Contribution to the morphodynamic chronology of Beskydian rivers (Morávka River )

Size: px
Start display at page:

Download "Contribution to the morphodynamic chronology of Beskydian rivers (Morávka River )"

Transcription

1 Contribution to the morphodynamic chronology of Beskydian rivers (Morávka River ) Mgr. Jan Hradecký Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta Ostravské univerzity, Chittussiho 10, Ostrava - Slezská Ostrava, , Česká republika Study of temporal changes of geomorphologic regime of water streams represents one of significant spheres of fluvial geomorphology, respectively of dynamic geomorphology. Collecting data on the development of fluvial systems and processing them bring valuable information not only for solving theoretical aspects of the development of the georelief but these can be also used in applied research and practice. The study of time changes can be framed in various chronological dimensions with respect to specific interactions of a water stream as a morphodynamic individual and surrounding relief. Chronological dimensions can create four basic categories: long timescale (>10 5 years), medium timescale ( years), short timescale ( years), instantaneous time (<10-1 years) (SCHUMM AND LICHTY, 1965, modified by KNIGHTON, 1998). Fig. 1. The location of the area under study within the territory of the vicinity Frýdek-Místek town. Explanations: 1 area of analyzed aerial photographs and historic maps, 2 areas urbanized, 3 area of intensive changes of geomorphic river regime, 4 weir. In the case of Beskydian water streams we are going to concentrate on the morphodynamics in the historic period ( ). We have chosen the Morávka River as an example locality. It represents ideal object of study from the point of geomorphologic regime and types 50

2 of changes influenced by a man. The studied locality itself is the length between the weir in Vyšní Lhoty and the confluence of the Morávka and the Ostravice Rivers in Frýdek-Místek (see Fig. 1). The Morávka River has preserved specific features of a mountain stream despite a wide range of human-induced interference with the stream channel. Basic aspect of the geomorphologic regime of the stream is preserved braided channel pattern that has had more intensive and more extensive character recently. The stream was and still is influenced by a wide range of human impacts that represented the interference with the recent development of the fluvial system. The impacts caused transformation of the dynamics mechanisms of geomorphologic processes that can be explained through theory of stability, theory of dynamic equilibrium and theory of geomorphic thresholds. To understand the mechanisms it is necessary to view the water stream as a time continuum whose individual time periods involve sways in character and intensity of morphogenetic processes as influenced by various factors. However, viewed from the longer period of time, the sways stand for the dynamics proper to the system while the trend of the development is not influenced (robust behaviour). Preservation of the current development line is possible provided that the threshold limits preserving the current geomorphologic regime have not been exceeded. Otherwise, the water stream enters a new development trajectory (responsive behaviour). These two aspects of dynamic geomorphology themselves can be easily identified within the studied locality. The term geomorphic thresholds was introduced into literature by SCHUMM (1979) and he defines it as: a threshold of landform stability that is exceeded either by intrinsic change of the landscape itself, or by progressive change of and external variable. From this point of view there is an interesting relationship between two types of thresholds and development and dynamics (see Fig. 2). There are two basic groups of thresholds (according to SHUMM, 1980): extrinsic threshold one that is exceeded by the application of a force or process external to the system fundamental influence on the stream development - natural changes and changes induced by human activity (e.g. climatic fluctuation, land-use change, base level change), intrinsic threshold one in which change occurs without a change in an external variable natural changes (e.g. changes of position gravel bars, lateral bank cutting leading to slope failures, etc.). From the point of human-induced pressure the fluvial system of the Morávka River can be understood as a perfect laboratory where it is possible to study consequences of these influences and carry out following prognoses of the development. If need be, its geomorphologic history could be used as a warning example of the behaviour of a man in the landscape. The overview of human-induced changes of the fluvial system of the Morávka River is summed in Tab. 1. Water streams with geomorphologic braided channel pattern are marked with frequent anabranching in thickly gravelled beds as a consequence of unbalanced flows (pre-glacier zone) or as a consequence of periodic (or, as the case may be, episodic) flooding. The last example is typical for the Beskydian region. Intensive disturbing processes lead to destruction of bank growth and vegetation covering ephemeral or permanent bars and islands in the stream channel. Repeated activity of the stressing factor of floods keeps the braided stream channel out of thicker covering by vegetation. Therefore, aerial photographs can be used during the spatial analysis of the stream channel. 51

3 Fig. 2. Relation between robust (I.+III., upper diagram) and responsive behaviour (II., upper diagram), geomorphic thresholds and three states of dynamic equilibrium observed in Morávka R. channel (modified after Werritty In: Thorne et al.(eds.) and Selby, 1974). 52

4 Tab.1. Types of human-induced changes in the studied area ( modified after KNIGHTON, 1998) River regulations Channel modifications Direct changes Water storage by reservoirs Bank stabilizations or channel-phase changes Diversion of water Channel straightening Stream gravel extraction Land-use changes Land drainage Removal of vegetation, Agricultural drains especially deforestation Indirect changes Afforestation Storm-water sewerage or systems land-phase changes Changes in agricultural practices Building construction Urbanization Mining activity To study the time changes we made use of two historic maps (1780 and ) and a set of aerial photographs of the same area taken in different periods and. With help of the Military Topographic Institution in Dobruška we have acquired chronological series of photographs of the Morávka River of the period of Argus, a.s., a private company offered us aerial photographs of the period before floods in March On the base of their analysis it is possible to make a time series of the Morávka River channel pattern. Thus, we can analyze potential changes in the intensity of morphodynamic processes or if need be the change of their substance (i.e. the change of geomorphologic regime of the water stream). The morphodynamic changes of the area of interest were analyzed in following periods: Data of the length of the oldest research within the studied period can be interpreted from the map of the First Military Mapping (1780). Despite the fact that the map did not rise on the base of accurate geodetic studies it brings valuable information on the condition of the stream channel. The water stream branched out throughout the whole studied length; the most intensively in the vicinity of an undercut slope of the Skalická Strážnice Mt (438 m) and to the north of the line Staré Město (Altstat) Nošovice (Noschowitz). Before the proper mouth of the Morávka River to the Ostravice River there is a very interesting length where the two main stream channels branch out into a few parallel branches. The pattern of the stream channel resembles inner delta. The map of the Third Military Mapping ( , issued in 1910) corresponds with the previous length to a great extent. The part of the water stream before the mouth does not show branching of the previous period. On the map there are objects in the stream channel unidentified by that time (given mark does not appear in the legend of the map). The same marks can be found in the stream channel to the north of the elevation point of Przewrat czernazem (408,3; now Vrchy). They probably mark forlorn, unflowed anabranches of the stream. This supports the fact that the intensity of braiding was considerably lower in the period of the Third Mapping This period is marked with typical geomorphologic braided pattern throughout the whole part of the studied river length. However, detailed morphology of the stream channel in intensively gravelled parts cannot be identified, i.e. smaller ephemeral channels (channels flowed through in the course of higher water level) are not palpable from the aerial 53

5 photographs. By 1955 lateral bars rose in the vicinity of Frýdek-Místek. Their extent was considerably bigger in comparison with the previous period. Changes within bigger stream channels can be quite easily interpreted. In course of time branching (central and eastern part of the area) spread. This is supported by the photograph of However, its quality is not high enough. Thus, it is possible that even in 1937 there was a number of branches that were recorded in 1955 or vice versa, some branches were interpreted in a wrong way. Important index of changes is represented by the existence of unstable large bars and islands. The period documented in the photograph of 1937 is marked with fords that to a certain extent diversify morphology of the gravel-bed channel. The year of 1955 was very significant for the following morphological development of the water stream with intensive human-induced interference with the geomorphologic regime. In the western part of the area we can identify transverse constructions on the riverbanks This period is marked with a considerate tendency to the straightening of the stream. A lot of anabranches disappear. One of potential reasons for the lay-out is represented by river regulations and channel modifications on the upper Morávka River. Construction of the weir in Vyšní Lhoty that is used for water diversion to the Lučina water basin took place from From Morávka water reservoir was constructed. Considerable changes in morphology of the stream channel can be observed in the vicinity of Frýdek-Místek where the stream deposited a great amount of gravel sediments. The photograph of 1955 shows still evident increasing of the number of anabranches while the year 1966 shows stream stability The same tendency that was described in the previous stage of the stream development is typical for this period. Branching eliminated to the minimum. Still, it remained preserved in the furthest eastern part of the profile (to the southwest of Dobrá). In comparison with the previous period the extent of gravel accumulation lowered on the eastern margin of Frýdek- Místek where stream branching can be observed in a low degree. Large islands and bars in the central part of the area ceased to exist. In 1979 a construction of waste dump was palpable on the left bank of the Morávka River (central part of the photograph). As a consequence of lateral erosion of the stream the part of the bank containing the dump became undercut. Terrain observations during made it obvious that the Morávka River has a tendency to the lateral attacking of the bank zone which is immediately connected to the dump (northern marginal part of the dump lies on the contact with the stream). The photographs clearly show unsuitable localization of the dump on the undercut bank Channel anabranching to the east of Frýdek-Místek definitively stopped; the intensity of the process damped. Construction in the vicinity of the stream was probably connected with removal of gravel accumulation (extractional gravel accumulation?). In 1992 only not big accumulations of the type of lateral bars could be observed. Conspicuous bars and ephemeral islands disappeared in other parts. The most intensive river regulations and channel modifications within the stream took place in the studied area (making banks firmer with stone straightening, building transverse constructions stone chutes in the eastern part of the profile). Detailed interpretation of the photograph of 1992 shows signs of deep erosion of the stream (central part of the area). 54

6 The last photograph of the chronology originated in March 1997, i.e. just before a considerable hydrological-geomorphologic event floods in July There were changes in the geomorphologic regime of the stream in the central part of the profile with conspicuous displays of deep erosion. These changes are not so intensive on the previous photograph. Bank zone connected with deep incision of the stream and landslide activity on destabilized banks (zigzag course of the bank line) was extended in New gravel accumulations appear in the lower parts along the stream flow. Described changes of the geomorphologic regime in the length of Dobrá Frýdek-Místek lead to the rebuilding of channel pattern. Original braided channel is being changed into siltclay channel with combination of bed rock channel (localities of Tcheschinite intrusions). It is necessary to compare the geomorphologic changes with hydrological data and data of human impact in the studied area. Present and future research will concentrate on contemporary changes of channel landforms to quantify the intensity of the changes. Methods of digital terrestrial photogrammetry will be used. This paper was supported by grant project No. IZEP References GREGORY, K. J., WALLING, D.E. (1973): Drainage Basin Form and Process. Edward Arnold, London, 456 pp. HRADECKÝ, J. (2000): Současná morfodynamika koryt beskydských toků fenomén řeky Morávky. In: Lacika, J.(ed.): Zborník referátov. 1. konferencia ASG při SAV, , Liptovký Ján, Bratislava, 2000, s KILLIANOVÁ, H. (2000): Řeka Morava na mapách III. vojenského mapování z let : příspěvek k fluviální dynamice. Geol. výzk. Mor. Slez. v roce 1999, VII, Brno, s KIRCHNER, K., IVAN, A. (1999): Anastomózní systémy v CHKO Litovelské Pomoraví. Geol. výzk. Mor. Slez. v roce 1998, VI, Brno, s KNIGHTON, D. (1998). Fluvial forms & processes. Arnold, London New York Sydney Auckland, p SCHUMM, S.A. (1979): Geomorphic thresholds: the concept and its applications. Transactions of the Institute of British Geographers (NS), 4, p SCHUMM, S.A. (1980): Some applications of the concept of geomorphic thresholds. In: Coates, D.R., Vitek, J. (Eds.): Thresholds in Geomorphology. George Allen & Unwin, London, p SCHUMM, S.A., LICHTY, R.A. (1965): Time, space, and causality in geomorphology. American Journal of Science, 263, p SELBY, M.J. (1974): Dominant geomorphic events in landform evolution. Bulletin of the International Association of Engineering Geology, 9, p THORNE, C.R., HEY, R.D., NEWSON, M.D. (1997). Applied Fluvial Geomorphology for River Engineering and Management. Wiley, Chichester New York Weinheim Brisbane Singapore Toronto, p WILLIAMS, G.P., COSTA, J.E. (1988). Geomorphic measurements after a flood. In: Baker, V.R., Kochel, R.C., Patton, P.C., (Eds.): Flood geomorphology. Wiley, New York Chichester Brisbane Toronto Singapore, p

7 Souhrn Příspěvek k morfodynamické chronologii beskydských toků (Morávka ) Studium časových změn geomorfologického režimu vodních toků představuje jednu z významných oblastí fluviální geomorfologie, potažmo její dynamické části. V případě beskydských vodních toků studie řeší otázky morfodynamiky v historické době ( ). Jako příklad byl zvolen vodní tok Morávka, který z hlediska geomorfologického režimu a typů změn ovlivněných člověkem představuje ideální objekt studia. Lokalitou vlastního výzkumu je úsek toku mezi jezem ve Vyšních Lhotách a soutokem Morávky s Ostravicí ve Frýdku-Místku (viz Fig. 1). Vodní tok prošel celou řadou antropogenních změn (Tab. 1), které představovaly zásah do vývoje fluviálního systému v historické době. Zásahy transformovaly mechanismy dynamiky geomorfologického režimu, které lze vysvětlit prostřednictvím teorie dynamické rovnováhy a teorie prahů (viz Fig. 2). Pro studium časových změn byla k dispozici série leteckých snímků s časovým posunem ( ) a dvě historické mapy (1780 a ). Na základě jejich analýzy lze sestavit časovou řadu prostorového uspořádání koryta Morávky a na tomto základě analyzovat případné změny v intenzitě morfogenetických procesů, resp. změnu jejich podstaty (tzn. změnu geomorfologického režimu toku). Základním aspektem změny geomorfologického režimu toku Morávky je transformace původního divočícího toku na tok s intenzivními projevy hloubkové a boční eroze. 56

THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences

THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY The earth s surface form and its dynamic

More information

Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY

Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2009 Department of Physical & Environmental Sciences Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY The earth s surface form and its dynamic

More information

CHANNEL GEOMORPHIC RESPONSES TO DISTURBANCES ASSESSED USING STREAMGAGE INFORMATION

CHANNEL GEOMORPHIC RESPONSES TO DISTURBANCES ASSESSED USING STREAMGAGE INFORMATION CHANNEL GEOMORPHIC RESPONSES TO DISTURBANCES ASSESSED USING STREAMGAGE INFORMATION Kyle E. Juracek, Research Hydrologist, U.S. Geological Survey, Lawrence, KS, kjuracek@usgs.gov; Mark W. Bowen, Ph.D. candidate,

More information

and Advisory March 1997 Number: 88 Theoretical concepts relating to thresholds and geomorphic sensitivity

and Advisory March 1997 Number: 88 Theoretical concepts relating to thresholds and geomorphic sensitivity SCOTTISH NATURAL HERITAGE Information and Advisory Note March 1997 Number: 88 Theoretical concepts relating to thresholds and geomorphic sensitivity 1. Introduction 1.1 The concepts of geomorphic thresholds

More information

International Conference Analysis and Management of Changing Risks for Natural Hazards November 2014 l Padua, Italy

International Conference Analysis and Management of Changing Risks for Natural Hazards November 2014 l Padua, Italy Abstract code: AP5 Mapping direct and indirect fluvial hazard in the Middle Calore River valley (southern Italy) P. Magliulo 1, A. Valente 1 1 Dipartimento di Scienze e Tecnologie, Università degli Studi

More information

River Nith restoration, cbec UK Ltd, October 2013 APPENDIX A

River Nith restoration, cbec UK Ltd, October 2013 APPENDIX A APPENDIX A FLUVIAL AUDIT METHOD STATEMENT Fluvial Audit Methodology INTRODUCTION The procedure used to characterize the geomorphic and sedimentary regimes of the River Till is an adaptation of the Fluvial

More information

Step 5: Channel Bed and Planform Changes

Step 5: Channel Bed and Planform Changes Step 5: Channel Bed and Planform Changes When disturbed, streams go through a series of adjustments to regain equilibrium with the flow and sediment supply of their watersheds. These adjustments often

More information

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN Conor Shea - Hydrologist U.S. Fish and Wildlife Service Conservation Partnerships Program Arcata, CA Learning Objectives Examine

More information

NATURAL RIVER. Karima Attia Nile Research Institute

NATURAL RIVER. Karima Attia Nile Research Institute NATURAL RIVER CHARACTERISTICS Karima Attia Nile Research Institute NATURAL RIVER DEFINITION NATURAL RIVER DEFINITION Is natural stream of water that flows in channels with ih more or less defined banks.

More information

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY Chad A. Whaley, Department of Earth Sciences, University of South Alabama, MobileAL, 36688. E-MAIL: caw408@jaguar1.usouthal.edu The ultimate goal of this

More information

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant The River Restoration Centre therrc.co.uk Understanding Fluvial Processes: supporting River Restoration Dr Jenny Mant Jenny@therrc.co.uk Understanding your catchment Hydrology Energy associated with the

More information

MEANDER MIGRATION MODEL ASSESSMENT FOR THE JANUARY 2005 STORM, WHITMAN PROPERTY, SAN ANTONIO CREEK, VENTURA COUNTY, CALIFORNIA

MEANDER MIGRATION MODEL ASSESSMENT FOR THE JANUARY 2005 STORM, WHITMAN PROPERTY, SAN ANTONIO CREEK, VENTURA COUNTY, CALIFORNIA MEANDER MIGRATION MODEL ASSESSMENT FOR THE JANUARY 2005 STORM, WHITMAN PROPERTY, SAN ANTONIO CREEK, VENTURA COUNTY, CALIFORNIA Prepared by Eric Larsen, Ph.D. Mark Rains, Ph.D. October 2006 INTRODUCTION

More information

Dams, sediment, and channel changes and why you should care

Dams, sediment, and channel changes and why you should care Dams, sediment, and channel changes and why you should care Gordon E. Grant USDA Forest Service PNW Research Station Corvallis, Oregon Dam effects on river regimes FLOW (Q) SEDIMENT (Qs) TEMP CHEMISTRY

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Table 6.1 Progress in the identification of equilibrium states in geomorphology

Table 6.1 Progress in the identification of equilibrium states in geomorphology 6 The concept of equilibrium emerged in geomorphology once ideas of catastrophism had been succeeded by the understanding that gradual land-forming processes were responsible for the shape of the Earth

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland

Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Waterbury Dam Disturbance Mike Fitzgerald Devin Rowland Abstract The Waterbury Dam was completed in October 1938 as a method of flood control in the Winooski Valley. The construction began in April1935

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Analysis of coarse sediment connectivity in semiarid river channels

Analysis of coarse sediment connectivity in semiarid river channels Sediment Transfer tlirongh the Fluviai System (Proceedings of a symposium held in Moscow, August 2004). IAHS Publ. 288, 2004 269 Analysis of coarse sediment connectivity in semiarid river channels J. M.

More information

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments # Week(s) Wks 1-3 CAPE Unit 1 Module 2 & 3 Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments Wave formation, structure, types Textbook

More information

Need of Proper Development in Hilly Urban Areas to Avoid

Need of Proper Development in Hilly Urban Areas to Avoid Need of Proper Development in Hilly Urban Areas to Avoid Landslide Hazard Dr. Arvind Phukan, P.E. Cosultant/Former Professor of Civil Engineering University of Alaska, Anchorage, USA RI District Governor

More information

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS

Debris flow: categories, characteristics, hazard assessment, mitigation measures. Hariklia D. SKILODIMOU, George D. BATHRELLOS Debris flow: categories, characteristics, hazard assessment, mitigation measures Hariklia D. SKILODIMOU, George D. BATHRELLOS Natural hazards: physical phenomena, active in geological time capable of producing

More information

Lab 12 Coastal Geology

Lab 12 Coastal Geology Lab 12 Coastal Geology I. Fluvial Systems Hydrologic Cycle Runoff that flows into rivers = precipitation (rain and snowmelt) [infiltration (loss to groundwater) + evaporation (loss to atmosphere) + transpiration

More information

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs.

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs. Riparian Assessment vs. Monitoring Riparian Assessment What is a healthy stream? Determine stream/riparian health Determine change or trend, especially in response to mgmt Classification = designation

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Working with Natural Stream Systems

Working with Natural Stream Systems Working with Natural Stream Systems Graydon Dutcher Delaware County Soil & Water Conservation District Stream Corridor Management Program Tropical Storm Sandy October 29,2012 What is a Watershed?

More information

Flash flood disaster in Bayangol district, Ulaanbaatar

Flash flood disaster in Bayangol district, Ulaanbaatar Flash flood disaster in Bayangol district, Ulaanbaatar Advanced Training Workshop on Reservoir Sedimentation Management 10-16 October 2007. IRTCES, Beijing China Janchivdorj.L, Institute of Geoecology,MAS

More information

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland

ADAM ŁAJCZAK Jan Kochanowski University, Institute of Geography, ul. Świętokrzyska 15, Kielce, Poland Erosion and Sediments Yields in the Changing Environment (Proceedings of a symposium held at the 49 Institute of Mountain Hazards and Environment, CAS-Chengdu, China, 11 15 October 2012) (IAHS Publ. 356,

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin?

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? Bruce Rhoads Department of Geography University of Illinois at Urbana-Champaign

More information

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont Mike Kline and Laura Lapierre Vermont DEC NWI+ Hydro-Geomorphic Characterization of Wetlands and

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Land recycling and reusing: man made terraces as a peculiar problem in the Liguria region.

Land recycling and reusing: man made terraces as a peculiar problem in the Liguria region. Land recycling and reusing: man made terraces as a peculiar problem in the Liguria region. G. Brancucci and G. Paliaga & Francesca Nervi POLIS Department University of Genova - Italy The Ligurian territory

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 16 2008 MATHEMATICAL MODELING

More information

FLUVIAL PROCESSES 13 MARCH 2014

FLUVIAL PROCESSES 13 MARCH 2014 FLUVIAL PROCESSES 13 MARCH 2014 In this lesson we: Lesson Description Look at river profiles, river grading, river rejuvenation as well as the identification, description and formation of fluvial landforms.

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

Chapter IV MORPHOMETRIC ANALYSIS AND STREAM NETWORK CHARACTERISTICS IN GADAG DISTRICT

Chapter IV MORPHOMETRIC ANALYSIS AND STREAM NETWORK CHARACTERISTICS IN GADAG DISTRICT Chapter IV MORPHOMETRIC ANALYSIS AND STREAM NETWORK CHARACTERISTICS IN GADAG DISTRICT 4.1 INTRODUCTION: Streams and rivers are the most dynamic parts of the earth s physical environment. The behavior of

More information

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy Photo by: Josh Roering Photo: Eric Bilderback Photo by: Josh Roering Goal 1. Reconstruct the paleo-landscape

More information

Down-stream process transition (f (q s ) = 1)

Down-stream process transition (f (q s ) = 1) Down-stream process transition (f (q s ) = 1) Detachment Limited S d >> S t Transport Limited Channel Gradient (m/m) 10-1 Stochastic Variation { Detachment Limited Equilibrium Slope S d = k sd A -θ d S

More information

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow Introduction Mercury, Venus, Earth and Mars share a similar history, but Earth is the only terrestrial planet with abundant water! Mercury is too small and hot Venus has a runaway green house effect so

More information

Annotated Bibliography of River Avulsions Pat Dryer Geography 364 5/14/2007

Annotated Bibliography of River Avulsions Pat Dryer Geography 364 5/14/2007 Annotated Bibliography of River Avulsions Pat Dryer Geography 364 5/14/2007 1 Table of Contents Introduction 2 Annotations I. River avulsions and their deposits 2 II. Channel avulsion on alluvial fans

More information

4.17 Spain. Catalonia

4.17 Spain. Catalonia 4.17 Spain Catalonia In Spain, inundation studies are the responsibility of the respective Hydrographic Confederations of each river basin (River Basin Authorities). The actual status of inundation studies

More information

What discharge (cfs) is required to entrain the D 84 (84 th percentile of sediment size distribution) in Red Canyon Wash?

What discharge (cfs) is required to entrain the D 84 (84 th percentile of sediment size distribution) in Red Canyon Wash? Gregory Indivero 31 October 2011 What discharge (cfs) is required to entrain the D 84 (84 th percentile of sediment size distribution) in Red Canyon Wash? What discharge was required to deposit observed

More information

What do you need for a Marathon?

What do you need for a Marathon? What do you need for a Marathon? Water and a snack? What about just a normal day? 1 flush = 3.5 gallons 1 flush = 3.5 gallons 10 minute shower = 20 gal 1 flush = 3.5 gallons 10 minute shower = 20 gal Jeans

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

Intro to Geomorphology Key Concepts

Intro to Geomorphology Key Concepts Intro to Geomorphology Key Concepts Geomorphology Literally means the study of earth landforms - Geo = Earth - Morph=Form - Logos= Study of Involves understanding of - Mineralogy - Structure - Tectonics

More information

Technical Memorandum No Sediment Model

Technical Memorandum No Sediment Model Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.9 Sediment Model Task: Development of Sediment Model To: PRWFPA Staff Working Group Prepared by: Gregory Morris and Elsie Parrilla

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas FLUVIAL PROCESSES Fluvial Processes The Impact of Fluvial Processes on the Landscape Streams and Stream Systems Stream Channels Structural Relationships The Shaping and

More information

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Daisuke

More information

Ways To Identify Background Verses Accelerated Erosion

Ways To Identify Background Verses Accelerated Erosion Ways To Identify Background Verses Accelerated Erosion Establish Background Condition From Old Ground Photos, Aerial Photos, and Maps Compare Rate Over Time At the Same Location, or for Reaches Channel

More information

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades?

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Faith Fitzpatrick USGS WI Water Science Center, Middleton, WI fafitzpa@usgs.gov

More information

27. Running Water I (p ; )

27. Running Water I (p ; ) 27. Running Water I (p. 424-436; 440-444) Hydrosphere How much of the Earth s surface is covered by water? Earth's water is collectively called the and is stored in a number of so-called as follows: 1.

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

Extra Credit Assignment (Chapters 4, 5, 6, and 10)

Extra Credit Assignment (Chapters 4, 5, 6, and 10) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Extra Credit Assignment (Chapters 4, 5, 6, and 10) For this assignment you will require: a calculator and metric ruler. Chapter 4 Objectives:

More information

General discussion and conclusions

General discussion and conclusions CHAPTER 9 ~ DISCUSSION AND CONCLUSIONS 177 General discussion and conclusions 9 This study followed a functional-geographical approach to research into river rehabilitation and to expand our knowledge

More information

Tatsuo Sekiguchi* and Hiroshi Sato*

Tatsuo Sekiguchi* and Hiroshi Sato* by Tatsuo Sekiguchi* and Hiroshi Sato* ABSTRACT Landslides induced by heavy rainfall and earthquakes may result in disaster by destroying homes and buildings. High-fluidity landslides caused by liquefied

More information

Sedimentation Rate Change in the Winooski River Delta

Sedimentation Rate Change in the Winooski River Delta Sedimentation Rate Change in the Winooski River Delta Chris Ricker and Brian Connelly Abstract Historical air photographs, from 1937 show the Winooski River Delta extended much farther into Lake Champlain

More information

Sensitivity Analysis of the Effective Parameters with Respect to Cantilever Type Failure in Composite Riverbanks

Sensitivity Analysis of the Effective Parameters with Respect to Cantilever Type Failure in Composite Riverbanks Sensitivity Analysis of the Effective Parameters with Respect to Cantilever Type Failure in Composite Riverbanks A. Samadi 1, E. Amiri-Tokaldany 2, and M. H. Davoudi 3 1 Ph.D. Candidate, Department of

More information

THE FLUVIAL ACTION OF THE KARLA BASIN STREAMS IN A NATURAL AND MAN MADE ENVIRONMENT

THE FLUVIAL ACTION OF THE KARLA BASIN STREAMS IN A NATURAL AND MAN MADE ENVIRONMENT Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 2010 Bulletin of the Geological Society of Greece, 2010 Πρακτικά 12ου Διεθνούς Συνεδρίου Proceedings of the 12th International Congress Πάτρα, Μάιος 2010 Patras,

More information

Characteristics of Step-Pool Morphology in the Mountain Streams of Japan

Characteristics of Step-Pool Morphology in the Mountain Streams of Japan Disaster Mitigation of Debris Flows, Slope Failures and Landslides 379 Characteristics of Step-Pool Morphology in the Mountain Streams of Japan Tatsuya Okazaki, 1) Yutaka Gonda, 2) Yohei Nishii 3) and

More information

Stop 1: Marmot Dam Stop 1: Marmot Dam

Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Stop 1: Marmot Dam Following the removal of Marmot Dam in 2007, the fate of the reservoir sediments has been monitored through a series of surveys and sediment transport measurements.

More information

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling Sediment Transport into an Urban Tributary Junction Diego Burgos Geology 394 Advisors: Dr. Prestegaard Phillip Goodling 1 Abstract Tributary junctions are an important component of stream morphology and

More information

Landscape. Review Note Cards

Landscape. Review Note Cards Landscape Review Note Cards Last Ice Age Pleistocene Epoch that occurred about 22,000 Years ago Glacier A large, long lasting mass of ice which forms on land and moves downhill because of gravity. Continental

More information

, Horton , km Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. Vol. 21, No. 2 GEO GRAPHICAL RESEARCH

, Horton , km Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. Vol. 21, No. 2 GEO GRAPHICAL RESEARCH 21 2 2002 3 Vol. 21, No. 2 GEO GRAPHICAL RESEARCH Mar., 2002 : 100020585 (2002) 0220171208 (, 100101) :, 50 500 2500, 6 15,,,,,, : ; ; : P93111 ; P33314 : A, [1, Horton 1942 ], [2 10, ],,,,,,,,,,,,,, 50

More information

Study on the Fluvial Geomorphological Meanings of Valley Plain in the River and Estimation of the Extreme River Discharge

Study on the Fluvial Geomorphological Meanings of Valley Plain in the River and Estimation of the Extreme River Discharge 12th International Conference on Hydroscience & Engineering Study on the Fluvial Geomorphological Meanings of Valley Plain in the River and Estimation of the Extreme River Discharge Masaki Wakui, Shoji

More information

Flooding in Dolgellau

Flooding in Dolgellau Flooding in Dolgellau Graham Hall MMath, PhD University of Wales, Bangor Background Flooding has historically been a cause for concern in Dolgellau. Following a serious flood in December 1964 when shops

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation

Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation 2013, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Caspian Rapid Sea Level Changing Impact on Estuaries Morphodynamic Deformation Naser Ebadati

More information

The Effects of Geomorphology and Watershed Land Use on Spawning Habitat

The Effects of Geomorphology and Watershed Land Use on Spawning Habitat The Effects of Geomorphology and Watershed Land Use on Spawning Habitat By Evan Buckland INTRODUCTION The distribution and frequency of large geomorphic features in a watershed govern where suitable spawning

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Monitoring of suspended sediment concentration in discharge from regulated lakes in glacial deposits

Monitoring of suspended sediment concentration in discharge from regulated lakes in glacial deposits Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992). IAHS Publ. no. 210, 1992. 269 Monitoring of suspended sediment concentration in discharge

More information

Channel Pattern. Channel Pattern, Meanders, and Confluences. Description of Channel Pattern. Bridge (2003)

Channel Pattern. Channel Pattern, Meanders, and Confluences. Description of Channel Pattern. Bridge (2003) Channel Pattern Channel Pattern, Meanders, and Confluences Outline Description of channel pattern Alternate bars Channel pattern continua and evolution Controls of channel pattern Description of Channel

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Restoring river-floodplain interconnection and riparian habitats along the embanked Danube between Neuburg and Ingolstadt (Germany)

Restoring river-floodplain interconnection and riparian habitats along the embanked Danube between Neuburg and Ingolstadt (Germany) Restoring river-floodplain interconnection and riparian habitats along the embanked Danube between Neuburg and Ingolstadt (Germany) Dipl.-Geogr. Gerald Blasch Department of Physical Geography, Cath. University

More information

Stream geomorphology mapping

Stream geomorphology mapping The effects of deforestation on tropical freshwater streams: A comparison of stream geomorphology and coarser clastic particles distribution between Kasekera watershed (forested) and Mtanga watershed (deforested),

More information

Welcome to NetMap Portal Tutorial

Welcome to NetMap Portal Tutorial Welcome to NetMap Portal Tutorial Potential Applications What Can you do with the Portal? At least 25 things! 1) Locate the best potential fish habitats. 2) Identify biological hotspots. 3) Map floodplain

More information

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION

APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING FLOOD HAZARD MAPPING, LAWS AND AUTHORITIES COORDINATION "Workshop On Land Use Planning And Water Management, With Focus On Flood Risk Management Oslo, Norway. Wednesday 31 January and Thursday 1 February 2007 APPROACH TO THE SPANISH WATER ORGANISATION IMPROVING

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Clyde River Landslide

Clyde River Landslide Clyde River Landslide Department of Geology, Perkins Hall, University of Vermont, Burlington, VT 05405 Abstract: This paper investigates a landslide on the Clyde River in Newport, Vermont. The landslide

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT

Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT Paper presented in the Annual Meeting of Association of American Geographers, Las Vegas, USA, March 2009 ABSTRACT CHANGING GEOMORPHOLOGY OF THE KOSI RIVER SYSTEM IN THE INDIAN SUBCONTINENT Nupur Bose,

More information

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY PROJECT REFERENCE NO. : 37S1170 COLLEGE : SIDDAGANGA INSTITUTE OF TECHNOLOGY,

More information

Fluvial Processes in River Engineering

Fluvial Processes in River Engineering Fluvial Processes in River Engineering Howard H. Chang San Diego State University... A WILEY-INTERSCIENCE PUBLTCATION John Wiley & Sons New York Chicbester Brisbane Toronto Singapore CONTENTS PARTI FLUVIAL

More information

Stream Classification

Stream Classification Stream Classification Why Classify Streams? Communication Tool Describe Existing Conditions & Trends Describe Restoration Goals Research Tool Morphologic Stream Classification Systems Schumm (1977) Alluvial

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

Table 6.1 Progress in the identification of equilibrium states in geomorphology

Table 6.1 Progress in the identification of equilibrium states in geomorphology 6 The concept of equilibrium emerged in geomorphology once ideas of catastrophism had been succeeded by the understanding that gradual land-forming processes were responsible for the shape of the Earth

More information

FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU

FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU FAILURES IN THE AMAZON RIVERBANKS, IQUITOS, PERU A.Carrillo-Gil University of Engineering & A.Carrillo Gil S.A.,Consulting Engineering,Lima,Peru L. Dominguez University of Engineering,Lima & The Maritime

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

Limitation to qualitative stability indicators. the real world is a continuum, not a dichotomy ~ 100 % 30 % ~ 100 % ~ 40 %

Limitation to qualitative stability indicators. the real world is a continuum, not a dichotomy ~ 100 % 30 % ~ 100 % ~ 40 % Stream Stability Assessment & BEHI Surveys Joe Rathbun MDEQ Water Resources Division rathbunj@michigan.gov 517--373 517 373--8868 Stability Stream can transport its water and sediment inputs without changing

More information

The Ordinary High Water Mark: Concepts, Research, and Applications. Matthew K. Mersel March 20, 2013

The Ordinary High Water Mark: Concepts, Research, and Applications. Matthew K. Mersel March 20, 2013 The Ordinary High Water Mark: Concepts, Research, and Applications Matthew K. Mersel March 20, 2013 Under Section 404 of the Clean Water Act, the OHWM defines the lateral limits of Federal jurisdiction

More information

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson Fluvial Systems Lab Environmental Geology Lab Dr. Johnson *Introductory sections of this lab were adapted from Pidwirny, M. (2006). "Streamflow and Fluvial Processes". Fundamentals of Physical Geography,

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz REPORT

More information

SPATIAL AND TEMPORAL ANALYSIS OF THE DEGRADATION OF NATURAL RESOURCES IN RIVER LIKODRA WATERSHED

SPATIAL AND TEMPORAL ANALYSIS OF THE DEGRADATION OF NATURAL RESOURCES IN RIVER LIKODRA WATERSHED Soil Erosion Modelling JRC Ispra 20-21-22 March 2017 University of Belgrade, Faculty of Forestry Department for Ecological Engineering in Protection of Soil and Water Resources SPATIAL AND TEMPORAL ANALYSIS

More information