Julie Fero NRS 509. Mapping Volcanic Risk with GIS

Size: px
Start display at page:

Download "Julie Fero NRS 509. Mapping Volcanic Risk with GIS"

Transcription

1 Julie Fero NRS 509 Mapping Volcanic Risk with GIS Introduction Volcanoes are present throughout the world, generally occurring along plate margins, making the entire world prone to volcanic influence, whether directly or indirectly. However, the nations that are most vulnerable to natural disasters are developing countries. Many of the world s developing countries in Latin America and Asia are locate directly on a volcanic belt (Alcantara-Ayala, 2002). The development of a system to accurately assess volcanic risk in these regions is critical to public health and future development of these countries. Volcanic Hazards There are numerous volcanic hazards that can be destructive to property or pose a threat to human health. These hazards include lahars, debris avalanches, ash fall, release of volcanic gases, pyroclastic flows, lava flows and even tsunamis (Blong, 2000). Lahars are large mudflows that occur on a volcanic slope when water, often generated by melting of snow or ice during the eruption, mixes with loosely consolidated volcanic soil creating a deadly river of mud. Lahars have occurred during many of the prominent historical eruptions including the eruptions of Mt. Saint Helens, Mt. Pinatubo, and Nevado Del Ruiz (Rodolfo, 2000). The lahar generated at the eruption of Nevado Del Ruiz was especially devastating, killing over 23,000 people. Debris avalanches are large landslides formed during the eruptions. Often these avalanches include a large portion of the edifice of the volcano as observed at the beginning of the 1980 eruption of Mt. Saint Helens (Ui et al., 2000). Ash fallout from volcanic plumes can be very destructive to structures, crops, machinery, and power lines. Fumaroles that release toxic volcanic gases can be very hazardous to humans and livestock. Volcanic degassing of carbon dioxide from Lake Nyos claimed 1800 lives in 1986 (William-Jones and Rymer, 2000). Pyroclastic flows are liquidized flows of hot gas and particles that are deadly to anyone in their path. Tsunamis, such as the one that devastated the south Pacific last December, can be triggered by underwater eruptions or by volcanic material flowing into the ocean. Predictions of future volcanic hazards are often based on past volcanic activity of the region. Maps of previous lahar, avalanche, pyroclastic flow, and ash fallout deposits can be generated and used to show where these hazards are likely to occur again in the future. Additionally, elevation information can be extremely useful in predicting the flow path of a lahar or pyroclastic flow. Digital elevation models (DEMs) can aid in these predictions. Volcanic Risk Assessment The assessment of volcanic risk involves the compilation of volcanic hazard data with the addition of demographic data. The risk affecting a particular area is controlled by many factors including the population density, economic stability of the region, land use, and of course the potential volcanic hazards (Alberico et al., 2002). Only by combining all of these factors can the possible life and economic loss due to a volcanic event be evaluated. Knowing the potential risk of a region can help in disaster prevention and help the region recover after a disaster.

2 Role of GIS Volcanic risk assessment requires the assimilation and comparison of numerous data sets including maps of volcanic hazards, digital elevation models, and maps of demographic information (Pareschi et al., 2000). Geographical Information System (GIS) software can significantly aid in this process. Volcanic observatories worldwide are developing GIS databases to map the risks associated with the volcanoes in the region. For example, in the Azores, Gaspar et al. (2004) are working on developing a GIS database called AZORIS to map a wide variety of regional specific hazard and socioeconomic data. The GEOWARN database, currently under development, will eventually be a GIS database where information from a potentially active volcanic site can be entered to predict the potential hazards of the region (Gogu et al., In Press). Specifically GIS has been used to map hazards associated with pyroclastic flows at Campi Flegrei, Italy and Asama Volcano, Japan (Alberico et al., 2002; Kohsada, 2000). In Italy, GIS was used to integrate several different forms of data, including historical and current geological, geophysical, and geochemical data along with population density data. Alberico et al. then determined the areas of greatest volcanic risk. In Japan, Kohsada mapped historic pyroclastic flows and then overlaid a map of current roads and development to determine the regions of volcanic risk. Since pyroclastic flows follow the topography of the region, DEMs can be very useful in pyroclastic flow extent prediction. With a GIS database, DEMs can be easily integrated with historical hazard data, geologic data, and socio-economic data (Pareschi et al., 2000). Similarly, DEMs are useful when determining potential regions of lahar inundation. Iverson et al. (1998) used GIS software to calculate lahar hazard zones based on DEM data. Conclusions GIS is an essential tool for the mapping of volcanic risk zones. The capability of GIS to assimilate several sets of data into one comprehensive format allows for volcanic hazard potential to be easily compared with demographic information, such as population density. The use of GIS in assessing volcanic hazards is still fairly new, but I expect that the use of GIS within the field will soon become ubiquitous. I expect the future of volcanic hazard and risk management will continue to build upon the use of GIS. There are many active volcanoes, right here in the United States, that pose a hazard to the population. For example, Mt. Rainer could potentially produce devastating lahars in the Pacific Northwest. Many hazard zone maps of the region have already been produced, but as mapping technology, including GIS, improves, these hazard predictions will become more precise. References Alberico, I., Lirer, L., Petrosino, P. and R. Scandone, A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). Journal of Volcanology and Geothermal Research 116(1-2): Alcantara-Ayala, I., Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47(2-4):

3 Blong, R., Volcanic hazards and risk management. In: H. Sigurdsson (Editor), Encylopedia of Volcanoes. Academic Press, New York, pp Gaspar, J.L., Goulart, C., Queiroz, G., Silveira, D. and A. Gomes, Dynamic structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Natural Hazards and Earth System Sciences 4(2): Gogu, R.C., Dietrich, V.J., Jenny, B., Schwandner, F.M. and L. Hurni, In Press. A geospatial data management system for potentially active volcanoes-geowarn project. Computers & Geosciences, In Press. Iverson, R.M., Schilling, S.P. and J.W. Vallance, Objective delineation of laharinundation hazard zones. Geological Society of America Bulletin, 110: Kohsaka, H., Risk prediction and evacuation-rescue plans for pyroclastic flow using GIS; a case study of the southern slope of Asama Volcano, Japan. Geographical review of Japan 73(6): Pareschi, M.T., Cavarra, L., Favalli, M., Giannini, F. and A. Meriggi, GIS and volcanic risk management. Natural Hazards 21(2-3): Rodolfo, K.S., The hazard from lahars and jokulhuaups. In: H. Sigurdsson (Editor), Encylopedia of Volcanoes. Academic Press, New York, pp Ui, T., Takarada, S. and M. Yoshimoto, Debris avalanches. In: H. Sigurdsson (Editor), Encylopedia of Volcanoes. Academic Press, New York, pp William-Jones, G. and H. Rymer, Hazards of volcanic gases. In: H. Sigurdsson (Editor), Encylopedia of Volcanoes. Academic Press, New York, pp

4 Annotated Bibliography Alberico, I., Lirer, L., Petrosino, P. and R. Scandone, A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). Journal of Volcanology and Geothermal Research 116(1-2): In this paper, the researchers utilize GIS ArcView 3.2 to assess the volcanic hazards at Campi Flegrei, Italy. An integration of historical geophysical data, geological data, and geochemical data with the population density of each region allowed for the calculation of the relative volcanic risk of each region. These data were then parameterized to provide a value for the relative hazard and urbanization of an area. The final maps show that the areas at highest risk for a volcanic disaster are the regions where a high hazard values overlaps a high urbanization value. The regions of highest risk are located within the caldera, corresponding with the town of Pozzuoli, and along the eastern part of the caldera, corresponding with the city of Naples. Since the hazard value is controlled by the proximity to the volcano, The only way to reduce the risk in these areas is to reduce the population density. Alcantara-Ayala, I., Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47(2-4): This paper addresses a wide variety of natural hazards and emphasizes the importance of understanding the risk associated with each natural hazard. The disaster risk is dependent on the population density as well as the social and economic status of the population. Many developing countries are located in regions that are prone to natural disasters. For example many developing Latin American and Asian countries are located on active volcanic belts. This paper specifically looks at the association between geomorphology and natural disasters and discusses how GIS and other mapping tools are essential to assimilate the large amounts of data to determine hazard risk. Bukumirovic, T., Italiano, F. and P.M. Nuccio, The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. Journal of Volcanology and Geothermal Research, 79(3-4): In this paper data from a long-term survey of the summit crater of La Fossa, Italy were analyzed using GIS software. GIS enabled the analysis of long-term changes in the crater of volcanic gas output. The fumarole field was manually surveyed to provide a georeferenced dataset that could be digitized into GIS software. The node of each fumarole was then linked to a flux field database to enable the calculation the total output of a single fumarole for a specific area. The creation of this database has allowed for the comparison of fumarole activity with local tectonic activity and it was found that steam output and fumarole activity both increased during periods of tectonic unrest. Gaspar, J.L., Goulart, C., Queiroz, G., Silveira, D. and A. Gomes, Dynamic structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Natural Hazards and Earth System Sciences 4(2):

5 This paper discusses the development of a GIS database, called AZORIS, to map the risks associated with the active geology of the Azores volcanic islands. The paper focused on the development of this GIS database, including the methods used to digitize and georeference multiple datasets, to archive these data, and to create the metadata and other relevant data files. Geographic and socio-economic data, civil protection data, geologic data, volcanic data, seismologic data, geodetic data, fluid geochemistry data, and meteorological data were all included in the GIS database. The creation of this comprehensive database will allow for the analysis of risks associated with volcanic eruptions on the Azores islands. Additionally, having an established database will aid emergency response in the event of a disaster. Gogu, R.C., Dietrich, V.J., Jenny, B., Schwandner, F.M. and L. Hurni, In Press. A geo-spatial data management system for potentially active volcanoes-geowarn project. Computers & Geosciences, In Press. This paper deals with the development of a data management system to provide risk assessment of active volcanoes. The authors use two currently dormant but potentially active volcanic regions, the Kos-Yali-Nisyros-Tilos volcanic field in Greece and Campi Flegrei in Italy, as test cases for the new system. The database, called GEOWARN, utilized GIS to store and analyze a wide variety of spatial data. GEOWARN includes geographic data, geophysical data, geological data, and geochemical data. The development of this database will allow for future volcanic research and hazard assessment. Pareschi, M.T., Cavarra, L., Favalli, M., Giannini, F. and A. Meriggi, GIS and volcanic risk management. Natural Hazards 21(2-3): This paper examines the risks associated with two volcanic systems located in Italy, Mt. Etna and Mt. Vesuvius. These two volcanoes behave very differently, Etna is primarily an effusive system where Vesuvius is primarily explosive, and therefore the risk assessment must account for different parameters. Several different layers must be incorporated into the model making GIS the best application for volcanic risk management. The necessary layers include, digital elevation models, digital images from satellite or aircraft, vector data on surrounding features, hazard maps, and information on population density. The use of GIS is essential to assimilate these various data and produce volcanic risk maps.

NRS509 David Kratzmann Nov 30 th 2005

NRS509 David Kratzmann Nov 30 th 2005 Application of GIS in Mapping Lava Flows 1.0 Introduction The constant growth of the human population and the migration of these people into hazardous areas has given rise to an apparent increase in natural

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Copyright McGraw-Hill Education, Inc. Permission required for reproduction or display. Volcanism and Extrusive Rocks Physical Geology

More information

Volcanoes and Urban Planning

Volcanoes and Urban Planning Background Reading & Lesson Plan Document ID: 10_04_04_1 Date Received: 2004-10-04 Date Revised: 2004-11-16 Date Accepted: 2004-11-23 Curriculum Topic Benchmarks: M1.3.5, M3.3.17, M5.3.3, M9.3.2, S12.3.7,

More information

and their risks A look at volcano risk for young students. Produced by the MED-SUV project.

and their risks A look at volcano risk for young students. Produced by the MED-SUV project. and their risks A look at volcano risk for young students. Produced by the MED-SUV project. Volcano Shapes: A volcano is a place (on Earth and OTHER PLANETS) where magma comes to the surface. This event

More information

FINAL EXAM December 20 th, here at 1:00 3:00 pm

FINAL EXAM December 20 th, here at 1:00 3:00 pm FINAL EXAM December 20 th, here at 1:00 3:00 pm REVIEW SESSION December 11 th at 6:00-7:30 pm Morrill I Auditorium (Room N375) Same as last time Don t forget your online course evaluations! Major Volcanic

More information

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5).

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5). Lecture #8 notes; Geology 3950, Spring 2006; CR Stern May 1980 eruption of Mt St Helens volcano (text pages 183-192 in the 4 th edition and 206-222 in the 5 th edition) Mt St Helens in southwest Washington

More information

GLY July Ms. Nelda Breedt. Plates move slowly and eventually.

GLY July Ms. Nelda Breedt. Plates move slowly and eventually. GLY 162 Tectonic Processes: Volcanism Ms. Nelda Breedt GLY 162 Environmental Geology Plate Tectonics Plates move slowly and eventually. 2 Spread apart (divergent plates) Dive beneath one another (converging

More information

A New College in Orting?

A New College in Orting? A New College in Orting? Risk Report and Recommendation by: Safe Schools Kause Everyone Deserves (SSKED) 2017 Geographic location and physical site of Orting The city of Orting is located in Pierce county,

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 6 Volcanic Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information: pasakyi@ug.edu.gh College of

More information

Erupted and killed approximately 15,000 people 200 years ago

Erupted and killed approximately 15,000 people 200 years ago 1 2 3 4 5 6 7 8 Introduction to Environmental Geology, 5e Chapter 8 Volcanic Activity Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Case History: Mt.

More information

Orting Community College Proposal

Orting Community College Proposal Orting Community College Proposal Cedric, Celina, Francine, Sarah, Samuel GEO CORP Located in Washington, 42 miles south of Seattle. Situated between two rivers on fertile plains. Built on lahar deposits.

More information

Chapter 18. Volcanism

Chapter 18. Volcanism Chapter 18 Volcanism Ring of fire contains 66% of world s active volcanoes Convergent : Divergent: Icelandic Eruption Mount Etna Different Kinds of eruptions: Volcanic activity is controlled by plate tectonics,

More information

Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted.

Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted. What is a Volcano? Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted. A volcano can either be a classic volcanic cone.. Mt. St. Helens,

More information

Rapid Geospatial Assessment Creating a Lahar Vulnerability Index for Mount Rainier, Washington

Rapid Geospatial Assessment Creating a Lahar Vulnerability Index for Mount Rainier, Washington I. Findings: Rapid Geospatial Assessment Creating a Lahar Vulnerability Index for Mount Rainier, Washington Drew Thompson 5/11/2011 GEOG594A Spring 2011 Dr. Bacastow Based on 2010 US Census bureau figures,

More information

Debris Avalanches. Debris avalanche deposits on a volcano in Chile. All of the area in the foreground is buried by a thick debris avalanche.

Debris Avalanches. Debris avalanche deposits on a volcano in Chile. All of the area in the foreground is buried by a thick debris avalanche. Debris Avalanches Volcanoes are not very stable structures. From time to time, they collapse producing large rock and ash avalanches that travel at high speeds down valleys. Collapse maybe caused by an

More information

Also, when Cascade volcanoes do erupt, high-speed avalanches of pyroclastic flows

Also, when Cascade volcanoes do erupt, high-speed avalanches of pyroclastic flows INTRODUCTION A volcano is a vent through which molten rock escapes to the Earth s surface. Unlike other mountains, which are pushed up from below, volcanoes are built by surface accumulation of their eruptive

More information

Volcanoes. Introduction

Volcanoes. Introduction Volcanoes Introduction Display Slide V-0 Explain that a volcano is a vent through which molten rock escapes to the Earth s surface. Unlike other mountains, which are pushed up from below, volcanoes are

More information

FIRST GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE HAZARDS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIRST GRADE VOLCANOES WEEK 1. PRE: Learning the shapes of volcanoes. LAB: Experimenting with "lava." POST: Comparing

More information

2/25/2013. Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic.

2/25/2013. Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Introduction to Environmental Geology, 5e Edward A. Keller Chapter 8 Volcanic Activity Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Lecture Presentation

More information

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 9 Volcanism and Other Igneous Processes Volcanoes types and effects of eruption Chapter Overview Melting and cooling of rocks Geological

More information

S3 IHE GE 2014/Chan ML

S3 IHE GE 2014/Chan ML S3 IHE GE 2014/Chan ML Formation Types Advantages and Disadvantages of living near/in volcanic areas Introduction Volcano, mountain or hill formed by the accumulation of materials erupted through one or

More information

Geography. Key facts. Volcanoes and volcanic eruptions

Geography. Key facts. Volcanoes and volcanic eruptions Geography Volcanoes and volcanic eruptions Volcanoes form when magma reaches the Earth's surface, causing eruptions of lava and ash. They occur at destructive (compressional) and constructive (tensional)

More information

Assessing the Volcanic Threat in Latin America. Jose L. Palma, University at Buffalo Bill Rose, Michigan Technological University

Assessing the Volcanic Threat in Latin America. Jose L. Palma, University at Buffalo Bill Rose, Michigan Technological University Assessing the Volcanic Threat in Latin America Jose L. Palma, University at Buffalo Bill Rose, Michigan Technological University PASI Workshop, January 2011 Natural Disasters by Type, 1991-2005 90% 7%

More information

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University FALL 2005 GEOLOGY 285: INTRO. PETROLOGY Mount St. Helens 1980 Eruption Small earthquakes Small steam and ash eruptions in March and

More information

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines...

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines... GENERAL CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES... 1 1.1 Background of the Guidelines... 1 1.2 Purpose of the Guidelines... 3 CHAPTER 2 APPLICATION OF THE GUIDELINES... 3 2.1 Potential Users

More information

Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards?

Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards? Tectonic Processes and Hazards Enquiry Question 1: Why are some locations more at risk from tectonic hazards? Key words Basalt Andesite Rhyolite Benioff Zone Subduction zone Crustal fracturing Definition

More information

Lab Report: Plate Tectonics Data: Submit the Convergent Plate Boundary Data Page. (6 points)

Lab Report: Plate Tectonics Data: Submit the Convergent Plate Boundary Data Page. (6 points) Name: Earth Science Date: Lab Report: Plate Tectonics Data: Submit the Convergent Plate Boundary Data Page. (6 points) Conclusion: 1. The diagram below shows both a spreading zone and a subduction zone

More information

3/7/17. #16 - Case Studies of Volcanoes II. Announcements Monday 2/27

3/7/17. #16 - Case Studies of Volcanoes II. Announcements Monday 2/27 Announcements Monday 2/27 Exam #1: Monday Feb. 27 th, 7:15-8:15 (see web site) Last Names A - N Loomis 141 Last Names O - Z Loomis 151 Bring your student ID An old exam is posted in Compass If you are

More information

Guidance for GEOGRAPHY End of Year Examination 2016

Guidance for GEOGRAPHY End of Year Examination 2016 Guidance for GEOGRAPHY End of Year Examination 2016 The End of Year Examination takes place in Week 4 of the Summer Term. The Geography Examination will last 50 minutes. The Examination will include questions

More information

Name: Earth Science Date:

Name: Earth Science Date: Name: Earth Science Date: Lab Report: Plate Tectonics Data: Submit the Mid- Atlantic Seafloor Profile Maps (from Divergent Plate Boundary Lab) on and the Convergent Plate Boundary Data Page. (6 points)

More information

GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca:

GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca: Name: Date: GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca: SiO 2 silicon dioxide. This is quartz when it crystallizes.

More information

Jeopardy. Final Jeopardy $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 $400 $500 $500 $500 $500 $500

Jeopardy. Final Jeopardy $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $400 $400 $400 $500 $500 $500 $500 $500 Jeopardy Earthquakes Volcanoes Tsunamis Wildfires Landslides/ Droughts $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 Final

More information

Earthquakes and Volcanoes

Earthquakes and Volcanoes Earthquakes and Volcanoes Volcanoes What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

3.2 Notes: Volcanoes Form as Molten Rock Erupts

3.2 Notes: Volcanoes Form as Molten Rock Erupts 3.2 Notes: Volcanoes Form as Molten Rock Erupts Think about What happens when a volcano erupts? Volcanoes erupt many types of material Earth s thin outer layer is, but most of Earth is extremely hot rock

More information

( ) USGS (United States Geological Survey) Watch Green. Normal. alert level 1 Normal

( ) USGS (United States Geological Survey) Watch Green. Normal. alert level 1 Normal (200610.1) USGS (United States Geological Survey) 1014 alert level 1 Normal Watch Green Normal USGS WARNING WATCH ADVISORY NORMAL SUMMARY OF VOLCANIC-ALERT LEVELS Highly hazardous eruption underway or

More information

Volcanic Hazards & Prediction of Volcanic Eruptions

Volcanic Hazards & Prediction of Volcanic Eruptions Page 1 of 11 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Volcanic Hazards & Prediction of Volcanic Eruptions This page last updated on 04-Oct-2016 Volcanic Hazards This lecture

More information

Nevado Del Ruiz, Lahars

Nevado Del Ruiz, Lahars Nevado Del Ruiz, 1985 - Lahars Lecture Objectives -Basics of lahars: definition, characteristics -Ruiz case study: hazards, impacts Mt. Pinatubo lahar footage by Mike Dolan (MTU) Mt. Pinatubo lahar footage

More information

Volcanism (Chapter 5)

Volcanism (Chapter 5) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Volcanism (Chapter 5) For this assignment, you will require: a calculator, colored pencils, string, protractor, stereoscopes (provided). Objectives

More information

Predicting and Preparing for Volcanoes

Predicting and Preparing for Volcanoes Predicting and Preparing for Volcanoes Prediction methods for volcanic eruptions are more reliable than those for earthquakes. Some volcanoes such as Mount Etna in Italy are monitored all of the time because

More information

Volcanoes. Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman

Volcanoes. Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman Volcanoes Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman EMPACTS Project, Spring 2017 Northwest Arkansas Community College, Bentonville, AR

More information

Earth Structures and Processes Teacher Notes

Earth Structures and Processes Teacher Notes Aleutian Islands String of islands resulting from volcanic activity Part of the Pacific Ring of Fire Coast is very jagged and rocky with steep cliffs and mountains Underwater eruptions form new landforms

More information

Figure 8-21 Distribution of Lava Flow for the Model

Figure 8-21 Distribution of Lava Flow for the Model Figure 8-21 Distribution of Lava Flow for the Model 2) Pyroclastic Flow The energy cone model was used for the simulation. a. The angle of inclination of Energy Line, φ, from the summit was 5.3 degrees

More information

Living in the shadow of Italy's volcanoes

Living in the shadow of Italy's volcanoes Living in the shadow of Italy's volcanoes Pay close attention to the film, can you spot the answers to the questions below? Introduction 1. What are the names of the two famous volcanoes in the Bay of

More information

Earthquakes & Volcanoes

Earthquakes & Volcanoes Earthquakes & Volcanoes Geology - the study of solid Earth, the rocks of which it is composed, and the processes by which they change geo = Earth; ology = study of Earth s Layers Plate Tectonics - the

More information

Chapter 5 9/10/2011. Introduction. Volcanoes and Volcanism. Volcanism. Introduction. Introduction. Introduction

Chapter 5 9/10/2011. Introduction. Volcanoes and Volcanism. Volcanism. Introduction. Introduction. Introduction Introduction Chapter 5 Volcanism is the eruption of magma, and associated gases at the surface. Some magma erupts explosively as pyroclastic (fire-broken) rock and other erupts as lava flows. Volcanoes

More information

Effects of Eruptions. Most active in the world Kilauea, Hawaii.

Effects of Eruptions. Most active in the world Kilauea, Hawaii. Inside of Old Smokey, All covered with snow, Lurk tons of hot magma, Getting ready to blow, Objectives: From deep in the chamber, Describe how volcanoes can affect people. Up a vent to the top, Describe

More information

3/7/17. #17 - Volcanoes: Benefits and Hazards. Announcements

3/7/17. #17 - Volcanoes: Benefits and Hazards. Announcements Announcements #17 - Volcanoes: Benefits and Hazards Exam #1 results + key will be posted within a few days Conflict exams: Arranged with Fangruo Web Ex #3 starts later today, due in one week Check your

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Measuring Earthquakes Two measurements that describe the power or strength of an earthquake are: Intensity a measure of the degree of earthquake shaking at a given locale based

More information

LECTURE #11: Volcanoes: Monitoring & Mitigation

LECTURE #11: Volcanoes: Monitoring & Mitigation GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #11: Volcanoes: Monitoring & Mitigation Date: 15 February 2018 I. What is volcanic monitoring? the continuous collection of one or more data sources

More information

Living on the Edge: Unit 5: Convergent Plate Boundaries

Living on the Edge: Unit 5: Convergent Plate Boundaries Living on the Edge: Unit 5: Convergent Plate Boundaries Because of its eleva.on (4,392 m), relief, hydrothermal altera.on, ice cap, glacier- fed radial valleys, and proximity to suburbs of the SeaBle-

More information

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS Debris flow: categories, characteristics, hazard assessment, mitigation measures Hariklia D. SKILODIMOU, George D. BATHRELLOS Natural hazards: physical phenomena, active in geological time capable of producing

More information

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2015 GEOLOGY 285: INTRO. PETROLOGY The Cascade Volcanoes are a good example of the Circum- Pacific ring of fire of subductionrelated

More information

A. What is a volcano?

A. What is a volcano? VOLCANISM THE ROCK CYCLE I. Introduction From: Roman god of fire, Vulcan A. What is a volcano? A conical mountain formed around a vent where lava, pyroclastic materials, and gases are erupted. I. Introduction

More information

Chapter 4. The Earth s Surface: Shaping the crust

Chapter 4. The Earth s Surface: Shaping the crust Chapter 4 The Earth s Surface: Shaping the crust Learning outcomes In this chapter you will learn: That the earth is made up of layers Why the earth is shaped as it is What plates are and how they move

More information

Objectives: Describe how volcanoes can affect people. Describe conditions that cause volcanoes. Describe the relationship between volcanoes and Earth

Objectives: Describe how volcanoes can affect people. Describe conditions that cause volcanoes. Describe the relationship between volcanoes and Earth Objectives: Describe how volcanoes can affect people. Describe conditions that cause volcanoes. Describe the relationship between volcanoes and Earth s moving plates. Inside of Old Smokey, All covered

More information

Constructive & Destructive Forces

Constructive & Destructive Forces Constructive & Destructive Forces Intro: Constructive Forces Processes that create landforms. Destructive Forces Processes that destroy landforms. Intro: Constructive Forces Volcanoes Deposition Landslides

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Review: What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. The point inside the Earth where

More information

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest.

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest. GLG 101 - Ch 6: Volcanoes & Volcanic Hazards Name 6.1 What Is and and Is Not a Volcano? 1. Three common characteristics of a volcano include A B C 2. How did the Hopi Buttes (figure 06 01.b1) form? 3.

More information

Volcanoes. volcanic hazards. Image courtesy of USGS.

Volcanoes. volcanic hazards. Image courtesy of USGS. Volcanoes volcanic hazards Volcanic hazards Pyroclastic flows and surges Pyroclastic flows and surges PYROCLAST: all solid fragments ejected from volcanoes PYROCLASTIC FLOW: A flow of hot gas and volcanic

More information

Unit 4 Lesson 4 Volcanoes. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 4 Volcanoes. Copyright Houghton Mifflin Harcourt Publishing Company Magma Magic What is a volcano? A volcano is any place where gas, ash, or melted rock come out of the ground. Many volcanoes are dormant, meaning an eruption has not occurred in a long period of time. What

More information

Land-use planning and volcanic hazards: Opportunities for New Zealand

Land-use planning and volcanic hazards: Opportunities for New Zealand Land-use planning and volcanic hazards: Opportunities for New Zealand Julia Becker, Wendy Saunders, Graham Leonard, David Johnston, Lower Hutt Clare Robertson, Massey University, Palmerston North Presentation

More information

Volcanic Benefits & Forecasting

Volcanic Benefits & Forecasting Volcanic Benefits & Forecasting Review: https://www.youtube.com/watch?v=ydy28qtdyjy 1. Based on what we know about volcanoes, predict where you might you expect to see volcanoes in and around New Zealand?

More information

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES Name Part A 1. The rough, jumbled blocky or jagged surface of a lava flow is called a. pahoehoe b. lahar c. aa d. phreatic 2. The Cascade volcanoes like Mt. St.

More information

Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up

Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up Chapter Introduction Lesson 1 Earthquakes Lesson 2 Volcanoes Chapter Wrap-Up What causes earthquakes and volcanic eruptions? What do you think? Before you begin, decide if you agree or disagree with each

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Fires Within: Igneous Activity Foundations, 6e - Chapter 7 Stan Hatfield Southwestern Illinois College The nature of volcanic eruptions Characteristics

More information

LEMBAGA PENERBANGAN DAN ANTARIKSA NASIONAL INDONESIAN NATIONAL INSTITUTE OF AERONAUTICS AND SPACE (LAPAN)

LEMBAGA PENERBANGAN DAN ANTARIKSA NASIONAL INDONESIAN NATIONAL INSTITUTE OF AERONAUTICS AND SPACE (LAPAN) LEMBAGA PENERBANGAN DAN ANTARIKSA NASIONAL INDONESIAN NATIONAL INSTITUTE OF AERONAUTICS AND SPACE (LAPAN) The Utilization of Remotely Sensed Data to Analyze The Estimated Volume of Pyroclastic Deposits

More information

Magma vs. Lava. Molten rock below Earth s surface is called magma. The magma that reaches the surface and erupts out of a volcano is called lava.

Magma vs. Lava. Molten rock below Earth s surface is called magma. The magma that reaches the surface and erupts out of a volcano is called lava. CH. 10.1 Be able to Explain the factors that determine the type of volcanic eruption. List the 3 types of volcanoes Describe the features of a volcano. What is a Volcano? Volcanoes are sites where molten

More information

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities

Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Georeferencing and Satellite Image Support: Lessons learned, Challenges and Opportunities Shirish Ravan shirish.ravan@unoosa.org UN-SPIDER United Nations Office for Outer Space Affairs (UNOOSA) UN-SPIDER

More information

Goal 2.1 Forces in the Lithosphere. Volcanic Activity

Goal 2.1 Forces in the Lithosphere. Volcanic Activity Goal 2.1 Forces in the Lithosphere Volcanic Activity Lesson 3 Volcanoes, Part 1 Think About It What happens when you shake a can of soda and then open it? Focus Question How does the composition of magma

More information

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain From Punchbowl to Panum: Leslie Schaffer E105 2002 Final Paper Long Valley Volcanism and the Mono-Inyo Crater Chain Figure 1. After a sequence of earthquakes during the late 1970 s to the early 1980 s

More information

Level 2 Earth and Space Science, 2017

Level 2 Earth and Space Science, 2017 91191 911910 2SUPERVISOR S Level 2 Earth and Space Science, 2017 91191 Demonstrate understanding of the causes of extreme Earth events in New Zealand 9.30 a.m. Thursday 30 November 2017 Credits: Four Achievement

More information

New A-Level Physical Geography

New A-Level Physical Geography Half Term 1 3.1 Physical Geography: 3.1.5 Hazards: Plate Tectonics This optional section of our specification focuses on the lithosphere and the atmosphere, which intermittently but regularly present natural

More information

Major External Processes Driven by energy from the sun and from gravity. Also create hazards and resources.

Major External Processes Driven by energy from the sun and from gravity. Also create hazards and resources. Geologic Processes and Hazards Definition of Geology External and Internal Processes: examples of each Fundamentals of Plate Tectonics: definition, types of boundaries, general geography, hazards & resources

More information

HAZARD IDENTIFICATION AND VULNERABILITY ANALYSIS (HIVA) Walla Walla County, Washington VOLCANO ASH FALL

HAZARD IDENTIFICATION AND VULNERABILITY ANALYSIS (HIVA) Walla Walla County, Washington VOLCANO ASH FALL HAZARD IDENTIFICATION AND VULNERABILITY ANALYSIS (HIVA) Walla Walla County, Washington VOLCANO ASH FALL Hazard Overview A volcano is a vent in the earth's crust through which magma (molten rock), rock

More information

GEOLOGY MEDIA SUITE Chapter 12

GEOLOGY MEDIA SUITE Chapter 12 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 12 Volcanoes 2010 W.H. Freeman and Company Plate tectonics explains the global pattern of volcanism. Key Figure 12.20 (page

More information

Surname 1. Name: Instructor s Name: Course Number: Date: Geological Significance

Surname 1. Name: Instructor s Name: Course Number: Date: Geological Significance Surname 1 Name: Instructor s Name: Course Number: Date: Geological Significance Eruption of Mt. St. Helens in 1980 Eruption of Mt.St. Helens in the 1980s availed a significant learning experience in geology.

More information

Tectonics of Magma. From partial melting of mantle Occurs at oceanic ridges and mantle plumes More dense: makes oceanic crust

Tectonics of Magma. From partial melting of mantle Occurs at oceanic ridges and mantle plumes More dense: makes oceanic crust VOLCANOES Tectonics of Magma Basaltic magma From partial melting of mantle Occurs at oceanic ridges and mantle plumes More dense: makes oceanic crust Granitic magma From melting of crust, with water as

More information

GUIDELINES FOR CONSTRUCTION TECHNOLOGY TRANSFER DEVELOPMENT OF WARNING AND EVACUATION SYSTEM AGAINST SEDIMENT DISASTERS IN DEVELOPING COUNTRIES

GUIDELINES FOR CONSTRUCTION TECHNOLOGY TRANSFER DEVELOPMENT OF WARNING AND EVACUATION SYSTEM AGAINST SEDIMENT DISASTERS IN DEVELOPING COUNTRIES GUIDELINES FOR CONSTRUCTION TECHNOLOGY TRANSFER DEVELOPMENT OF WARNING AND EVACUATION SYSTEM AGAINST SEDIMENT DISASTERS IN DEVELOPING COUNTRIES MARCH 2004 Ministry of Land, Infrastructure and Transport

More information

What is plate tectonics?

What is plate tectonics? What is plate tectonics? The Earth is made up of four layers: inner core, outer core, mantle and crust (the outermost layer where we are!). The Earth s crust is made up of oceanic crust and continental

More information

Progress Report: Sentinel Asia Success Story in the Philippines

Progress Report: Sentinel Asia Success Story in the Philippines Progress Report: Sentinel Asia Success Story in the Philippines 3 rd Joint Project Team Meeting on the Sentinel Asia STEP-2 July 6-8, 2010 Hyatt Hotel, Manila, Philippines Renato U. Solidum Jr. Director

More information

Safety Procedures for Volcanic Activity in the United States and Japan

Safety Procedures for Volcanic Activity in the United States and Japan Parkland College A with Honors Projects Honors Program 2015 Safety Procedures for Volcanic Activity in the United States and Japan Ashley Eisenmenger Parkland College Recommended Citation Eisenmenger,

More information

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Introduction to volcanoes Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Origin of Volcanoes 1. Magma 50-100 miles below the earth s surface slowly begins

More information

WHEN IS A SURGE NOT A SURGE? THAT IS THE PERPLEXING QUESTION. (for emergency managers)

WHEN IS A SURGE NOT A SURGE? THAT IS THE PERPLEXING QUESTION. (for emergency managers) WHEN IS A SURGE NOT A SURGE? THAT IS THE PERPLEXING QUESTION (for emergency managers) Mount St Helens, May 18, 1980 37 years, 5 months, and 6 days ago.. Eyewitnesses there were many! Rosenbaum and Waitt,

More information

Science Read. 10 Jul. About volcanoes

Science Read. 10 Jul. About volcanoes Issue 13 Science Read 10 Jul Career Guidance Interesting Science Real Life Application Real Time News Lower Secondary About volcanoes Crystal Wicker 29 May 2015 What is a volcano? A volcano is a mountain

More information

Risk Perception, Warning Systems and Evacuation Plans for Volcanic Hazards

Risk Perception, Warning Systems and Evacuation Plans for Volcanic Hazards Dominican Scholar Collected Faculty and Staff Scholarship Faculty and Staff Scholarship 2007 Risk Perception, Warning Systems and Evacuation Plans for Volcanic Hazards Matt Davis Department of Psychology,

More information

The Orting Community College of Vulcanology

The Orting Community College of Vulcanology The Orting Community College of Vulcanology A Recommendation For His Honourable Mayor A. Young By DAG (Doom-and-Gloom), LLP (Michael, Chris, Bryan, Lauren, Dave) Agenda 1. 2. 3. 4. 5. 6. Description of

More information

Volcanic Hazards. Volcanoes. part 2

Volcanic Hazards. Volcanoes. part 2 Volcanic Hazards Volcanoes part 2 Lava flows Lava flows can usually be avoided by people. Often it is property that is damaged or destroyed Remains of San Juan Parangaricutiro, Mexico Aa flow moving

More information

Interpretive Map Series 24

Interpretive Map Series 24 Oregon Department of Geology and Mineral Industries Interpretive Map Series 24 Geologic Hazards, and Hazard Maps, and Future Damage Estimates for Six Counties in the Mid/Southern Willamette Valley Including

More information

Volcanology. The study of volcanoes

Volcanology. The study of volcanoes Volcanology The study of volcanoes Magma forms wherever temperature and pressure are high enough to melt rock. Some magma forms at the aesthenosphere Magma also forms at plate boundaries, where intense

More information

AND. A GEOMORPHOLOGIST SVIEWS HERMAN Th. VERSTAPPEN. International Institute for Geoinformation. Enschede the Netherlands

AND. A GEOMORPHOLOGIST SVIEWS HERMAN Th. VERSTAPPEN. International Institute for Geoinformation. Enschede the Netherlands NATURAL DISASTER REDUCTION AND ENVIRONMENTAL MANAGEMENT A GEOMORPHOLOGIST SVIEWS HERMAN Th. VERSTAPPEN Em. Professor of Geomorphology International Institute for Geoinformation Science and Earth Observation

More information

Mount Pinatubo and the Ring of Fire

Mount Pinatubo and the Ring of Fire Mount Pinatubo and the Ring of Fire Mount Pinatubo and the Ring of Fire On July 16, 1990, a large earthquake struck Luzon, an island in the Philippines. The earthquake devastated cities for hundreds of

More information

Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area

Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area Name: Date: Hour: Word Cards 1 geographic representation a description or portrayal of the Earth or parts of the Earth Example: A map is a representation of an actual location or place. 2 map a visual

More information

Living in the shadow of Italy's volcanoes

Living in the shadow of Italy's volcanoes Living in the shadow of Italy's volcanoes Where are the Aeolian Islands? The Aeolian Islands are a group of eight volcanic islands that lie off the northern coast of Sicily (Figure 1). Whilst they are

More information

Volcanoes. Volcanoes July 2004

Volcanoes. Volcanoes July 2004 Volcanoes Learn about your community s risk from hazards created by volcanic eruptions. While you may be located far from a volcano, the ash from an explosive eruption could affect your area. Contact your

More information

Volcanic Hazards of Mt Shasta

Volcanic Hazards of Mt Shasta Volcanic Hazards of Mt Shasta Introduction Mt Shasta is a volcano in the northern part of California. Although it has been recently inactive for over 10,000 years. However, its eruption would cause damage

More information

Introduction to Earth s s Spheres The Benchmark

Introduction to Earth s s Spheres The Benchmark Introduction to Earth s s Spheres The Benchmark Volcanism Volcanic eruptions Effusive: lavas (e.g., Kilauea) Volcanism Volcanic eruptions Explosive: pyroclastic rocks (e.g., Krakatau) Factors Governing

More information

Cyber Enabled Earth Exploration (CE )

Cyber Enabled Earth Exploration (CE ) Cyber Enabled Earth Exploration 3 (CE ) Field Notebook Module 1: Introduction to Volcanoes Investigation 1: Volcanic Hazards and Benefits Table of Contents Folder 1: Mount Vesuvius, Italy... 3 Folder 2:

More information

TABLE OF CONTENTS. Student Letter Exploring the Strategies Unit One: Play Unit Two: Fantasy Unit Three: Mystery...

TABLE OF CONTENTS. Student Letter Exploring the Strategies Unit One: Play Unit Two: Fantasy Unit Three: Mystery... TABLE OF CONTENTS Student Letter........................................... 2 Exploring the Strategies................................... 3 Unit One: Play........................................... 4 Unit

More information

Living in the shadow of Italy's volcanoes

Living in the shadow of Italy's volcanoes Living in the shadow of Italy's volcanoes Where is Mount Etna? Mount Etna is located on the east coast of Sicily roughly midway between Messina and Catania (Figure 1). It is the largest and tallest volcano

More information

Homework III. Volcanological Exercises

Homework III. Volcanological Exercises Page 1 of 5 EENS 3050 Tulane University Natural Disasters Prof. Stephen A. Nelson Homework III. Volcanological Exercises This page last updated on 16-Feb-2018 1. In your work as an insurance company executive

More information