Physical Volcanology. Christoph Breitkreuz, TU Bergakademie Freiberg

Size: px
Start display at page:

Download "Physical Volcanology. Christoph Breitkreuz, TU Bergakademie Freiberg"

Transcription

1 55 Physical Volcanology Christoph Breitkreuz, TU Bergakademie Freiberg

2 Structure: Introduction Reology and deformation of magma and lava Eruption processes and types Volcano forms Emplacement of lava flows, domes and subvolcanic bodies Pyroclastic fragmentation Pyroclasts: Types and classification Pyroclastic transport und deposition Subaquatic and phreatomagmatic processes and resulting textures Cooling textures in SiO 2 -rich (sub-)volcanic bodies Volcanic hazards: Assessment and monitoring exercises: Wednesdays, even weeks, , CVT GP Osteifel: Test

3 Recommended literature BRANNEY, M. & KOKELAAR, P. (2002): Pyroclastic density flows and the sedimentation of ignimbrites.- Geol. Soc. London, Mem., 27, 143 pp. CAS, R.A.F. & WRIGHT, J.V. (1987): Volcanic successions - Modern and ancient.- Allen & Unwin, London, 528S. CHAPIN, C. E. and ELSTON, W. E. (eds.)(1979): Ash-flow tuffs.- Geol. Soc. Amer. Spec. Pap. 180, 211S. CHESTER, D.K., DUNCAN, A.M., GUEST, J.E. & KILBURN, C.R.J. (1985): Mount Etna: Anatomy of a volcano.- Chapman and Hall, London, 404S. DRUITT, T.H. (1999): Santorini volcano.- Geol. Soc. London, Mem. 19, 165 pp. DRUITT, T.H. & KOKELAAR, B.P. (eds.)(2002): The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to Geol. Soc. Mem. 21, 645S. FISHER, R.V. & SCHMINCKE, H.-U. (1984): Pyroclastic rocks.- Springer-Verlag, Berlin, 472S. FISHER, R.V. and SMITH, G.A. (eds.)(1991): Sedimentation in volcanic settings.- Soc. Econ. Paleont. Mineral., Vol. 45. FRANCIS, P. (1993): Volcanoes - A planetary perspective.- Oxford Univ. Press, Oxford, FREUNDT, A. & ROSI, M. (Hrsg.)(1998): From magma to tephra modelling physical processes of explosive volcanic eruptions.- Developments in Volcanol. 4, Elsevier, 318S. GIFKINS, C., HERRMANN, W. & LARGE, R. (2005): Altered Volcanic Rocks: A guide to description and interpretation.- Univ. Tasmania, Centre for Ore Deposits and Exploration Studies, Hobart, 275S. LATTER, J. (ed.)(1989): Volcanic hazards.- Springer, 625S.

4 LIPMAN, P.W. & MULLINEAUX, D.R. (eds.)(1981): The 1980 eruptions of Mount St. Helens, Wash., USA.- U.S. Geol. Surv. Prof. Pap., 1250, ca. 850S. MARTÍ, J. & ERNST, G.G. (eds.)(2005): Volcanoes and the environment.- Cambridge University Press, 471 pp. McCLELLAND, L. et al. (eds.)(1989): Global volcanism, Amer. Geophys. Union, Wash. D.C., 655S. McPHIE, J.M., DOYLE, M. & ALLEN, R. (1993): Volcanic textures - A guide to the interpretation of textures in volcanic rocks.- Univ. Tasmania, Centre for Ore Deposits and Exploration Studies, 1-196, Hobart. ORTON, G.J. (1996): Volcanic environment. - in: READING, H.G. (Hrsg.): Sedimentary Environments: Processes, facies and stratigraphy. - Blackwell Science, Oxford, 3. Aufl., SCHMINCKE, H.-U. (2004): Volcanism.- Springer, Heidelberg, 324 pp. SIGURDSON, H. et al. (eds.)(1999): Encyclopedia of volcanoes.- Academic Press. SIMKIN, T. and FISKE, R.S. (1983): Krakatau The eruption and its effects.- Smithsonian Inst. Press. 464S. THOMPSON, D. (2000): The volcano cowboys - The rocky evolution of a dangerous science.- St. Martin s Press, New York, 326 pp. WHITE, J.D.L., SMELLIE, J.L. & CLAGUE, D.A. (eds.)(2003): Explosive Subaqueous volcanism.- Geophys. Monogr., 140, Journal of Volcanology and Geothermal Research (Elsevier) Bulletin of Volcanology (International Association of Volcanology and Chemistry of the Earths Interior, IAVCEI),

5 Fields of work and position within Geosciences Agriculture Natural Hazards Hydrology Health Petrology Physical volcanology Sedimentology Raw material Mineral deposits e.g. VHMS Engineering Geology

6 Encyclopedia of Volcanoes 1999 Aristotheles Plato A.G. Werner J. Hutton History of volcanology Historic eruptions

7 Santorini, Ägäis 1650 B.C... Forque 1879 Dietrich, ETH Zürich

8 History of volcanology Historic eruptions Encyclopedia of Volcanoes 1999

9 Vesuv 79 A.D. Pompei

10 History of volcanology Historic eruptions Encyclopedia of Volcanoes 1999

11 Krakatau 1883 in Indonesia: Tsunami caused by a shallow marine caldera eruption: fatalities

12 History of volcanology Historic eruptions Encyclopedia of Volcanoes 1999

13 Mt. Pelee, Martinique: St. Pierre Lacroix 1904

14 Lassen Peak, 1915, California

15 History of volcanology Historic eruptions Encyclopedia of Volcanoes 1999

16 Mt. St. Helens, Washington June 1980 Pinatubo 1991

17 Smithsonian Institute Schmincke 1986 Plate tectonics and magma generation Bahlburg & Breitkreuz 2004

18 Geochemical classification Irvine & Baragar 1971

19 Al 2 O 3 content older classifications Required: Norm calculation (e.g. CIPW)

20 Reology and Deformation of Magma and Lava Christoph Breitkreuz, TU Bergakademie Freiberg

21 Glass Mtns, California Mt. St. Helens welded ignimbrite, St. Francis Mtns, Missouri, Proterozoic Sill, Estratos El Bordo, Chile

22 Reology, deformation and fragmentation are controlled by many parameters. The following are important: - Ambient pressure (in the magmatic conduit system, in subaquatic environment) - Viscosity of Magma/Lava - Density of Magma/Lava - Temperature - Deformation rate - Magma ascent rate

23 Just to remember Types of fluids: Newtonian Fluid: water, certain pyroclastic flows Bingham Fluid: (with yield strength) Debris flows, lava / magma certain pyroclastic flows

24 VISCOSITY depends on: Fig. 1.1 Relationship between viscosity and temperature for some magmas. The rhyolite was glassy or liquid through the entire temperature range (From Cas & Wright 1987, after Murase & McBirney 1973). - composition (SiO 2, Al 2 O 3 ) (H 2 O, other volatiles, Na, K etc. ) - temperature - phenocryst content - microlith content, - vesicle content Table 1.1 Estimates of eruption temperatures for some common magmas (After Cas & Wright 1987).

25 H 2 O content and Viscosity: e.g. foaming up of magma during ascent (first boiling) Rhyolite Basalt Fig. 1.2 The effect of H 2 O on the viscosity of (a) granitic and (b) basaltic melts at varying temperatures (From Cas & Wright 1987, after Murase 1962).

26 Fig. 1.3 Densities of some molten volcanic rocks with varying temperature at atmospheric pressure (From Cas & Wright 1987, after Murase & McBirney 1973). Density depends on: composition temperature pressure content of phenocrysts and vesicles

27 Formation of crystals and vesicles depends on: - temperature - presuure - time (Nucleation and diffusion!) T = supercooling (below liquidus) Fig. 1.5 Relation between super cooling ( T) and crystal nucleation and growth rate in a granitic melt (Swanson et al. 1989)

28 (m) FIRST BOILING: - ascent rate - supersaturation (e.g., with respect to H 2 O) Fig. 1.6 Bubble growth and water oversaturation in an ascending rhyolitic magma. The curves define oversaturation in % as a function of the depth in the system during magma ascent. The labels on the curves refer to the ascent or rise rates. The initial conditions are 4 km (a) and 1 km (b), which correspond to initial water concentrations dissolved in the magma of 3.72 and 1.86 wt.%, respectively. Reproduced from Proussevitch and Sahagian (1996) (From Dingwell 1998).

29 Cathodoluminescence image of a quartz phenocryst Embayments in quartz phenocrysts Quartz broken during first boiling Growth zonation Embayments form by: - growth impediment - skeletal growth (quenching)

30 Ignimbrite with crystal fragments

31 Fig. 1.7 Temperature profiles of the Ben Lomond flow at different time steps as derived by numerical modelling with the emplacement temperature of 850 C; Tg = glass transition temperature, FVP = finely vesicular pumice, U.OBS = upper obsidian, TZ = transition zone, RHY = stony rhyolite, L.OBS = lower obsidian, BRX = breccia (from Stevenson et al. 2001) Fig. 1.4 Relation between deformation rate and deformation style of magma or lava depending on temperature; T g = glass transition temperature Land surface T g = glass transition temperature c. 2/3 of the liquidus temperature

32 Panum Crater, Mono Lake, California Glass (above T g ) oozes out of a fracture plain

Physical Volcanology. Christoph Breitkreuz, TU Bergakademie Freiberg. Recommended literature

Physical Volcanology. Christoph Breitkreuz, TU Bergakademie Freiberg. Recommended literature 55 Physical Volcanology Christoph Breitkreuz, TU Bergakademie Freiberg Structure: Introduction Reology and deformation of magma and lava Eruption processes and types Volcano forms Emplacement of lava flows,

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

DATA REPOSITORY ITEM 1 - PYROCLASTIC TERMINOLOGY. The volcaniclastic terminology used in this paper largely follows that of Fisher

DATA REPOSITORY ITEM 1 - PYROCLASTIC TERMINOLOGY. The volcaniclastic terminology used in this paper largely follows that of Fisher DATA REPOSITORY ITEM 1 - PYROCLASTIC TERMINOLOGY The volcaniclastic terminology used in this paper largely follows that of Fisher and Schmincke (1984) and Heiken and Wohletz (1985). A deposit made of >75%

More information

How does magma reach the surface?

How does magma reach the surface? How does magma reach the surface? 2004-2008, effusive 1980, explosive Michael Manga Why do volcanoes (only sometimes) erupt explosively? 2004-2008, effusive 1980, explosive Michael Manga Gonnermann and

More information

Lab 3: Igneous Rocks

Lab 3: Igneous Rocks Lab 3: Igneous Rocks The Geology in YOUR life initiative Mount Shinmoedake erupts in Japan (Jan 26, 2010) Volcanic smoke rises from Mount Shinmoedake on 1 February, 2011. Smoke rises from Mount Shinmoedake

More information

Why do volcanoes (only sometimes) erupt explosively?

Why do volcanoes (only sometimes) erupt explosively? Why do volcanoes (only sometimes) erupt explosively? 2004-2008, effusive 1980, explosive Michael Manga Gonnermann and Manga, Annual Reviews of Fluids Mechanics, 2007 Why do volcanoes erupt explosively?

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Intrusive and Effusive Rocks Effusive rocks: rapid cooling small crystalls or glas Lava & ash Magmatic

More information

Calderas. Myojin Knoll Submarine Caldera m. 500 m. 5 km. (after Kennedy and Stix, 2003)

Calderas. Myojin Knoll Submarine Caldera m. 500 m. 5 km. (after Kennedy and Stix, 2003) Calderas Myojin Knoll Submarine Caldera 1400 m 500 m 5 km (after Kennedy and Stix, 2003) Definition Outline Relationships to Eruption Volume and VEI Structural Components Types Caldera Genetic Models and

More information

GLY July Ms. Nelda Breedt. Plates move slowly and eventually.

GLY July Ms. Nelda Breedt. Plates move slowly and eventually. GLY 162 Tectonic Processes: Volcanism Ms. Nelda Breedt GLY 162 Environmental Geology Plate Tectonics Plates move slowly and eventually. 2 Spread apart (divergent plates) Dive beneath one another (converging

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Geology 101. Reading Guide for Chapters 1, 4, and 5

Geology 101. Reading Guide for Chapters 1, 4, and 5 Geology 101 Name Reading Guide for Chapters 1, 4, and 5 The purpose of the Reading Guides is to help you sort out the most important ideas in the text. I recommend answering the questions as you read the

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 5 Magma and Volcanism Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information: pasakyi@ug.edu.gh College

More information

Types of volcanoes. Christoph Breitkreuz, TU Bergakademie Freiberg. Monogenetic and complex volcanoes

Types of volcanoes. Christoph Breitkreuz, TU Bergakademie Freiberg. Monogenetic and complex volcanoes Types of volcanoes Christoph Breitkreuz, TU Bergakademie Freiberg Monogenetic and complex volcanoes Fig. 3.1 Types of volcanic landforms. Vertical exaggeration 2 to 1 (polygenetic) and 4 to 1 (monogenetic).

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Refereed Journal Articles (* = papers authored by graduate or undergraduate students)

Refereed Journal Articles (* = papers authored by graduate or undergraduate students) Books and Book Chapters Berlo, K., Gardner, J.E., and Blundy, J.D., Timescales of Magma Degassing, in, Dosseto, A., Turner, S.P., ad Orman, J.A. (eds.), Timescales for Magmatic Processes, in review. Refereed

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 2017-2016 Chapter (4) Volcanoes Chapter 4: Volcanoes and Other Igneous Activity cataclysmic relating to or denoting a violent natural even Eventually the entire

More information

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members:

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Igneous Rocks Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Types of Magma Basaltic, Basic or Mafic very hot (900-1200 C) very fluid

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

GLY 155 Introduction to Physical Geology, W. Altermann

GLY 155 Introduction to Physical Geology, W. Altermann 17.04.2010 Eyjafjallokull Volcano Shield Volcano on Iceland Phreatomagmatic eruption 1 Eyjafjallokull Volcano Shield Volcano on Iceland Phreatomagmatic eruption Eyjafjallokull Volcano Shield Volcano on

More information

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 9 Volcanism and Other Igneous Processes Volcanoes types and effects of eruption Chapter Overview Melting and cooling of rocks Geological

More information

GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca:

GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca: Name: Date: GEOL1 Physical Geology Laboratory Manual College of the Redwoods Lesson Five: Volcanoes Background Reading: Volcanoes Volcanic Terms: Silca: SiO 2 silicon dioxide. This is quartz when it crystallizes.

More information

A Rock is A group of minerals that have been put together in several different ways.

A Rock is A group of minerals that have been put together in several different ways. A Rock is A group of minerals that have been put together in several different ways. Depending on how they are put together, rocks are classified as: 1. Sedimentary 2. Igneous 3. Metamorphic Sedimentary

More information

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma Igneous Rocks Definition of Igneous Rocks Igneous rocks form from cooling and crystallization of molten rock- magma Magma molten rock within the Earth Lava molten rock on the Earth s s surface Igneous

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

Calc-alkaline Volcanic Rocks. Calc-alkali Volcanics. Fabric. Petrography. Compositional Classification. Petrography. Processes.

Calc-alkaline Volcanic Rocks. Calc-alkali Volcanics. Fabric. Petrography. Compositional Classification. Petrography. Processes. Calc-alkaline Volcanic Rocks Calc-alkali Volcanics Winter Chapters 16 & 17 Petrography Processes Field relations Volcanic arcs Petrogenesis Petrography Fabric Classification Alteration Fabric Aphanitic

More information

High-temperature fracture of magma

High-temperature fracture of magma High-temperature fracture of magma Hugh Tuffen Peter Sammonds Rosanna Smith Harry Pinkerton Don Dingwell Jon Castro Cracks, Fractures and Faults in the Earth Thursday 19 th June 2008 Montserrat (Sparks

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

WHAT IS A MAGMA. Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth.

WHAT IS A MAGMA. Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth. UNIT - 8 VOLCANOES WHAT IS A MAGMA Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth. In some instances, it solidifies within the crust to form plutonic

More information

ERTH 456 / GEOL 556 Volcanology. Lecture 06: Conduits

ERTH 456 / GEOL 556 Volcanology. Lecture 06: Conduits 1 / 28 ERTH 456 / GEOL 556 Volcanology Lecture 06: Conduits Ronni Grapenthin rg@nmt.edu MSEC 356, x5924 hours: TR 3-4PM or appt. September 12, 2016 2 / 28 How does magma get from source to surface? What

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Geology of the Hawaiian Islands

Geology of the Hawaiian Islands Geology of the Hawaiian Islands Class 4 22 January 2004 Turn in Homework #1 Any Questions? IMPORTANT Big Island Field Trip We need a $162 payment for airfare BEFORE January 29 th Description of logistics,

More information

1. minerals - A naturally occurring substance that takes a solid Crystal form and is made of only a single (one) type of compound

1. minerals - A naturally occurring substance that takes a solid Crystal form and is made of only a single (one) type of compound Science Name: Mr. G/Mrs. Kelly KEY Date: Study Guide - Lessons 5 and 6 Test Define the following terms: 1. minerals - A naturally occurring substance that takes a solid Crystal form and is made of only

More information

3/24/2016. Geology 12 Mr. M. Gauthier 24 March 2016

3/24/2016. Geology 12 Mr. M. Gauthier 24 March 2016 Geology 12 Mr. M. Gauthier 24 March 2016 Introduction: Mt. St. Helens Before 1980 Mt. St Helens, in Southern Washington State, had not erupted since 1857 On March 27,1980 minor ashand eruptions were due

More information

GEOS 606 Physical Volcanology GEOS 606 CRN credits

GEOS 606 Physical Volcanology GEOS 606 CRN credits GEOS 606 Physical Volcanology GEOS 606 CRN 74060 3 credits September 1th December 17 th, 2011 Mondays, Wednesdays and Fridays MWF 10:30-11:30 Irving 208 and Elvey 101 Dr. Jonathan Dehn office: WRRB 108G,

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Subaerial Felsic Lava Flows and Domes

Subaerial Felsic Lava Flows and Domes Subaerial Felsic Lava Flows and Domes Occurrence Alone or in linear and arcuate chains up to 20 km long Margins of calderas or volcanic depressions. Feeder occupies synvolcanic fault (ring fracture). Extrusion

More information

Chapter 7 Lecture Outline. Volcanoes and Other Igneous Activity

Chapter 7 Lecture Outline. Volcanoes and Other Igneous Activity Chapter 7 Lecture Outline Volcanoes and Other Igneous Activity Mount St. Helens eruption (May 18,1980) Largest historic eruption in North America Lowered peak by more than 400 m Destroyed all trees in

More information

Introduction. Volcano a vent where molten rock comes out of Earth

Introduction. Volcano a vent where molten rock comes out of Earth Introduction Volcano a vent where molten rock comes out of Earth Example: Kilauea Volcano, Hawaii Hot (~1,200 o C) lava pools around the volcanic vent. Hot, syrupy lava runs downhill as a lava flow. The

More information

Chapter 18. Volcanism

Chapter 18. Volcanism Chapter 18 Volcanism Ring of fire contains 66% of world s active volcanoes Convergent : Divergent: Icelandic Eruption Mount Etna Different Kinds of eruptions: Volcanic activity is controlled by plate tectonics,

More information

Chapter 7 Lecture Outline. Volcanoes and Other Igneous Activity

Chapter 7 Lecture Outline. Volcanoes and Other Igneous Activity Chapter 7 Lecture Outline Volcanoes and Other Igneous Activity Focus Question 7.1 How were the eruptions of Mount St. Helens and Hawaii s Kilauea volcano different? Mount St. Helens eruption (May 18,1980)

More information

WET EXPLOSIVE ERUPTIONS. Hawaii Photograph: Dorian Weisel

WET EXPLOSIVE ERUPTIONS. Hawaii Photograph: Dorian Weisel WET EXPLOSIVE ERUPTIONS Hawaii Photograph: Dorian Weisel WET EXPLOSIVE ERUPTIONS mechanisms hot magma/ hot rock + water pyroclasts + steam rapid expansion of gas fragmentation of magma + wall rock external

More information

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Volcanic Plumes R. S. J. SPARKS University of Bristol, UK M. I. BURSIK State University of New York, USA S. N. CAREY University of Rhode Island, USA J. S. GILBERT Lancaster University, UK L. S. GLAZE NASA/Goddard

More information

The role of bubble formation in volcanic eruption

The role of bubble formation in volcanic eruption The role of bubble formation in volcanic eruption Eyal Goldmann Division of Natural Sciences, El Camino College, Torrance, CA, 90506 Prepared for Geology 1 at El Camino College Fall 2009 1 1. Introduction

More information

Earth Science Chapter 6 Rocks

Earth Science Chapter 6 Rocks Earth Science Chapter 6 Rocks I. Rocks and the Rock Cycle * Material that makes up the solid part of the Earth. * Made of a variety of different combinations of minerals and organic matter. A. Three Major

More information

Volcanoes. Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman

Volcanoes. Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman Volcanoes Environmental Geology, Mr. Paul Lowrey Stacey Singleton, Cassandra Combs, Dwight Stephenson, Matt Smithyman EMPACTS Project, Spring 2017 Northwest Arkansas Community College, Bentonville, AR

More information

Igneous Processes I: Igneous Rock Formation, Compositions, and Textures

Igneous Processes I: Igneous Rock Formation, Compositions, and Textures Igneous Processes I: Igneous Rock Formation, Compositions, and Textures Crustal Abundances of Rock Types Igneous Rocks Form by the cooling and hardening (crystallization/glassification) of magma. There

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

Volcano Vocabulary ROCK CYCLE. Igneous REMELTED REMELTED BURIED BURIED HEAT ERODED DEPOSITED. Metamorphic Sedimentary ERODED, TRANSPORTED DEPOSITED

Volcano Vocabulary ROCK CYCLE. Igneous REMELTED REMELTED BURIED BURIED HEAT ERODED DEPOSITED. Metamorphic Sedimentary ERODED, TRANSPORTED DEPOSITED Volcano Vocabulary VOLCANISM VENT CRATER CALDERA QUIET ERUPTION EXPLOSIVE ERUPTION PYROCLASTIC DEBRIS CINDER CONE SHIELD VOLCANO COMPOSITE VOLCANO STRATO VOLCANO ACTIVE DORMANT EXTINCT INTRUSION DIKE SILL

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 10 Volcanoes and Other Igneous Activity 10.1 The Nature of Volcanic Eruptions Factors Affecting Eruptions Factors that determine the violence of an eruption

More information

Introduction to Earth s s Spheres The Benchmark

Introduction to Earth s s Spheres The Benchmark Introduction to Earth s s Spheres The Benchmark Volcanism Volcanic eruptions Effusive: lavas (e.g., Kilauea) Volcanism Volcanic eruptions Explosive: pyroclastic rocks (e.g., Krakatau) Factors Governing

More information

TRANSPORT AND EMPLACEMENT OF IGNIMBRITES AND RESEDIMENTED VOLCANICLASTICS FROM GUTÂI MTS., EASTERN CARPATHIANS, ROMANIA

TRANSPORT AND EMPLACEMENT OF IGNIMBRITES AND RESEDIMENTED VOLCANICLASTICS FROM GUTÂI MTS., EASTERN CARPATHIANS, ROMANIA STUDIA UNIVERSITATIS BABEŞ-BOLYAI, GEOLOGIA, XLIX, 1, 2004, 65-73 TRANSPORT AND EMPLACEMENT OF IGNIMBRITES AND RESEDIMENTED VOLCANICLASTICS FROM GUTÂI MTS., EASTERN CARPATHIANS, ROMANIA ALEXANDRINA FÜLÖP

More information

Chapter 5 The Wrath of Vulcan: Volcanic Eruptions

Chapter 5 The Wrath of Vulcan: Volcanic Eruptions Chapter 5 The Wrath of Vulcan: Volcanic Eruptions The Wrath of Vulcan: Volcanic Eruptions Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts

More information

Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted.

Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted. What is a Volcano? Volcano - A Volcano is an opening in the Earth s surface through which molten material or volcanic gases are erupted. A volcano can either be a classic volcanic cone.. Mt. St. Helens,

More information

Volcanic Eruptions and Hydrovolcanism

Volcanic Eruptions and Hydrovolcanism Find the Face Volcanic Eruptions and Hydrovolcanism Ocean Ridges Continental Rifts Subduction Zones: Continental Oceanic Back Arc Basins Hot Spots Plumes Cinder Cones Composite Volcanoes Shield VolcanoesCinder

More information

EAS 116 Earthquakes and Volcanoes

EAS 116 Earthquakes and Volcanoes EAS 116 Earthquakes and Volcanoes J. Haase Forecasting Volcanic Eruptions Assessment of Volcanic Hazard Is that volcano active? Mount Lassen: 12000 BP and 1915 Santorini, IT: 180,000 BP, 70,000 BP, 21000

More information

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest.

GLG Ch 6: Volcanoes & Volcanic Hazards. 3. Name, describe (DSC) and draw the three types of volcanoes from smallest to largest. GLG 101 - Ch 6: Volcanoes & Volcanic Hazards Name 6.1 What Is and and Is Not a Volcano? 1. Three common characteristics of a volcano include A B C 2. How did the Hopi Buttes (figure 06 01.b1) form? 3.

More information

Goal 2.1 Forces in the Lithosphere. Volcanic Activity

Goal 2.1 Forces in the Lithosphere. Volcanic Activity Goal 2.1 Forces in the Lithosphere Volcanic Activity Lesson 3 Volcanoes, Part 1 Think About It What happens when you shake a can of soda and then open it? Focus Question How does the composition of magma

More information

Guidance for GEOGRAPHY End of Year Examination 2016

Guidance for GEOGRAPHY End of Year Examination 2016 Guidance for GEOGRAPHY End of Year Examination 2016 The End of Year Examination takes place in Week 4 of the Summer Term. The Geography Examination will last 50 minutes. The Examination will include questions

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5).

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5). Lecture #8 notes; Geology 3950, Spring 2006; CR Stern May 1980 eruption of Mt St Helens volcano (text pages 183-192 in the 4 th edition and 206-222 in the 5 th edition) Mt St Helens in southwest Washington

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Copyright McGraw-Hill Education, Inc. Permission required for reproduction or display. Volcanism and Extrusive Rocks Physical Geology

More information

Study Guide: Unit 3. Density and Pressure: You should be able to answer the types of questions given in the end of module questions.

Study Guide: Unit 3. Density and Pressure: You should be able to answer the types of questions given in the end of module questions. IDS 102 Study Guide: Unit 3 The purpose of this study guide is to help you prepare for the third exam by focusing your studying and providing example essay questions. In the Focus On section you will find

More information

Types of volcanoes. Christoph Breitkreuz, TU Bergakademie Freiberg

Types of volcanoes. Christoph Breitkreuz, TU Bergakademie Freiberg Types of volcanoes Christoph Breitkreuz, TU Bergakademie Freiberg Monogenetic and complex volcanoes Fig. 3.1 Types of volcan landforms. Vertical exaggeration to 1 (polygenetic) and 4 to (monogenetic).

More information

Volcano: a weak spot in the crust where molten material or magma comes to the surface

Volcano: a weak spot in the crust where molten material or magma comes to the surface Chapter 7 Volcano: a weak spot in the crust where molten material or magma comes to the surface Magma: a molten mixture of rock forming substances, gases and H 2 O from the mantle Volcanic Belts: Form

More information

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals. Skills Worksheet Directed Reading Section: Rocks and the Rock Cycle 1. The solid part of Earth is made up of material called a. glacial ice. b. lava. c. rock. d. wood. 2. Rock can be a collection of one

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Fires Within: Igneous Activity Foundations, 6e - Chapter 7 Stan Hatfield Southwestern Illinois College The nature of volcanic eruptions Characteristics

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

Earth Materials. The Crust and its Composition. Igneous Rocks. Sediments and Sedimentary Rocks. Metamorphic Rocks. The Cycle of Rock Change

Earth Materials. The Crust and its Composition. Igneous Rocks. Sediments and Sedimentary Rocks. Metamorphic Rocks. The Cycle of Rock Change Earth Materials The Crust and its Composition Igneous Rocks Sediments and Sedimentary Rocks Metamorphic Rocks The Cycle of Rock Change The Crust and its Composition oxygen and silicon account for about

More information

GEOLOGY MEDIA SUITE Chapter 12

GEOLOGY MEDIA SUITE Chapter 12 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 12 Volcanoes 2010 W.H. Freeman and Company Plate tectonics explains the global pattern of volcanism. Key Figure 12.20 (page

More information

A rock is a naturally occurring solid mixture of one or more minerals, or organic matter

A rock is a naturally occurring solid mixture of one or more minerals, or organic matter A rock is a naturally occurring solid mixture of one or more minerals, or organic matter Rocks are classified by how they are formed, their composition, and texture Rocks change over time through the rock

More information

Rocks. 1) igneous = fiery 2) sedimentary = settled 3) metamorphic = changed form

Rocks. 1) igneous = fiery 2) sedimentary = settled 3) metamorphic = changed form Rocks Identified on the basis of composition and texture (arrangement of features). Classification depends on description and interpretation of these features. Three major categories: 1) igneous = fiery

More information

Final Report on EQC Grant for project: Porosity and Permeability variations in volcanic conduits

Final Report on EQC Grant for project: Porosity and Permeability variations in volcanic conduits Final Report on EQC Grant for project: Porosity and Permeability variations in volcanic conduits Paul Ashwell, PhD candidate, University of Canterbury Collaborators: Dr. Ben Kennedy & Prof. Jim Cole 1

More information

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle Bell Ringer Name the 3 types of rock. Is one type of rock able to change into a different

More information

LECTURE #11: Volcanic Disasters: Lava Properties & Eruption Types

LECTURE #11: Volcanic Disasters: Lava Properties & Eruption Types GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #11: Volcanic Disasters: Lava Properties & Eruption Types Date: 13 February 2018 I. Exam I grades are posted on the class website (link at the bottom

More information

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain From Punchbowl to Panum: Leslie Schaffer E105 2002 Final Paper Long Valley Volcanism and the Mono-Inyo Crater Chain Figure 1. After a sequence of earthquakes during the late 1970 s to the early 1980 s

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 GEOLOGY Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 Topic No. & Title : 37 Magma Bowen Series (Part 01) Academic Script What is Igneous Petrology? Igneous

More information

Dynamic Planet PUT ALL YOUR ANSWERS ON THE ANSWER SHEET. c) low temperature d) high volatile content

Dynamic Planet PUT ALL YOUR ANSWERS ON THE ANSWER SHEET. c) low temperature d) high volatile content School Name: Team #: Students Names: Dynamic Planet 2016 Science Olympiad Invitational University of Texas at Austin PUT ALL YOUR ANSWERS ON THE ANSWER SHEET 1) Low viscosity magmas have: a) high silica

More information

Monday 23 May 2016 Morning

Monday 23 May 2016 Morning Oxford Cambridge and RSA Monday 23 May 2016 Morning AS GCE GEOLOGY F792/01 Rocks Processes and Products *6008024131* Candidates answer on the Question Paper. OCR supplied materials: None Other materials

More information

Geology 1 st Semester Exam YSBAT

Geology 1 st Semester Exam YSBAT 1. What is the role of a geologist? Geology 1 st Semester Exam YSBAT 2016-2017 2. Earth is subdivided into three main layers based on what? 3. What features do you find at divergent boundaries? 4. Rock

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES Name Part A 1. The rough, jumbled blocky or jagged surface of a lava flow is called a. pahoehoe b. lahar c. aa d. phreatic 2. The Cascade volcanoes like Mt. St.

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

BRYCE CANYON NATIONAL PARK Earth s Dynamic Treasures Rocks & The Rock Cycle

BRYCE CANYON NATIONAL PARK Earth s Dynamic Treasures Rocks & The Rock Cycle Grade Level: 4th-8th grades Subject Area: Earth Science Objectives: Introduce students to the rock cycle. Students will have an opportunity to categorize rocks from the three rock types. Students investigate

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. volcano sample test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Volcanic belts form along a. islands in the Pacific Ocean. b. North American

More information

Table of Contents. Sample file

Table of Contents. Sample file Table of Contents Lesson 1 How to use this book...1 Introduction...2 Quiz 1 Pretest...4 Looking at Igneous Rocks...5 Lesson 2 Where Igneous Rocks Form...10 Quiz 2...13 Picturing Your Rocks...14 Lesson

More information

Liz LaRosa Images from Geology.com unless otherwise noted

Liz LaRosa Images from Geology.com unless otherwise noted Liz LaRosa http://www.middleschoolscience.com 2010 Images from Geology.com unless otherwise noted A rock is a naturally occurring solid mixture of one or more minerals, or organic matter Rocks are classified

More information

Overview of Ch. 4. I. The nature of volcanic eruptions 9/19/2011. Volcanoes and Other Igneous Activity Chapter 4 or 5

Overview of Ch. 4. I. The nature of volcanic eruptions 9/19/2011. Volcanoes and Other Igneous Activity Chapter 4 or 5 Overview of Ch. 4 Volcanoes and Other Igneous Activity Chapter 4 or 5 I. Nature of Volcanic Eruptions II. Materials Extruded from a Volcano III.Types of Volcanoes IV.Volcanic Landforms V. Plutonic (intrusive)

More information

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary. Magma Objectives Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary viscosity Magma Magma The ash that spews from some volcanoes can form

More information

24. Towada. Summary. (24. Towada)

24. Towada. Summary. (24. Towada) 24. Towada Latitude: 40 27'34" N, Longitude: 140 54'36" E, Elevation: 690 m (Ogurayama) (Triangulation Point - Ogurayama) Latitude: 40 30'37" N, Longitude: 140 52'48" E, Elevation: 1,011 m (Ohanabeyama)

More information

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS

PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS, VOLCANISM AND IGNEOUS ROCKS PLATE TECTONICS TO IGNEOUS ROCKS Internal Heat Seafloor Spreading/Plate Tectonics Volcanism Plate Boundary Intra-plate (hot spot) Divergent Convergent Igneous

More information

Quiz Five (9:30-9:35 AM)

Quiz Five (9:30-9:35 AM) Quiz Five (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 10: Intrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) Pyro-what? (air fall volcanic rocks) 2)

More information

Chapter 18 - Volcanic Activity. Aka Volcano Under the City

Chapter 18 - Volcanic Activity. Aka Volcano Under the City Chapter 18 - Volcanic Activity Aka Volcano Under the City 18.1 Magma Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Temperature and pressure increase

More information