okruszko 2, D. Swiatek 2, J. Chormanski 2 & P. Nowakowsky 2 1 Hydraulics Laboratory, Ghent University,

More information

Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes

Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes Dr. P. D. Dahe * Department of Civil Engineering, SGGSIE&T, Vishnupuri, Nanded (Maharashtra) S. B. Kharode Department of Civil

More information

Calculating the suspended sediment load of the Dez River

Calculating the suspended sediment load of the Dez River Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Osio Symposium, August 1992). IAHS Publ. no. 210, 1992. 219 Calculating the suspended sediment load of the Dez River

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

Dealing with Zone A Flood Zones. Topics of Discussion. What is a Zone A Floodplain?

Dealing with Zone A Flood Zones. Topics of Discussion. What is a Zone A Floodplain? Dealing with Zone A Flood Zones Topics of Discussion Overview of Zone A Floodplains Permitting Development in Zone A Floodplains Estimating Flood Elevations in Zone A Flood Insurance Implications Letters

More information

DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS

DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS E-proceedings of the 36 th IAHR World Congress DYNAMICS OF FLOOD FLOWS AND BED VARIATIONS IN RIVER SECTIONS REPAIRED TO SHIP-BOTTOM SHAPED CHANNELS FROM COMPOUND CHANNLS TAKUMA SASAKI (1) & SHOJI FUKUOKA

More information

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 LYCOMING COUNTY S.R.15, SECTION C41 FINAL HYDROLOGIC AND HYDRAULIC REPORT STEAM VALLEY RUN STREAM RELOCATION DATE: June, 2006 REVISED:

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Rock Sizing for Small Dam Spillways

Rock Sizing for Small Dam Spillways Rock Sizing for Small Dam Spillways STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined spillway on a construction site sediment basin Photo 2 Rock-lined spillway on a small farm dam 1. Introduction A chute

More information

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Daisuke

More information

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation) Stream Restoration and Environmental River Mechanics Pierre Y. Julien Malaysia 2004 Objectives Brief overview of environmental river mechanics and stream restoration: 1. Typical problems in environmental

More information

Natural hazards in Glenorchy Summary Report May 2010

Natural hazards in Glenorchy Summary Report May 2010 Natural hazards in Glenorchy Summary Report May 2010 Contents Glenorchy s hazardscape Environment setting Flood hazard Earthquakes and seismic hazards Hazards Mass movement Summary Glossary Introduction

More information

THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION

THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION Research Paper Advances in River Engineering, JSCE, Vol.19, 2013,June THE DEVELOPMENT OF RAIN-BASED URBAN FLOOD FORECASTING METHOD FOR RIVER MANAGEMENT PRACTICE USING X-MP RADAR OBSERVATION Seongsim YOON

More information

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area.

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area. Sediment Trench SEDIMENT CONTROL TECHNIQUE Type 1 System Sheet Flow Sandy Soils Type 2 System [1] Concentrated Flow Clayey Soils Type 3 System [1] Supplementary Trap Dispersive Soils [1] Performance of

More information

Investigation on Dynamics of Sediment and Water Flow in a Sand Trap

Investigation on Dynamics of Sediment and Water Flow in a Sand Trap Investigation on Dynamics of Sediment and Water Flow in a Sand Trap M. R. Mustafa Department of Civil Engineering Universiti Teknologi Petronas 31750 Tronoh, Perak, Malaysia R. B. Rezaur Water Resources

More information