The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance

Size: px
Start display at page:

Download "The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance"

Transcription

1 ES120 FIELD TRIP #2 10 April 2010 NAME: The San Benito Gravels: Fluvial Depositional Systems, Paleocurrents, and Provenance Introduction The San Benito Gravels (SBG) consists of a 500 m thick section of Plio-Pleistocene sands and gravels. These deposits are exposed in the Paicines syncline in southern Santa Clara Valley, in San Benito County. They cover an area of approximately 500 km 2. These sediments accumulated in response to the uplift of both the Diablo Range to the east and the Gabilan range to the west (see map). The SBG lie unconformably upon marine sediments in several areas within the valley. Geologic evidence indicates that the SBG were deposited in a terrestrial setting. The coarse nature of the deposits and the apparent lack of silt and clay within the deposits suggest that deposition occurred within a braided fluvial system (but you should ascertain this for yourself!). The SBG are contemporaneous with gravels found in a roughly north-south trend through central California, including the Livermore gravels and the Paso Robles gravels. The deposits are evidence of the change from marine to terrestrial conditions experienced by large areas of the Great Valley geologic province during late Pliocene and early Pleistocene time. In addition, the successive appearance of various rock types and the paleocurrent directions indicated by structures within the SBG can indicate source areas and uplift processes associated with the deposition of the SBG. Within outcrops of the SBG vertical sequences are not always easily observable. However, some coarsening-upward sequences are apparent in the sandy strata. Those sequences exhibit planar crossstratification overlain by horizontally stratified pebbly sands. The thickness of these sequences may reflect variation in the periodicity of flood conditions associated with the ancient depositional system. Relatively thicker sections of planar cross-stratification may represent extended periods of fair weather conditions. Within the gravel and cobble deposits, detailed observation may reveal vertical sequences of planar to trough cross-stratified gravels overlain by massive to horizontally stratified gravels; these deposits presumably formed in a manner analogous to the sand deposits, but under higher flow conditions. The origin of the large vertical variations between gravel and sand deposits is unclear. These variations may result from tectonic changes that caused local uplifts, leading to deposition of coarser material (i.e., gravels). If the gravels do show vertical sequences like the sand deposits, then a tectonic origin for the large-scale variations may be likely. Table 1. Facies Characteristics of braided streams. Facies Lithofacies Sedimentary Structures Interpretation Identifier Gm Gravel, massive or crudely bedded; Ripple marks, cross-strata in sand Longitudinal Bars, channel-lag deposits minor sand, silt, or clay lenses units, gravel imbrication Gt Gravel, stratified Broad, shallow trough cross-strata, Minor channel fills imbrication Gp Gravel, stratified Planar cross strata Linguoid (transverse) bars or deltaic growths from older bar remnants St Sand, medium to very coarse; may Solitary or grouped cross-strata Dunes (lower-flow regime) be pebbly Sp Sand, medium to very coarse; may be pebbly Solitary or grouped planar crossstrata Linguoid (transverse) bars, sand waves (upper- & lower-flow regimes) Sr Sand, very fine to very coarse Ripple marks of all types, including Ripples (lower-flow regime) climbing ripples Sh Sand, very fine to very coarse; may be pebbly Horizontal lamination, parting or streaming lineation Planar bed flow (upper- & lower-flow regimes) Ss Sand, fine to coarse; may be pebbly Broad shallow scours (including Minor channels or scour hollows cross stratification) Fl Sand (very fine), silt, mud, interbedded Ripple marks, undulatory bedding, bioturbation, plant rootlets, caliche Deposits of waning floods, overbank deposits Fm Mud, silt Rootlets, desiccation cracks Drape deposits formed in pools of standing water

2 ES120 FIELD TRIP #2 San Benito Gravels - p.2 Braided Stream Depositional Systems The following information is intended to give you a general picture of a braided stream depositional environment, much as it was presented in lecture. While you will not be required to make any detailed environmental interpretations concerning the SBG, you will need to have a working, flexible, general knowledge of braided river depositional environments when you are working in the SBG deposits. Therefore, study this information BEFORE we arrive at the field sites today, to maximize your learning experience in the field (and follow all directions!). Elements of a Braided River System: River bed: the major course of a river; is covered during bankfull flow River channel: the topographic low where flow is concentrated during normal flow levels Longitudinal (braid) bars: topographic highs which separate channels during normal flow Levees: topographic highs that separate the channel from the floodplain Floodplains: low lying areas adjacent to a river bed; exposed except during extreme flood events Depositional Model for Braided Stream Systems Braided stream deposits result from two distinct depositional episode styles: aggradation during fair weather conditions (normal flow), and aggradation during floods (high water flow). During normal flow conditions, flow is confined to channels and sediment is transported in them via lower flow regime bedforms (Froude number< 1) of ripples, dunes, and minor sand bars. If aggradation occurs during normal flow conditions the resulting deposit will be dominated by trough or planar cross- stratification, depending upon the dominant bedform that is preserved. During large flood events, flow is unrestricted, covering bars and spilling over levees onto the flood plain. In these conditions, bars migrate downstream, covering previously deposited channel sediments. Upper flow region conditions (Froude number> 1) dominate during flooding, and sediments deposited during such conditions will show planar to low-angle stratification. A period of normal flow condition followed by flood conditions should produce a couplet of trough or planar cross-stratified sediments, overlain by planar to low-angle stratification. This couplet may coarsen upward, reflecting the increased flow velocity that occurs during floods. Erosional contacts may be present between the normal flow (fair weather) and flood deposits, depending upon the amount of erosion that takes place during the initial stages of flooding.

3 ES120 FIELD TRIP #2 - San Benito Gravels - p.3 Field Trip Assignment Today you will: 1. consider the vertical lithologic sequence, identify, and measure stratigraphic units, 2. measure crossbeds and imbricated clasts for paleocurrent information, 3. identify clast compositions, and measure clast sizes, for lithologic and provenance information. As always, take careful notes: you never know what information you will need for interpretations once you are away from the field area. Next week in lab you will learn how to plot your paleocurrent measurements on stereonets, correct your data for tectonic tilting of the outcrops, and ultimately integrate your paleocurrent results with your provenance data and the locations of the known source areas. The observations and measurements to be made today are listed below. Field methods will be demonstrated during the first hour at stop 2. (Note that three dimensions of a bed or clast are needed to get an accurate reading of the strike & dip.) You will work in teams of two in order to accumulate a meaningful number of measurements. Each team member should keep accurate notes of the team s findings, because each student is required to write a summary of his/her findings, to be turned in as an extended abstract. You will be using your own data in lab next week, so be sure to take careful measurements. Also, be careful not to destroy the structures at the outcrops, so that your colleagues also can collect data. Field Trip Stops: Stop 1. ~3.8 miles east of Hwy 25 on Panoche Rd.; Tres Piños River. (1) Mark the location on your topo map and record the elevation. (2) Take note of the distribution of bar deposits. Sketch a rough diagram below. (3) Dig a shallow hole in a sand bar and examine the sedimentary structures and grain sizes, shapes, orientations, and compositions. (4) Would you classify this as a braided or meandering river?

4 ES120 FIELD TRIP #2 -- San Benito Gravels - p.4 Stop miles east of Hwy 25 on Panoche Rd; roadcut on both sides of the road. Collect the following data: (1) Outcrop location: a. Locate the field site on the Cherry Peak quadrangle map on page 8. Mark the location and record the elevation. You will need the full map to identify the lat/long coordinates. Record these in your field book. (2) Lithologies & Stratigraphic Column: a. First roughly sketch the southern outcrop, showing the sedimentary facies that are present. You will then use the Jacob Staff to measure the thicknesses of each unit (for your Stratigraphic Column), and record the position of individual samples. As you (later) make your measurements of paleocurrents, mark their locations on your sketch as well. b. Locate areas to measure clast compositions and paleocurrents. (3) Paleocurrents a. Measure the strike & dip of the bedding. b. Measure the orientation of up to 15 imbricated clasts (if you can find them). c. Measure at least 15 crossbed sets for the orientation of the cross laminations. Note whether the sets are planar-tabular or trough crossbeds. If trough cross-stratified, measure the trend and plunge of the trough axis; the dip direction of the crossbeds on the flanks of the trough will not indicate the paleocurrent direction correctly. (4) Clasts a. Identify at least 20 clasts chosen at RANDOM (method explained in field lecture) picked from the conglomerate horizons. For the purposes of this exercise, identify the clasts using the following general categories: plutonic rocks high-grade metamorphic rocks (schist, gneiss, marble, blueschist) low-grade metamorphic rocks (greenstone, graywackes) volcanics chert (plus classify by color) unmetamorphosed sedimentary rocks (id more specifically if possible) ultramafics (e.g., serpentine) b. Measure the long axis of the clasts; note each length & composition (5) Lithologies - Identifying a Cycle a. Draw a typical lithologic cycle in a stratigraphic (vertical) sequence, (with noted scale). Also be sure to label all lithologies and sedimentary structures on your outcrop sketch. A sketch of the outcrop may also show significant lateral variations, such as a channel, or the presence of lenticular bedding. You can also make other sketches of different scale sedimentary features, but remember your time limitations. This information will help you with constructing a stratigraphic column and interpretation of field data later.

5 ES120 FIELD TRIP #2 -- San Benito Gravels - p.5 Summary The purpose of this exercise is to provide you with first hand experience in applying sedimentologic and stratigraphic field techniques. The primary scientific goal, however, is to determine the nature of the depositional facies at Stop 2. This includes the general orientation of the beds and depositional environment (and processes). Paleocurrent analysis and diagrams will be explained and constructed next week in lab. You will produce (in and out of lab) stereonet projections and rose diagrams of your paleocurrent data, and pie diagrams and histograms of clasts types and sizes. Abstract Assignment Your abstract will provide an interpretation of the outcrop (stop#2) data in light of your understanding of fluvial processes and the geologic history of the region. More specifically, your abstract must explain the nature of the field site (e.g. location, rock types, age, tectonic setting, geomorphology), the purpose of your work, results of data collection and analysis, and interpretation of the depositional facies including river current, direction, and clast provenance. For this assignment, you may submit an extended abstract, with a word limit of 400 words. Include the total word count at the end of your abstract. Along with the abstract, you will turn in for each site: (1) A stratigraphic column showing beds, sedimentary textures/structures, and general lithology. The column should follow the guidelines set forth in the handout provided in lab. (2) Pie charts of your clast lithologies, (3) Rose diagrams representing paleocurrent directions (4) Histograms of clast sizes (These diagrams are mean to support the assessments and interpretations presented in your abstract.) (5) Although you do not include reference citations within an abstract, you must turn in a separate page listing the references that you consulted for this work. (6) Don t forget to list your field partner. Abstracts are due by 2:00 PM Thursday, April 22

6 ES120 FIELD TRIP #2 -- San Benito Gravels - p.6 Conglomerate Clast Lithologies from the San Benito Gravels Quien Sabe Volcanics: rhyolite, dacite Salinian block: marble, quartzite (vein?), granite Franciscan: sandstone, chert, chert conglomerate, graywacke, shale, serpentine, basalt, blueschist Gabilans: rhyolite, marble Undifferentiated Tertiary rocks: siliceous mudstone, conglomeratic sandstone, arkosic sandstone

7 ES120 FIELD TRIP #2-- San Benito Gravels - p.7 Geologic Map

8 ES120 FIELD TRIP #2 -- San Benito Gravels - p.8 Topographic Map

9 Road Map ES120 FIELD TRIP #2 -- San Benito Gravels p.9

10 ES120 FIELD TRIP #2 -- San Benito Gravels p.10 Additional Resources on Braided River Deposits: Figure above provides an example of how you might identify and subdivide units based on crossbed orientations and bedding planes. Figure to the right shows the typical lithofacies and vertical profiles from a shallow, gravel-bed braided river (A) and a sheetflood distal braided river (B). (From Boggs, 2001). These represent typical profiles, but are not meant to be models for all braided river systems.

Chapter 8: Learning objectives

Chapter 8: Learning objectives Chapter 8: Learning objectives Understand concept of sedimentary facies Signinifance of lateral and vertical facies associations Walther s Law Understand the sedimentary facies of alluvial fans, eolian

More information

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes Geo 302D: Age of Dinosaurs LAB 2: Sedimentary rocks and processes Last week we covered the basic types of rocks and the rock cycle. This lab concentrates on sedimentary rocks. Sedimentary rocks have special

More information

Data Repository item

Data Repository item Data Repository (B25407): Localities and descriptions of measured sections of study areas Table 1. Localities of the measured sedimentary sections in the NW Sichuan Basin Section Number Stratigraphy Locality

More information

The Hydrologic Cycle

The Hydrologic Cycle CONTINENTAL DEPOSITIONAL ENVIRONMENTS fluvial desert lacustrine (lake) Glacial KEY PARAMETERS (VARIABLES) 1. Climate (Hydrologic Cycle) Annual Precip vs. Seasonality 2. Tectonics (Mountains) The Hydrologic

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

GEOL 02 Lab 9 Field Trip III Centerville Stratigraphic Section Name: Date:

GEOL 02 Lab 9 Field Trip III Centerville Stratigraphic Section Name: Date: Name: Date: Team Name: Team Members: Our goal today is to describe the sedimentary lithostratigraphic section of exposed bedrock along the road near Centerville Beach, interpret the depositional environment,

More information

Facies Analysis Of The Reservoir Rocks In The. Sylhet Trough, Bangladesh. Abstract

Facies Analysis Of The Reservoir Rocks In The. Sylhet Trough, Bangladesh. Abstract Facies Analysis Of The Reservoir Rocks In The Sylhet Trough, Bangladesh Joyanta Dutta Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL DESCRIPTIONS OF OTHER STRATIGRAPHIC SECTIONS Cherry Creek In its middle reaches, Cherry Creek meanders between three paired terraces within a narrow bedrock valley. The highest is

More information

Nathan D. Webb and James L. Best

Nathan D. Webb and James L. Best Nathan D. Webb and James L. Best Background Pennsylvanian oil production Stratigraphy & geologic setting Study area Methods Using geophysical logs & core Results Comparing three channel deposits Implications

More information

Writing Earth s History

Writing Earth s History Earths History Writing Earth s History How is Earths History like writing in your Journal? Everyday, something happens and, with a pen, it is written down in the pages of your journal. As you continue,

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W05, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Are the following flow types typically laminar or turbulent and

More information

GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4)

GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4) GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4) Objectives: 1. Become familiar with the different sedimentary structures 2. Understand the origin of these different structures and be able

More information

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test.

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. 1. Sketch a map view of three types of deltas showing the differences in river,

More information

NAME: GEL 109 Final Winter 2010

NAME: GEL 109 Final Winter 2010 GEL 109 Final Winter 2010 1. The following stratigraphic sections represents a single event followed by the slow accumulation of background sedimentation of shale. Describe the flows that produced the

More information

Primary Structures in Sedimentary Rocks. Engr. Sultan A. Khoso

Primary Structures in Sedimentary Rocks. Engr. Sultan A. Khoso Primary Structures in Sedimentary Rocks Engr. Sultan A. Khoso Sedimentary rocks Sedimentary rocks are those rocks which are formed by the weathered sediments of pre existing rocks (igneous or metamorphic

More information

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W01, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Where in a water flow is there usually a zone of laminar flow even

More information

Geo 302D: Age of Dinosaurs. LAB 1: Introduction to Rocks and Sedimentary Processes

Geo 302D: Age of Dinosaurs. LAB 1: Introduction to Rocks and Sedimentary Processes Geo 302D: Age of Dinosaurs LAB 1: Introduction to Rocks and Sedimentary Processes We would not be able to address the interesting questions of dinosaurs and their place in the history of life without the

More information

GeoCanada 2010 Working with the Earth

GeoCanada 2010 Working with the Earth Lithofacies Identification and the Implications for SAGD Well Planning in the McMurray Formation, Christina Lake Area, Alberta Travis Shackleton*, Robert Gardner, Sung Youn, Grace Eng and Lori Barth Cenovus

More information

General Geology Lab #7: Geologic Time & Relative Dating

General Geology Lab #7: Geologic Time & Relative Dating General Geology 89.101 Name: General Geology Lab #7: Geologic Time & Relative Dating Purpose: To use relative dating techniques to interpret geological cross sections. Procedure: Today we will be interpreting

More information

Lecture 19: Fluvial Facies

Lecture 19: Fluvial Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 19: Fluvial Facies Aims Examine controls on alluvial channel pattern List the types of channel pattern Examine meandering

More information

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13 ESC102 Sedimentary Rocks Our keys to the past Sedimentary Rocks Sedimentary rocks are rocks that form through the accumulation of sediment and the process of lithification. Lithification occurs after deposition

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

B) color B) Sediment must be compacted and cemented before it can change to sedimentary rock. D) igneous, metamorphic, and sedimentary rocks

B) color B) Sediment must be compacted and cemented before it can change to sedimentary rock. D) igneous, metamorphic, and sedimentary rocks 1. Which characteristic of nonsedimentary rocks would provide the least evidence about the environment in which the rocks were formed? A) structure B) color C) crystal size D) mineral composition 2. Which

More information

River floodplain regime and stratigraphy. Drs. Nanette C. Kingma.

River floodplain regime and stratigraphy. Drs. Nanette C. Kingma. River floodplain regime and stratigraphy. Drs. Nanette C. Kingma. Formation of floodplain. Formation of floodplains: lateral channel migration in channel deposition suspended-load fall out during higher

More information

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples Very well sorted Travelled grate distance, effective sorting 5 medium-grained sandstone with well rounded grains; large scale high angle planar cross-beds. Migration of straight crested mega ripples Desert

More information

=%REPORT RECONNAISSANCE OF CHISHOLM LAKE PROSPECT. October 25, 1977

=%REPORT RECONNAISSANCE OF CHISHOLM LAKE PROSPECT. October 25, 1977 =%REPORT ON FIELD RECONNAISSANCE OF CHISHOLM LAKE PROSPECT October 25, 1977 Bruce D. Vincent Imperial Oil Limited, Minerals - Coal, CALGARY, ALBERTA CHISHOLM LAKE PROSPECT Introduction The Chisholm Lake

More information

Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians

Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians The remaining laboratory sessions for the semester will be collected into a series of exercises designed

More information

Geology Stratigraphic Correlations (Lab #4, Winter 2010)

Geology Stratigraphic Correlations (Lab #4, Winter 2010) Name: Answers Reg. lab day: Tu W Th Geology 1023 Stratigraphic Correlations (Lab #4, Winter 2010) Introduction Stratigraphic correlation is the process of comparing rocks at one locality with related rocks

More information

Geologic Mapping Regional Tournament Trial Event

Geologic Mapping Regional Tournament Trial Event Geologic Mapping Regional Tournament Trial Event A TEAM OF UP TO: 2 Team Name AVAILABLE TIME: 50 min Required Materials: Each team MUST have a protractor, ruler, non-programmable calculator, colored pencils,

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements Why measure paleocurrent directions? Paleocurrent measurements can provide valuable information on ancient flow conditions, which can often shed light on paleogeography. For example, paleocurrent data

More information

SOUTH CERRO AZUL STRATIGRAPHIC SECTION. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) Lower Sandlin unit (Tsl)

SOUTH CERRO AZUL STRATIGRAPHIC SECTION. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) Lower Sandlin unit (Tsl) Figure A3-01 cobbles claysilt general grain size sand pebbles vf f m c vc SOUTH CERRO AZUL STRATIGRAPHIC SECTION Top at 18 m. Upper Cerro Azul flow of the Servilleta Basalt (Tsbcau) 15 Basalt: Very dark

More information

Continental Environments. Continental Environments. Chapter 9. Deserts Alluvial fans Rivers (fluvial) and floodplains Lakes (lacustrine) Glacial

Continental Environments. Continental Environments. Chapter 9. Deserts Alluvial fans Rivers (fluvial) and floodplains Lakes (lacustrine) Glacial Continental Environments Chapter 9 Continental Environments Deserts Alluvial fans Rivers (fluvial) and floodplains Lakes (lacustrine) Glacial Desert Biome http://www.blueplanetbiomes.org/climate.htm low-latitude

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 17: Sandy Fluvial Depositional Environments Instructor: Dr. Douglas W. Haywick Last Time Volcaniclastic Sedimentary Rocks 1. Origin of

More information

Lecture Outline Wednesday - Friday February 14-16, 2018

Lecture Outline Wednesday - Friday February 14-16, 2018 Lecture Outline Wednesday - Friday February 14-16, 2018 Quiz 2 scheduled for Friday Feb 23 (Interlude B, Chapters 6,7) Questions? Chapter 6 Pages of the Past: Sedimentary Rocks Key Points for today Be

More information

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D 1. A student obtains a cup of quartz sand from a beach. A saltwater solution is poured into the sand and allowed to evaporate. The mineral residue from the saltwater solution cements the sand grains together,

More information

Objectives: Define Relative Age, Absolute Age

Objectives: Define Relative Age, Absolute Age S6E5. Students will investigate the scientific view of how the earth s surface is formed. c. Classify rocks by their process of formation. g. Describe how fossils show evidence of the changing surface

More information

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas Lecture Goals A) Rivers and Deltas (types) B) Water Flow and sedimentation in river/deltas

More information

Outcrops from Every Continent and 20 Countries in 140 Contributions. Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick.

Outcrops from Every Continent and 20 Countries in 140 Contributions. Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick. Paper VIII Tor H. Nilsen, Roger D. Shew, Gary S. Steffens, and Joseph R.J. Studlick Editors Outcrops from Every Continent and 20 Countries in 140 Contributions http://bookstore.aapg.org Length ~ 23 m (75.5

More information

Sedimentary Structures in Metamorphic Rocks

Sedimentary Structures in Metamorphic Rocks Maine Geologic Facts and Localities November, 2006 Primary Sedimentary Structures in Some Metamorphic Rocks Text by Thomas K. Weddle, Department of Agriculture, Conservation & Forestry 1 Photo by Thomas

More information

GY 112 Lecture Notes Rock Review

GY 112 Lecture Notes Rock Review GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Rock Review Lecture Goals: A) Recap of rock types B) Recap of the rock cycle C) Sedimentary rocks: their role in earth history Textbook reference:

More information

Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, I. Overview of Santa Lucia Range geology and tectonic history

Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, I. Overview of Santa Lucia Range geology and tectonic history Geology (Mellow) Hike, Santa Lucia Memorial Park February 16, 2015 I. Overview of Santa Lucia Range geology and tectonic history A. Basement Rocks 1. Salinian Block Rocks Sierra Nevada Type, continental

More information

Devonian Braided Stream Deposits in the Battery Point Formation, Gaspe Est, Quebec*

Devonian Braided Stream Deposits in the Battery Point Formation, Gaspe Est, Quebec* Maritime Sediments, Vol. 9, No. 1, April 1973, pp. 13-20. Introduction Devonian Braided Stream Deposits in the Battery Point Formation, Gaspe Est, Quebec* DOUGLAS J. CANT Department of Geology, McMaster

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

Page 1/5. Melnick et al. Data Repository FACIESAND SEDIMENTOLOGY OFTHE SANTAMARIAFORMATION

Page 1/5. Melnick et al. Data Repository FACIESAND SEDIMENTOLOGY OFTHE SANTAMARIAFORMATION Page 1/5 FACIESAND SEDIMENTOLOGY OFTHE SANTAMARIAFORMATION Lower marine This is dominated by black sandstones with minor interbedded layers of clay, peat, paleosol, and locally fine conglomerate. The black

More information

Sup. Mat. 1. Figure DR1. Map showing the distribution of the Vanrhynsdorp Group. 02

Sup. Mat. 1. Figure DR1. Map showing the distribution of the Vanrhynsdorp Group. 02 GSA DATA REPOSITORY 2013142 Buatois, Almond and Germs Treptichnus pedum - List of supplementary materials: Sup. Mat. 1. Figure DR1. Map showing the distribution of the Vanrhynsdorp Group. 02 Sup. Mat.

More information

Coso Red Hill and Coso Playa field trip, Prof. Alessandro Grippo, Ph.D.

Coso Red Hill and Coso Playa field trip, Prof. Alessandro Grippo, Ph.D. HISTORICAL GEOLOGY fall 2016 Professor: Dr. Alessandro Grippo, Ph.D. FIELD TRIP REPORT: Friday, October 21, 2016: Coso Red Hill & Playa, Coso Junction CA YOUR NAME part 1: COSO RED HILL (you can sample

More information

EARTH SURFACE PROCESSES AND SEDIMENTATION!

EARTH SURFACE PROCESSES AND SEDIMENTATION! Sed and Strat EARTH SURFACE PROCESSES AND SEDIMENTATION! 2/27 Lecture 7- Exposure: Weathering and the Sediment Factory 3/04 Lecture 8 - Rivers and Landscapes 3/06 Lecture 9 - Waves (not Tides) 3/11 Lecture

More information

Instructor s Manual Chapter 3

Instructor s Manual Chapter 3 CHAPTER 3 Resource Integration Guide Chapter Outline Chapter Summary Lecture Suggestions Key Terms Web Links Virtual Field Trip Suggested Responses Chapter Outline 3.1 and the Rock Cycle 3.1a The Rock

More information

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS

SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS GSA DATA REPOSITORY 2014069 Hajek and Edmonds SUPPLEMENTAL INFORMATION DELFT 3-D MODELING: MODEL DESIGN, SETUP, AND ANALYSIS Each experiment starts from the initial condition of a straight channel 10 km

More information

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS Learning outcomes The student is able to: 1. understand and identify rocks 2. understand and identify parent materials 3. recognize

More information

Cross-Cutting Relationships Cross-Cutting and Sequencing Lab Earth Science Essentials-Advanced by Russ Colson

Cross-Cutting Relationships Cross-Cutting and Sequencing Lab Earth Science Essentials-Advanced by Russ Colson Cross-Cutting Relationships Cross-Cutting and Sequencing Lab Earth Science Essentials-Advanced by Russ Colson Introduction: It isn't possible to bring all of outdoors into the classroom, and stratigraphic

More information

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size.

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size. Sedimentology 001 What is sedimentology? Sedimentology...encompasses the study of modern sediments such as sand [1], mud (silt) [2] andclay [3] and understanding the processes that deposit them.[4] It

More information

EPS 50 Lab 4: Sedimentary Rocks

EPS 50 Lab 4: Sedimentary Rocks Name: EPS 50 Lab 4: Sedimentary Rocks Grotzinger and Jordan, Chapter 5 Introduction In this lab we will classify sedimentary rocks and investigate the relationship between environmental conditions and

More information

Sedimentary System Characteristics of Deng-3 Section on Paleo-central. Uplift Belt in Northern Songliao Basin. Siyang Li1,a*

Sedimentary System Characteristics of Deng-3 Section on Paleo-central. Uplift Belt in Northern Songliao Basin. Siyang Li1,a* Sedimentary System Characteristics of Deng-3 Section on Paleo-central Uplift Belt in Northern Songliao Basin Siyang Li1,a* 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing,

More information

Daniel Koning, Peggy Johnson, and John Hawley. New Mexico Bureau of Geology and Mineral Resources

Daniel Koning, Peggy Johnson, and John Hawley. New Mexico Bureau of Geology and Mineral Resources Daniel Koning, Peggy Johnson, and John Hawley Daniel Koning 1, Gary Smith 2, and Adam Read 1 1 New Mexico Bureau of Geology and Mineral Resources 2 University of New Mexico Santa Fe Group Definition (Spiegel

More information

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Name: EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Introduction: Maps are some of the most interesting and informative printed documents available. We are familiar

More information

depression above scarp scarp

depression above scarp scarp 1 LAB 1: FIELD TRIP TO McKINLEYVILLE AND MOUTH OF THE MAD RIVER OBJECTIVES: a. to look at geomorphic and geologic evidence for large scale thrust-faulting of young sediments in the Humboldt Bay region

More information

Paleo Lab #4 - Sedimentary Environments

Paleo Lab #4 - Sedimentary Environments Paleo Lab #4 - Sedimentary Environments page - 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation

More information

LAB 6: TRINIDAD BEACH FIELD TRIP

LAB 6: TRINIDAD BEACH FIELD TRIP OBJECTIVES: LAB 6: TRINIDAD BEACH FIELD TRIP 1) to develop your powers of observation, especially of geological phenomena; 2) to identify the rocks exposed at Trinidad Beach; 3) to reconstruct some of

More information

NAME HOMEWORK ASSIGNMENT #3 MATERIAL COVERS CHAPTERS 8, 9, 10, 11

NAME HOMEWORK ASSIGNMENT #3 MATERIAL COVERS CHAPTERS 8, 9, 10, 11 NAME HOMEWORK ASSIGNMENT #3 MATERIAL OVERS HAPTERS 8, 9, 10, 11 Assignment is due the beginning of the class period on November 23, 2004. Answers for each chapter will be discussed in class, as Exam #3

More information

The Nature of Sedimentary Rocks

The Nature of Sedimentary Rocks The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks Chemical precipitates Organic matter or biochemically produced materials The Nature of Sedimentary Rocks Sedimentary

More information

Calculation of Stream Discharge Required to Move Bed Material

Calculation of Stream Discharge Required to Move Bed Material Calculation of Stream Discharge Required to Move Bed Material Objective: Students will map two sections of a stream and calculate the depth, velocity, and discharge of flows required to move the stream

More information

Geoscience 001 Fall Rock Identification and Contextual Interpretation

Geoscience 001 Fall Rock Identification and Contextual Interpretation Geoscience 00 Fall 2005 Rock Identification and Contextual Interpretation The purpose of this week s lab is to gain some more experience and practice in identifying rocks and then interpreting the geologic

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 5: SEDIMENTATION: Rocks Formed by Surface Processes Lecturer: H Mohammadzadeh Assistant professors, Department of Geology, FUM Copyright

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 14: Sedimentary Rocks Part 2: Alluvial Fans and Rivers Instructor: Dr. Douglas W. Haywick Last Time 1) Types of Sediment 2) Sedimentary Rock

More information

Geologic Map of the Hatch Quadrangle, Doña County, New Mexico

Geologic Map of the Hatch Quadrangle, Doña County, New Mexico Geologic Map of the Hatch Quadrangle, Doña County, New Mexico By William R. Seager May 1995 New Mexico Bureau of Geology and Mineral Resources Open-file Digital Geologic Map OF-GM 213 Scale 1:24,000 This

More information

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Geology Laboratory GEOL 101 Lab Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 7: Sedimentary Sections Instructor: Dr. Douglas W. Haywick Last Time (online) 1. Models of traction structures 2. Sediment transport versus

More information

Pre-Lab Reading Questions ES202

Pre-Lab Reading Questions ES202 ES202 The are designed to encourage students to read lab material prior to attending class during any given week. Reading the weekly lab prior to attending class will result in better grade performance

More information

Siliciclastic Hand Samples

Siliciclastic Hand Samples Describing siliciclastic rocks in hand sample Many aspects of siliciclastic rocks are best described in thin section, yet you will often be faced with the necessity of describing them in hand sample. That

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Lab 8: Facies Analysis and Correlations: Sequence Stratigraphy in the Book Cliffs, Utah

Lab 8: Facies Analysis and Correlations: Sequence Stratigraphy in the Book Cliffs, Utah Geology 109L Lab 8: Facies Analysis and Correlations: Sequence Stratigraphy in the Book Cliffs, Utah Goal: In this lab, you will put together your knowledge of near-shore facies and sequence stratigraphy

More information

Sediments and Sedimentary Rocks

Sediments and Sedimentary Rocks Sediments and Sedimentary Rocks (Shaping Earth s Surface, Part 2) Science 330 Summer 2005 What is a sedimentary rock? Products of mechanical and chemical weathering Account for about 5 percent of Earth

More information

Supplementary material

Supplementary material Supplementary material 1. Stratigraphic sections measured in the Dripping Spring Quartzite The measured sections (A, B, and C; Fig. 1 in main text), correspond to the Barnes Conglomerate, the Middle Member,

More information

sedimentary cover a) marine sediments b) continental sediments depth of crust: 5-10 km

sedimentary cover a) marine sediments b) continental sediments depth of crust: 5-10 km Deformation and Brittle Fracture I. Primary Rock Structure A. Tectonic Control of Rock Structure 1. Lithospheric Plates a. plate = crust + upper mantle above asthenosphere (1) Layered Crust (a) oceanic

More information

Mud Sand Gravel. Clastic Textures

Mud Sand Gravel. Clastic Textures Sed Rocks Self-Instruction Lab Name Geology 100 Harbor Section Please see the questions online before you begin. Sedimentary rocks are usually identified in the field by their stratification or layering,

More information

Geology 109L Lab 3: Modern Sedimentary Environments --Field Trip to Bodega Bay--

Geology 109L Lab 3: Modern Sedimentary Environments --Field Trip to Bodega Bay-- Geology 109L Lab 3: Modern Sedimentary Environments --Field Trip to Bodega Bay-- Goal: The purpose of this lab is to recognize characteristics of modern sedimentary environments, which will aid you in

More information

I. Uniformitarianism- James Hutton s 2-part theory states: A. The geologic processes now at work were also active in the past B. The present physical

I. Uniformitarianism- James Hutton s 2-part theory states: A. The geologic processes now at work were also active in the past B. The present physical How Earth s Rocks Were Formed I. Uniformitarianism- James Hutton s 2-part theory states: A. The geologic processes now at work were also active in the past B. The present physical features of Earth were

More information

Why is quartz one of the most weathering-resistant minerals?

Why is quartz one of the most weathering-resistant minerals? Why is it a poor idea to use limestone for tombstones in a wet hot area like the Amazon rainforest? A) Because limestone weathers at a very fast rate B) Because limestone weathers at a very low rate C)

More information

Lab 7: Sedimentary Structures

Lab 7: Sedimentary Structures Name: Lab 7: Sedimentary Structures Sedimentary rocks account for a negligibly small fraction of Earth s mass, yet they are commonly encountered because the processes that form them are ubiquitous in the

More information

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor

Sedimentary Rocks. Origin, Properties and Identification. Physical Geology GEOL 100. Ray Rector - Instructor Sedimentary Rocks Origin, Properties and Identification Physical Geology GEOL 100 Ray Rector - Instructor Sedimentary Rock Origin and Identification Lab Pre-Lab Internet Link Resources 1) http://www.rockhounds.com/rockshop/rockkey/index.html

More information

Geology : Embedded Inquiry

Geology : Embedded Inquiry Geology : Embedded Inquiry Conceptual Strand Understandings about scientific inquiry and the ability to conduct inquiry are essential for living in the 21 st century. Guiding Question What tools, skills,

More information

BALOCHISTAN FOLDBELT BASIN

BALOCHISTAN FOLDBELT BASIN INTRODUCTION BALOCHISTAN FOLDBELT BASIN The Kharan-3 block is located in the Kharan Trough of Balochistan Basin. GEOLOGICAL SETTING The Balochistan Province is an Upper Cretaceous to Recent structurally

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Classification of sedimentary rocks Sedimentary rocks are products of weathered, fragmented or dissolved,

More information

DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope)

DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope) DOWNSTREAM SORTING OF SEDIMENT (additional control on channel width, depth and slope) Image removed due to copyright concerns As the gravel gets finer, it is transported at lower slopes. The result is

More information

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State.

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 3. The table below describes the deposits that an observer saw while

More information

Geologic Trips San Francisco and the Bay Area

Geologic Trips San Francisco and the Bay Area Excerpt from Geologic Trips San Francisco and the Bay Area by Ted Konigsmark ISBN 0-9661316-4-9 GeoPress All rights reserved. No part of this book may be reproduced without written permission in writing,

More information

Study on Bedforms and Lithofacies Structres and Interpretation of Depositional Environtment of Brahmaputra River near Nemati, Assam, India.

Study on Bedforms and Lithofacies Structres and Interpretation of Depositional Environtment of Brahmaputra River near Nemati, Assam, India. The International Journal Of Engineering And Science (IJES) Volume 4 Issue 7 Pages PP -14-20 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Study on Bedforms and Lithofacies Structres and Interpretation

More information

Bulletin of Earth Sciences of Thailand

Bulletin of Earth Sciences of Thailand Depositional Environments and Stratigraphic Development of the Grand Taman Sari Circuit Outcrop: an Analogue for Transgressive Mahakam Delta Successions Ridha Santika Riadi Petroleum Geoscience Program,

More information

Chapter 6 Sedimentary and Metamorphic Rock

Chapter 6 Sedimentary and Metamorphic Rock Chapter 6 Sedimentary and Metamorphic Rock Weathering and Erosion Wherever rock is exposed at Earth s surface, it is continuously being broken down by weathering a set of physical and chemical processes

More information

Fluid-Mud Deposits of the Lower Jurassic Tilje Formation, Offshore Mid-Norway By Aitor A. Ichaso and Robert W. Dalrymple 1

Fluid-Mud Deposits of the Lower Jurassic Tilje Formation, Offshore Mid-Norway By Aitor A. Ichaso and Robert W. Dalrymple 1 Fluid-Mud Deposits of the Lower Jurassic Tilje Formation, Offshore Mid-Norway By Aitor A. Ichaso and Robert W. Dalrymple 1 Search and Discovery Article #50107 (2008) Posted August 10, 2008 *Adapted from

More information

A Sedimentary Rock is..

A Sedimentary Rock is.. Sedimentary Rocks A Sedimentary Rock is.. rock formed from the lithification or crystallization of: 1. Minerals in solution 2. Organic remains 3. Materials produced by living things (biochemical) 4. Clastic

More information

Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia

Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia Sedimentology (007) 54, 111 1147 doi: 101111/j1365-309100700875x Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia BRIAN A HAMPTON* and BRIAN K HORTON *Department of

More information

Jackfork Group research project. What I want them to do:

Jackfork Group research project. What I want them to do: Jackfork Group research project What I want them to do: 1. Make observations on the rock types encountered in the JFG units. 2. Make basic interpretations of processes based on these observations. 3. Make

More information

Mud Sand Gravel. Clastic Textures

Mud Sand Gravel. Clastic Textures Sed Rocks Self-Instruction Lab Name Geology 100 Harbor Section Read the sedimentary rocks chapter before you start. Sedimentary rocks are usually identified in the field by their stratification or layering,

More information

Clastic Sedimentary Rocks

Clastic Sedimentary Rocks Clastic Sedimentary Rocks Alessandro Grippo, Ph.D. Alternating sandstones and mudstones in Miocene turbidites Camaggiore di Firenzuola, Firenze, Italy Alessandro Grippo review Mechanical weathering creates

More information