ACCURATE SUBSURFACE CHARACTERIZATION FOR HIGHWAY APPLICATIONS USING RESISTIVITY INVERSION METHODS

Size: px
Start display at page:

Download "ACCURATE SUBSURFACE CHARACTERIZATION FOR HIGHWAY APPLICATIONS USING RESISTIVITY INVERSION METHODS"

Transcription

1 ACCURATE SUBSURFACE CHARACTERIZATION FOR HIGHWAY APPLICATIONS USING RESISTIVITY INVERSION METHODS Ioannis F. Louis 1, Filippos I. Louis 2 and Melanie Bastou 3 1 Geophysics & Geothermic Division, Geology Department, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece. jlouis@geol.uoa.gr 2 Geophysics & Geothermic Division, Geology Department, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece. flouis@geol.uoa.gr 3 AKTOR Constructing Group, Philellinon 18, Chalandri, Athens 15232, Greece ABSTRACT In cooperation with the AKTOR Constructing Group of Engineers the Geophysics and Geothermic Department of the University of Athens performed an electrical resistivity survey at a section of Ymittos highway in Athens. The survey aimed to image the subsurface structure including karstic voids and to evaluate their extent that can result in potentially dangerous collapse of the road segment overlying these features. A synthetic simulation study preceded the field survey was performed aiming to determine whether the electrical resistivity method could identify such features and to choose the acquisition parameters for optimum detect ability and resolution. The field survey results indicated the presence both of conductive and resistive anomalies along the proposed stretch of the highway. The interpretation of the resistive features indicates that the affected section of the highway overlies five prominent voids attributed mostly to the karstic activity. The conductive anomalies indicate an area where the host limestone rock has been lowered by faulting and is associated with the subsurface continuation of the fault zone observed in the slope of the road during the excavations. Geophysical data interpretation indicated air-filled voids in six drill locations. Drilling results supported our interpretations and a remedial action plan with consolidation grouting works was implemented prior to the construction. INTRODUCTION Karstic voids can affect many highway locations in areas underlain in carbonate rocks causing construction delays, stability problems, and may result in a significant increase of cost. Road and highway subsidence, building foundation collapse, and dam leakage are a few of the problems associated with karstic voids. Structural instability associated with voids can occur as a sudden collapse of the ground surface or as a less catastrophic, but recurring drainage problem. Within karst regions, either scenario can be expensive to design and implement control for present and future structures. Frequently, borings drilled within karst regions do not intersect areas of concern in the subsurface. Misplaced borings can provide inadequate subsurface data, and could misrepresent the subsurface system leading to additional cost for remedial design or additional investigation. Rapid reconnaissance surveys using remote sensing and surface geophysical techniques integrated with a boring plan are best used to aid in the proper location of test borings to identify subsurface features related to karst development. Journal of Electrical & Electronics Engineering, Special Issue October 2002,

2 There are a number of geophysical techniques that can be used to detect the presence of voids below the surface. The application of 2D resistivity imaging methods to such geotechnical problems and site characterization is well documented in literatures (El- Hussein et al., 2000; Tsourlos et al., 1998; Dahlin, 1996; Noel, Xu, 1992; Louis et al., 2002). The development of resistivity imaging software have allowed for more costeffective resistivity surveys and better representation of the subsurface. During the construction of Western Ymittos Peripheral Highway in Athens, the AKTOR Constructing Group of Engineers encountered underground karstic voids at location This became a major concern to engineers, causing a temporary stop of the contract work at this site. In support of the subsurface investigation the Department of Geophysics and Geothermic of the University of Athens (Louis, 2001) conducted a high-resolution shallow geophysical survey to identify and map the extent of the underground voids, or weak permeable or highly fractured zones that may contribute to stability problems in the specific portion of the under construction highway. Due to the presence of cultural noise, the 2D resistivity imaging method was selected for the subsurface investigations instead of other geophysical methods. Moreover, the resistivity contrast of air or water filled voids compared to the surrounding limestone bedrock combined with the advantage that the method is not time consuming for small scale projects in both pre- and post- acquisition processing steps, makes it most appropriate for prospecting. GEOLOGY OF THE AREA The greater area is mainly composed of the geotectonic sub unit of Attica or the zone of Ymittos South Attica and is the extension to the south of the northeast Attica- Almyropotamos zone (Katsikatsos, 1992). The rock formations, oldest to newest, which are detected in Ymittos South Attica zone are Vari Schist (Attica), Pirnari Dolomite (Attica), lower formation marble, Kaisariani Schist (Attica), and upper formation marble. Above these formations overthrust the formations of the neohellenic tectonic cover, a section of which constitutes the sub zone of Lavrio or the phyllitic tectonic cover zone as it called today (Katsikatsos, 1992). The area under investigation is located on the northeast side of Ymittos Mountain and constitutes recrystallized limestones of the phyllitic cover. THE METHOD A non-destructive high-resolution resistivity imaging survey was carried out with the primary objective to locate evidence for near surface karstic features responsible for possible ground failures at the specific section of the highway. 44

3 In electrical resistivity imaging applications current is introduced into the ground through one pair of electrodes. A second pair of electrodes is then used to quantitatively measure the voltage pattern on the surface resulting from the current flow pattern of the first set of electrodes. If multiple electrodes are used and the results recorded automatically the area to be examined can be searched more efficiently, and also probed at various depths at the same time. A fast numerical approach is then used to optimise an initial multi-layer model constructed usually directly from the observed apparent resistivity values. A finite difference or finite element technique is usually used to calculate the 2-D forward response of the model. By subsequent iterations the model is upgraded until a minimum (or an acceptable) rms misfit between the observed and model pseudosection is achieved. Resistivity differences typically correspond to changes in the lithologic composition of subsurface materials or the chemistry of pore fluids. The applied current, the resulting voltage potentials and the electrode geometry are recorded and in general the greater the distance between electrodes the greater the depth of penetration. The potential difference values are plotted in the field as apparent resistivities in pseudo-sections, to verify proper collection of data. These resistivity values are averages over the total current path length and are plotted at one depth point for each source-receiver combination. SYNTHETIC SIMULATION Prior to field-data acquisition a geophysical survey of the same cross-section was simulated to choose the acquisition parameters for optimum detect ability and resolution. This effort had two goals; the first was to test the capability of the method to reconstruct images expected to be present in the subsurface. The second benefit was to use the information obtained from the synthetic-data inversions as constrains helping the interpretation of the field-data inversions. A finite element algorithm (Loke, 1994) was used to calculate the direct current response of a set of resistivity models representing real geological and environmental conditions of the local area. Taking into account the borehole observation log files, made available from the constructing group, concerning information of the revealed karstic voids (Fig. 2), a group of synthetic resistivity models was composed. Several situations representing a major void or a system of karstic features were examined while varying the spatial distribution and geometries of these structures. A resistivity value of ohm-m was chosen to represent the air filed cavity placed on a limestone environment of 5000 ohm-m (Fig. 1). 45

4 Figure 1. Input model for the synthetic simulation consisting of a void feature 3 metres width in a limestone environment. Figure 2. Karstic void revealed during excavations at the site of the highway. The imaging abilities of three different electrode arrays (1, 3 and 5 meters) were examined using the least square inversion technique. Gaussian noise was also added both to background and target models to demonstrate that the inversion scheme is reasonably robust and will work in an environment with unsystematic geologic or instrumental noise. RES2DINV software used for the inversions is based on the smoothness constrain least squares method and basically tries to reduce the difference between the calculated and measured apparent resistivity values with respect to some smoothness constraints such as the complexity of a model. The resulting inversions were compared with the original input models for the three different electrode spacings. In general the inversions gave relatively highresolution images and revealed that the geometries of the resistivity anomalous areas were sufficiently recovered. However it was found that, by increasing the electrode spacing (5m), the inverted resistivities diverged from their initial model values. The 46

5 response of the karstic void of figure 1, for a 3m Wenner-Schlumbereger array, is shown in the upper part of Figure 3. The resistivity image of the inverted response is shown in the lower part of the same figure. In Concluding, synthetic simulation indicated an optimal electrode spacing of 3 meters to delineate the specific targets up to 15m depths with no significant loss in resolution. For a more detailed imaging of the top 5m depth zone an electrode spacing of 1m was decided to be used. If cavity targets are filled or partially filed, their response is expected to overlap with the limestone environment making in that way the target discrimination a more difficult task. Figure 3. Reconstructed resistivity image for a 3m Wenner-Schlumberger array. DATA ACQUISITION AND PROCESSING Three resistivity traverses, namely LINE-1, LINE-2 and LINE-3 were conducted along the survey area. The orientation and extent of those lines are shown in the location map of Figure 4. Each survey line was double scanned using both 1 and 3 meters electrode spacing in order to get a more detailed image of the top zone. The Wenner- Schlumberger configuration was deployed with a maximum N separation (ratio of maximum and minimum electrode spacing) equal to 13. Data were collected with the SYSCAL R1 Plus resistivity meter (IRIS). The apparent resistivity pseudosection produces a distorted image of the subsurface resistivity. Inversion of the field observations is the standard procedure to obtain an estimate of the true resistivity. The true resistivity structure was interpreted using 2DINVS software (Tsourlos, 1995; Tsourlos et al., 1998). This algorithm is based 47

6 on a 2.5D smoothness constrained inversion to invert the apparent resistivity data by employing a quasi-newton technique to reduce the numerical calculations (Loke and Barker 1994). The subsurface is divided into a grid of nodes, thus the inversion is not affected by the geometry of subsurface resistivity anomalies. The purpose of the program is to determine a resistivity of each node such that the apparent resistivity pseudo-sections agree with the actual measurements. The algorithm is iterative and fully automated. The inversion estimates a resistivity model by minimizing the difference between the observed and the calculated data. The smoothness constrained inversion method imposes another condition, namely that the roughness of the resistivity model is minimum. Figure 4. Map showing the study area and the location, orientation of the resistivity survey traverses LINE-1, LINE-2 and LINE-3. RESULTS AND INTERPRETATION Figures 5, 7 and 8 display the outputs for the three parallel traverses. The plots represent parallel slices through the ground to a depth of 20 m below the ground surface. A large resistive anomaly can be clearly seen starting at approximately 13 m below ground surface in all traverses. Separate smaller resistive or conductive anomalies can also be seen at shallow depths in all traverses. 48

7 The high resistive elongated feature appeared in the resistivity section LINE-1 (Fig. 5) at 14 m depth was attributed to a series of two or more different karstic voids separated by limestone mass. The conductive feature marked as F shown in the top 5 meters of the section is attributed to an intensely fracture zone filled with clay and is probably the continuation of the fault (Fig. 6) revealed in the slope of the road during the excavation works. The conductive feature marked as C at 7 m depth is probably attributed to an intensely fracture zone associated with the fault zone. Figure 5. Tomographic image of traverse LINE-1. Figure 6. Fault observed in the slope of the road during the excavation works. The same high resistive elongated feature appeared in the resistivity image of Figure 5 is also observed in the resistivity image of the parallel traverse LINE-2 (Fig. 7) at the same depth and is also attributed to the same source of anomaly. The conductive feature marked as F is also attributed to the continuation of the same fault observed in the slope of the road during the excavation works. The small shallow resistive feature marked as E may be a small void, which was not encountered from drilling D4 since it passed adjacent to the anomaly without to intersect it. 49

8 Figure 7. Tomographic image of traverse LINE-2. Figure 8. Tomographic image of traverse LINE-3. The results obtained from traverse LINE-3 (Fig. 8) were interpreted under suspiciousness having in mind that the field measurements were conducted under difficult weather conditions (high presence of noise due to drizzling). However the conductive feature marked as F, observed in traverses LINE-1 and LINE-2, is also present here indicating the continuation of the fault zone under the road surface. The resistive structure marked as H is also attributed to a possible void. Figures 9, 10 and 11 show a set of horizontal plane sections computed from the resistivity images of traverses LINE-1, LINE-2 and LINE-3 by averaging the data in depth intervals. These clearly illustrate the lateral and in depth extent of the resistive and conductive anomalies observed in the resistivity traverses. 50

9 Figure 9. Horizontal plane section of resistivity distribution at 2.25 m depth. Figure 10. Horizontal plane section of resistivity distribution at 4.25 m depth. 51

10 Figure 11. Horizontal plane section of resistivity distribution at m depth. Figure 12 illustrates how these horizontal plane sections can be arranged vertically as a volume viewed from the south. The picture clearly depicts that the intense fracturing in the limestone mass is reduced to the first 5 to 6 meters depth. In greater depths a more compact limestone mass is prevailing. Figure 12. Diagram showing how depth slices can be stacked vertically to give a volume representation. This plot is viewed from the south. 52

11 Figure 13 illustrates how the resistivity depth sections LINE-1, LINE-2 and LINE-3 can be arranged horizontally as a volume viewed from the south. The picture clearly depicts the trace of the fault zone under the road surface. It also illustrates the horizontal extent of the resistive feature delineated at 14 m depth. Figure 13. Diagram showing how resistivity traverses LINE-1, LINE-2 and LINE-3 can be stacked horizontally to give a volume representation. This plot is viewed from the south. RESULTS OF CORE DRILLING AND REMEDIATION ACTIONS After the interpretation of the data was concluded, we recommended some areas for exploratory drilling. The areas were given a ranking based on the strength of the anomalies, and the confidence in their interpretations. Six locations were chosen for coring and they were all drilled in areas that demonstrated anomalous signatures in the geophysical data. The cores showed that the subsurface consisted of a zone of intensely fracture limestone associated with the presence of air or clay filled karstic voids. This fractured zone is associated with the subsurface continuation of the fault zone observed in the slope of the road during the excavation works. Three of the cores encountered voids, while the other three encountered heavily fractured bedrock. Drilling D1 intersected a void between 14.5 and 18 meters deep, which is in a very good agreement with the location of the resistive feature marked as A in the resistivity section LINE-1. The same drilling encountered a void between 7.5 and 9 meters deep, which is also in a 53

12 very good agreement with the resistive feature marked as C in the same resistivity section. Drilling D2 penetrated compact limestone up to a depth of 18 meters without to intersect voids. Drilling D3 encountered the roof of a karstic void between 11.5 and 12 where drilling was completed. The location of this void is also in a very good agreement with the resistive feature B in the resistivity section LINE-1. The results of borings D1, D2 and D3 reinforce the aspect that the deep elongated resistive feature observed in traverses LINE-1 and LINE-2 consists of two or more separate karstic voids. Drillings D4 and D5 were completed at the depth of 10 meters without to give a chance to verify the nature of the subsurface resistive feature D observed in section LINE-2. Drilling D6 intersected a karstic void between 8.6 and 9.8 meters and then limestone up to the depth of 10 meters where it was completed. The resistive feature H in section LINE-3 is partly confirmed by the drilling results. This observed discrepancy is mainly attributed to the poor quality of the specific geophysical dataset as it was stated before. The geophysical data indicated problems at all six drill locations. Three of these cores indicated problems that were repaired with remedial grouting works prior to construction of the highway in this area. The remaining cores did not reach the subsurface resistivity anomalies to verify their nature. CONCLUSIONS Because of the high resistivity response of air-filled karstic voids or intensely fractured rock within compact limestone environment, high resolution electrical resistivity imaging can be a very effective tool for locating underground voids or fractured zones. These features can affect many highway locations in areas underlain in carbonate rocks causing construction delays, stability problems, and may result in a significant increase of cost. In cooperation with the AKTOR Constructing Group of Engineers The Geophysics and Geothermic Department of the University of Athens performed an electrical resistivity survey at a section of the Ymittos highway in Athens to image the subsurface geologic structure including karstic voids and intense fractured zones and to evaluate the extent of the subsidence zone that may occur due to void collapse. Prior to field data acquisition a synthetic simulation study was performed to choose the acquisition parameters for optimum detect ability and resolution. The field survey results indicated both conductive and very high resistivity anomalies along the proposed stretch of the highway. The high resistivity anomalies, attributed to the presence of karstic voids, were verified by the drilling results in the majority of the cases. The low resistivity (conductive) anomalies indicated areas where the host limestone rock has been lowered by faulting and thus containing water, making the area less resistive to electrical current. This zone is associated with the subsurface continuation of the fault zone observed in the slope of the road during the excavation works. The interpretation of geophysical data indicated air-filled karstic voids in six drill locations. The core control supported our interpretations and a remedial action plan 54

13 with consolidation grouting works was implemented prior to the construction of the highway in this area. REFERENCES Dahlin, T., D resistivity surveying for environmental and engineering applications. First Break, 14(7), Hussein, I. E., Kraemer, G. and Myers, R Geophysical characterization of a proposed street extension in Cape Girardeau, Missouri. Proceedings of the First International Conference on the Application of Geophysical Methodologies & NDT to Transportation Facilities and Infrastructure Katsikatsos, G., Geology of Greece, lecture notes. University of Patras. Loke, M. H. and Barker, R. D., Rapid least-squares inversion of apparent resistivity pseudo-sections. Extended Abstracts of Papers 56 th EAGE Meeting Vienna, Austria 6-10 June 1994,1002. Louis, I. F., Geophysical site assessment at the Ymittos Western Peripheral Highway (Attiki Odos). Technical report, Athens December Louis, I. F., Karastathis, C. V., Vafidis, P. A. and Louis, F. I., Resistivity modelling and imaging methods for mapping near-surface features: Application to a site characterization at the Ancient Temple of Olympian Zeus in Athens. Journal of the Balkan Geophysical Society (In Press). Noel, M. and Xu, B., Cave detection using electrical resistivity tomography. Cave Science 19, 91Ð94. Sensors and Software, Inc (1996), Pulse Ekko Tools User Guide Version Technical Manual 22. Sasaki, Yutaka, Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, V. 40, pp Tsourlos P., Modeling, interpretation and inversion of multi-electrode resistivity survey data. Ph.D. Thesis, University of York. Tsourlos P., Szymanski J., and Tsokas G., A smoothness constrained algorithm for the fast 2D inversion of DC resistivity and induced polarization data. Journal of the Balkan Geophysical Society, 1,

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA By Todd A. Petersen and James A. Berg Geophysics Program Ground Water and Climatology Section DNR Waters June 2001 1.0 Summary A new

More information

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan

A Case Study of High-Resolution Gravity and Wenner-Schlumberger Resistivity for Geotechnical Engineering: An Example from North Jordan Research Journal of Applied Sciences, Engineering and Technology 5(4): 1377-1382-, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: July 09, 2012 Accepted: August

More information

Hamed Aber 1 : Islamic Azad University, Science and Research branch, Tehran, Iran. Mir Sattar Meshin chi asl 2 :

Hamed Aber 1 : Islamic Azad University, Science and Research branch, Tehran, Iran. Mir Sattar Meshin chi asl 2 : Present a Proper Pattern for Choose Best Electrode Array Based on Geological Structure Investigating in Geoelectrical Tomography, in order to Get the Highest Resolution Image of the Subsurface Hamed Aber

More information

UTC R189 GEOPHYSICAL ASSESSMENT OF KARST ACTIVITY. Neil L. Anderson

UTC R189 GEOPHYSICAL ASSESSMENT OF KARST ACTIVITY. Neil L. Anderson GEOPHYSICAL ASSESSMENT OF KARST ACTIVITY by Neil L. Anderson UTC R189 A University Transportation Center Program at Missouri University of Science & Technology Disclaimer The contents of this report reflect

More information

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA David Harro The G3 Group, 2509 Success Drive, Suite 1, Odessa, FL 33556, david.harro@geo3group.com

More information

CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) Mehedi Ahmed ANSARY 1, B.S. Pushpendue BISWAS 2 and Abul KHAIR 3 1 Professor, Department of Civil Engineering

More information

Two-dimensional Inversion of Resistivity and IP Data with Topography

Two-dimensional Inversion of Resistivity and IP Data with Topography Two-dimensional Inversion of Resistivity and IP Data with Topography a) Smooth-Model Resistivity (ohm-m) Elevation (m) b) Calculated Apparent Resistivity (ohm-m) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

More information

B029 2D and 3D Resistivity Imaging in an Investigation of Boulder Occurrence and Soil Depth in Glacial Till

B029 2D and 3D Resistivity Imaging in an Investigation of Boulder Occurrence and Soil Depth in Glacial Till B029 2D and 3D Resistivity Imaging in an Investigation of Boulder Occurrence and Soil Depth in Glacial Till R. Wisen* (Lund University), F. Linders (Lund University) & T. Dahlin (Lund University) SUMMARY

More information

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria.

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria. 2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria. Iyoha. A, Akhirevbulu O.E, Amadasun C.V.O and Evboumwan

More information

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria.

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria. Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria. S.I. Fadele, Ph.D. (in view) 1* ; J. Adamu, M.Sc. 2 ; N.O. Patrick,

More information

2-D GEOELECTRICAL SURVEY FOR THE PRELIMINARY ROUTE OF THE NATURAL GAS PIPELINE INSTALLATION AT ALISTRATI CAVES, N. GREECE 1 INTRODUCTION

2-D GEOELECTRICAL SURVEY FOR THE PRELIMINARY ROUTE OF THE NATURAL GAS PIPELINE INSTALLATION AT ALISTRATI CAVES, N. GREECE 1 INTRODUCTION ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 24 Πρακτικά 1 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 24 Bulletin of the Geological Society of Greece vol. XXXVI, 24 Proceedings of the 1 th International

More information

INTEGRATED INVESTIGATION TO LOCATE A WASTE DISPOSAL AREA

INTEGRATED INVESTIGATION TO LOCATE A WASTE DISPOSAL AREA INTEGRATED INVESTIGATION TO LOCATE A WASTE DISPOSAL AREA 1 FOR OIL DRILLING PRODUCTS G. APOSTOLOPOULOS 2, K. PAVLOPOULOS 3, C. ANTONIADES 4, I. LOUIS 5 and C. VLACHOU 4 Nestoros 1, 17564 P.Faliron, Athens,

More information

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical Lima Project: Seismic Refraction and Resistivity Survey Alten du Plessis Global Geophysical Report no 0706/2006 18 December 2006 Lima Project: Seismic Refraction and Resistivity Survey by Alten du Plessis

More information

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT * Shane Hickman, * Todd Lippincott, * Steve Cardimona, * Neil Anderson, and + Tim Newton * The University of Missouri-Rolla Department

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2010, 1 (2):37-45 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 2-D Resistivity

More information

LIST OF FIGURES APPENDICES

LIST OF FIGURES APPENDICES RESISTIVITY / INDUCED POLARIZATION SURVEY EL PORVENIR PROJECT MUNICIPALITY OF REMEDIOS, ANTIOQUIA, COLOMBIA LOGISTICS REPORT M-17427 APRIL 2017 TABLE OF CONTENTS Abstract... 1 1. The Mandate... 2 2. El

More information

APPLICATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY FOR SAND UNDERWATER EXTRACTION

APPLICATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY FOR SAND UNDERWATER EXTRACTION International Scientific Conference GEOBALCANICA 2018 APPLICATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY FOR SAND UNDERWATER EXTRACTION Maya Grigorova Ivaylo Koprev University of Mining and Geology St. Ivan

More information

Resolution of 3-D Electrical Resistivity Images from Inversions of 2-D Orthogonal Lines

Resolution of 3-D Electrical Resistivity Images from Inversions of 2-D Orthogonal Lines 339 Resolution of 3-D Electrical Resistivity Images from Inversions of 2-D Orthogonal Lines Dr. Mehran Gharibi* 1 and Dr. Laurence R. Bentley 2 1 Researcher, Department of Geology & Geophysics, University

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

Application of 2D Electrical Resistivity Imaging Technique for Engineering Site Investigation

Application of 2D Electrical Resistivity Imaging Technique for Engineering Site Investigation Application of 2D Electrical Resistivity Imaging Technique for Engineering Site Investigation Asem A. Hassan 2 Munther D. AL-Awsi 1 Mutadhid M. Al-Obaidi 3 1 College of Science, Diyala University, Baqubah,

More information

GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France)

GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France) GPR profiling and electrical resistivity tomography for buried cavity detection: a test site at the Abbaye de l'ouye (France) Nerouz BOUBAKI, Albane SAINTENOY, Piotr TUCHOLKA IDES - UMR 8148 CNRS, Université

More information

Applied Geophysics for Environmental Site Characterization and Remediation

Applied Geophysics for Environmental Site Characterization and Remediation Applied Geophysics for Environmental Site Characterization and Remediation MSECA Webinar September 24, 2015 John Mundell, P.E., L.P.G. Ryan Brumbaugh, L.P.G. MUNDELL & ASSOCIATES, INC. Webinar Objective

More information

2-D Resistivity Study: The Horizontal Resolution Improvement by Introducing the Enhancing Horizontal Resolution (EHR) Technique

2-D Resistivity Study: The Horizontal Resolution Improvement by Introducing the Enhancing Horizontal Resolution (EHR) Technique Open Journal of Geology, 213, 3, 1-6 doi:1.4236/ojg.213.32b1 Published Online April 213 (http://www.scirp.org/journal/ojg) 2-D Resistivity Study: The Horizontal Resolution Improvement by Introducing the

More information

Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data

Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data Tu Olym 01 Quantitative Depth to Bedrock Extraction from AEM Data H. Anschütz (NGI), C. Christensen (Queen's University) & A.A. Pfaffhuber* (NGI) SUMMARY A new road segment is being planned northeast of

More information

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc.

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Geophysical Exploration in Water Resources Assessment John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Presentation Objective Introduce the use of geophysical survey methods

More information

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA

FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA FINAL REPORT GEOPHYSICAL INVESTIGATION VILLAGE ALHAMBRA RETENTION POND SITE THE VILLAGES, FLORIDA Prepared for Andreyev Engineering, Inc. Oxford, FL Prepared by GeoView, Inc. St. Petersburg, FL August

More information

M. Cushing 1, A. Revil 2,3, C.. Gélis 1, D. Jougnot 3, F. Lemeille 1, J. Cabrera 1, A. De Hoyos 1, M. Rocher 1. Introduction

M. Cushing 1, A. Revil 2,3, C.. Gélis 1, D. Jougnot 3, F. Lemeille 1, J. Cabrera 1, A. De Hoyos 1, M. Rocher 1. Introduction RESISTIVITY SURVEY AIMING AT IDENTIFYING HYDROGEOLOGICALLY ACTIVE ZONES IN LIMESTONE AND CLAY FORMATIONS: APPLICATION TO THE TOURNEMIRE EXPERIMENTAL STATION (AVEYRON, FRANCE). M. Cushing 1, A. Revil 2,3,

More information

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge

EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS. Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge EXTREMELY FAST IP USED TO DELINEATE BURIED LANDFILLS Norman R. Carlson, Cris Mauldin Mayerle, and Kenneth L. Zonge Zonge Engineering and Research Organization, Inc. 3322 East Fort Lowell Road Tucson, Arizona,

More information

Resistivity survey at Stora Uppåkra, Sweden

Resistivity survey at Stora Uppåkra, Sweden Resistivity survey at Stora Uppåkra, Sweden Dahlin, Torleif Published in: Uppåkra - Centrum i analys och rapport 2001 Link to publication Citation for published version (APA): Dahlin, T. (2001). Resistivity

More information

The Efficacy of Enhancing Horizontal Resolution (EHR) Technique in Shallow Subsurface Study Using 2D Resistivity Method at Bukit Bunuh

The Efficacy of Enhancing Horizontal Resolution (EHR) Technique in Shallow Subsurface Study Using 2D Resistivity Method at Bukit Bunuh 212 International Conference on Geological and Environmental Sciences IPCBEE vol.3 6(212) (212)IACSIT Press, Singapoore The Efficacy of Enhancing Horizontal Resolution (EHR) Technique in Shallow Subsurface

More information

Geophysical Investigation of Foundation Condition of A Site in Ikere- Ekiti, Ekiti State, South-Western Nigeria

Geophysical Investigation of Foundation Condition of A Site in Ikere- Ekiti, Ekiti State, South-Western Nigeria Australian Journal of Basic and Applied Sciences, 5(9): 1852-1857, 2011 ISSN 1991-8178 Geophysical Investigation of Foundation Condition of A Site in Ikere- Ekiti, Ekiti State, South-Western Nigeria 1

More information

2-D RESISTIVITY IMAGING SURVEY FOR WATER-SUPPLY TUBE WELLS IN A BASEMENT COMPLEX: A CASE STUDY OF OOU CAMPUS, AGO-IWOYE SW NIGERIA

2-D RESISTIVITY IMAGING SURVEY FOR WATER-SUPPLY TUBE WELLS IN A BASEMENT COMPLEX: A CASE STUDY OF OOU CAMPUS, AGO-IWOYE SW NIGERIA 2-D RESISTIVITY IMAGING SURVEY FOR WATER-SUPPLY TUBE WELLS IN A BASEMENT COMPLEX: A CASE STUDY OF OOU CAMPUS, AGO-IWOYE SW NIGERIA 1 AYOLABI, Elijah Adebowale. 2 FOLORUNSO, Adetayo Femi. and 3 ARIYO, Stephen

More information

Embankment dam seepage assessment by resistivity monitoring

Embankment dam seepage assessment by resistivity monitoring Embankment dam seepage assessment by resistivity monitoring Dahlin, Torleif; Sjödahl, Pontus; Johansson, Sam 2008 Link to publication Citation for published version (APA): Dahlin, T., Sjödahl, P., & Johansson,

More information

APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN THAILAND : A CASE STUDY OF PAKJAM AREA

APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN THAILAND : A CASE STUDY OF PAKJAM AREA GEOTHAI 07 International Conference on Geology of Thailand: Towards Sustainable Development and Sufficiency Economy APPLICATION OF RESISTIVITY SURVEY TO INVESTIGATE SINKHOLE AND KARST FEATURES IN SOUTHERN

More information

UTC R161. Geotechnical Site Characterization of Transportation Construction Sites and Structures. Neil L. Anderson. Derek B. Apel.

UTC R161. Geotechnical Site Characterization of Transportation Construction Sites and Structures. Neil L. Anderson. Derek B. Apel. Geotechnical Site Characterization of Transportation Construction Sites and Structures Assessment Of Karst Activity At Highway Construction Sites In Greene And Jefferson Counties, Missouri, Using The Electrical

More information

High Resolution Time-domain Induced Polarization Tomography with Merging Data Levels by Two Different Optimized Arrays for Slope Monitoring Study

High Resolution Time-domain Induced Polarization Tomography with Merging Data Levels by Two Different Optimized Arrays for Slope Monitoring Study High Resolution Time-domain Induced Polarization Tomography with Merging Data Levels by Two Different Optimized Arrays for Slope Monitoring Study Andy A. Bery Geophysics Section, School of Physics, Universiti

More information

Geoelectricity. ieso 2010

Geoelectricity. ieso 2010 Geoelectricity ieso 2010 1 RESISTIVITY SURVEY AT VENETO VILLA GRITTI AT THE TOWN OF TREVISO (VENETO REGION) The survey was carried out to verify the underground presence of the fondations of a rustic building.

More information

Development of geophysical investigation for verifying treatment efficiency of underground cavities

Development of geophysical investigation for verifying treatment efficiency of underground cavities Development of geophysical investigation for verifying treatment efficiency of underground cavities Hasan A. Kamal* Kuwait Institute for Scientific Research, Infrastructure Risk and Reliability Program,

More information

Appendix B: Geophysical Data (Thesis Appendix, 2013)

Appendix B: Geophysical Data (Thesis Appendix, 2013) Utah State University From the SelectedWorks of David J Richey 2013 Appendix B: Geophysical Data (Thesis Appendix, 2013) David J Richey, Utah State University Available at: https://works.bepress.com/david_richey/2/

More information

1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation

1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation 1D and 2D Inversion of the Magnetotelluric Data for Brine Bearing Structures Investigation Behrooz Oskooi *, Isa Mansoori Kermanshahi * * Institute of Geophysics, University of Tehran, Tehran, Iran. boskooi@ut.ac.ir,

More information

Integration of Seismic Refraction and 2D Electrical Resistivity in Locating Geological Contact

Integration of Seismic Refraction and 2D Electrical Resistivity in Locating Geological Contact Open Journal of Geology, 2013, 3, 7-12 doi:10.4236/ojg.2013.32b002 Published Online April 2013 (http://www.scirp.org/journal/ojg) Integration of Seismic Refraction and 2D Electrical Resistivity in Locating

More information

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 GEOTECHNICAL ENGINEERING II Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1 1. SUBSURFACE EXPLORATION 1.1 Importance, Exploration Program 1.2 Methods of exploration, Boring, Sounding

More information

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins

ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME. For: St.Germain-Collins ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON RESIDENCE SITE, PORT CLYDE, ME For: St.Germain-Collins 4 Union Street, Suite 3 Bangor, Maine 441 July, 218 ELECTRICAL RESISTIVITY SURVEYS AT THE ANDERSON

More information

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground.

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical Surveys in Geophysics Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical resistivity method Induced polarization (IP)

More information

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan

Azimuthal Resistivity to Characterize Fractures in a Glacial Till. Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Azimuthal Resistivity to Characterize Fractures in a Glacial Till Mark Boris, University of Saskatchewan Jim Merriam, University of Saskatchewan Abstract Azimuthal resistivity was used to characterize

More information

Electrical Surveying (part A)

Electrical Surveying (part A) Electrical Surveying (part A) Dr. Laurent Marescot Course given at the University of Fribourg (2009) Contact: laurent@tomoquest.com www.tomoquest.com 1 Introduction Electrical surveying Resistivity method

More information

Geophysical Investigation of the Old Gaborone Dumpsite, Botswana SHEMANG, E M; MOLWALEFHE, L; CHAOKA, TR; MOSWEU E; NONDO, M

Geophysical Investigation of the Old Gaborone Dumpsite, Botswana SHEMANG, E M; MOLWALEFHE, L; CHAOKA, TR; MOSWEU E; NONDO, M JASEM ISSN 1119-8362 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Mgt. September, 2006 Vol. 10 (3) 87-92 Geophysical Investigation of the Old Gaborone

More information

A case study of crystalline limestone intrusion and fault zone identication using 2d eri technique in Ramco cements, pandalgudi mines, Tamilnadu

A case study of crystalline limestone intrusion and fault zone identication using 2d eri technique in Ramco cements, pandalgudi mines, Tamilnadu International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 2 (1) pp. 011-015, January 2012 Available online http://www.interesjournals.org/irjgm Copyright 2012 International Research

More information

3D resistivity imaging of buried tombs at the Parion necropolis (NW Turkey)

3D resistivity imaging of buried tombs at the Parion necropolis (NW Turkey) JOURNAL OF THE BALKAN GEOPHYSICAL SOCIETY, Vol. 10, No. 2, December 2007, p. 1-8, 8 figs. 3D resistivity imaging of buried tombs at the Parion necropolis (NW Turkey) Yunus L. Ekinci (1,+) and Mehmet A.

More information

An Assessment of Electrical Resistivity Soundings Data by Different Interpretation Techniques

An Assessment of Electrical Resistivity Soundings Data by Different Interpretation Techniques International Journal of Biological, Ecological and Environmental Sciences (IJBEES) Vol. 1, No. 3, 212 ISSN 2277 4394 An Assessment of Electrical Resistivity Soundings Data by Different Interpretation

More information

Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain

Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain GEOPHYSICS, VOL. 7, NO. JULY-AUGUST 7 ; P. F19 F1, 8 FIGS. 1.119/1.799 Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain Jonathan E. Nyquist 1, John S. Peake, and

More information

Assessment of heterogeneity of an internal structure of an earth-fill embankment with 2-D resistivity survey

Assessment of heterogeneity of an internal structure of an earth-fill embankment with 2-D resistivity survey Assessment of heterogeneity of an internal structure of an earth-fill embankment with 2-D resistivity survey Peangta Satarugsa, Praiwan Uphatum, Manatchanok Buanark and Sakorn Sangchupoo Department of

More information

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract

USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY. Abstract USE OF GEOPHYSICAL SURVEYS FOR FILL CHARACTERIZATION AND QUANTITY ESTIMATION AT BROWNFIELD SITES A CASE HISTORY John A. Mundell, Mundell & Associates, Inc., Indianapolis, IN Gregory B. Byer, Mundell &

More information

The three-year mapping and monitoring of underground cavity expansion with 2D resistivity survey: What has revealed?

The three-year mapping and monitoring of underground cavity expansion with 2D resistivity survey: What has revealed? The three-year mapping and monitoring of underground cavity expansion with 2D resistivity survey: What has revealed? Peangta Satarugsa 1, Winit Youngmee 1 and Suvijuk Meesawat 1 1. Department of Geotechnology,

More information

Application of Magnetic Method and Electrical Resistivity Tomography for Imaging Archaeological Structures at Iyekere, Ile-Ife Southwestern Nigeria

Application of Magnetic Method and Electrical Resistivity Tomography for Imaging Archaeological Structures at Iyekere, Ile-Ife Southwestern Nigeria Summary Application of Magnetic Method and Electrical Resistivity Tomography for Imaging Archaeological Structures at Iyekere, Ile-Ife Southwestern Nigeria K. D. Oyeyemi 1, M.A Oladunjoye 2, A.I Olayinka

More information

SOIL PROFILE IDENTIFICATION AROUND NECATIBEY SUBWAY STATION (ANKARA, TURKEY), USING ELECTRICAL RESISTIVITY IMAGING (ERI)

SOIL PROFILE IDENTIFICATION AROUND NECATIBEY SUBWAY STATION (ANKARA, TURKEY), USING ELECTRICAL RESISTIVITY IMAGING (ERI) International Journal of Engineering & Applied Sciences (IJEAS) Vol.4, Issue 4(2012)1-14 SOIL PROFILE IDENTIFICATION AROUND NECATIBEY SUBWAY STATION (ANKARA, TURKEY), USING ELECTRICAL RESISTIVITY IMAGING

More information

Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles

Anomaly effects of arrays for 3d geoelectrical resistivity imaging using orthogonal or parallel 2d profiles African Journal of Environmental Science and Technology Vol. 4(7), pp. 446-454, July 2010 Available online at http://www.academicjournals.org/ajest ISSN 1991-637X 2010 Academic Journals Full Length Research

More information

Surface and borehole electrical resistivity tomography

Surface and borehole electrical resistivity tomography Surface and borehole electrical resistivity tomography Laurent Marescot laurent@tomoquest.com Introduction Surface electrical resistivity surveying is based on the principle that the distribution of electrical

More information

1. Resistivity of rocks

1. Resistivity of rocks RESISTIVITY 1) Resistivity of rocks 2) General principles of resistivity surveying 3) Field procedures, interpretation and examples 4) Summary and conclusions INDUCED POLARIZATION 1) General principles

More information

GEOPHYSICAL RESEARCH FOR GEOLOGICAL STRUCTURE DETERMINATION IN THE REGION OF SOUTH MESOGHEIA (ATTICA)

GEOPHYSICAL RESEARCH FOR GEOLOGICAL STRUCTURE DETERMINATION IN THE REGION OF SOUTH MESOGHEIA (ATTICA) Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 2010 Bulletin of the Geological Society of Greece, 2010 Πρακτικά 12ου Διεθνούς Συνεδρίου Proceedings of the 12th International Congress Πάτρα, Μάιος 2010 Patras,

More information

GEOELECTRICAL STUDY FOR DELINEATING UNDERGROUND CAVITIES IN KARST AREAS

GEOELECTRICAL STUDY FOR DELINEATING UNDERGROUND CAVITIES IN KARST AREAS GEOELECTRICAL STUDY FOR DELINEATING UNDERGROUND CAVITIES IN KARST AREAS Vl a d Rădulescu (1), Fl o r i a n Rădulescu (2), Co n s t a nt i n Diacopolos (3), Ma r i a n Popescu (3) (1) National Institute

More information

MT Prospecting. Map Resistivity. Determine Formations. Determine Structure. Targeted Drilling

MT Prospecting. Map Resistivity. Determine Formations. Determine Structure. Targeted Drilling MT Prospecting Map Resistivity Determine Formations Determine Structure Targeted Drilling Cross-sectional interpretation before and after an MT survey of a mineral exploration prospect containing volcanic

More information

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO

ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO NCKRI REPORT OF INVESTIGATION 3 ELECTRICAL RESISTIVITY SURVEY OF INTREPID POTASH INJECTION WELL SITE: EDDY COUNTY, NEW MEXICO www.nckri.org NATIONAL CAVE AND KARST RESEARCH INSTITUTE REPORT OF INVESTIGATION

More information

Adebayo O. Ojo, M.Sc. 1* and Martins O. Olorunfemi, Ph.D *

Adebayo O. Ojo, M.Sc. 1* and Martins O. Olorunfemi, Ph.D * A Graphical and Semi-Quantitative Technique for Investigating Vertical Electrical Sounding (VES) Curves for Indices of Confined Fractured Basement Column. Adebayo O. Ojo, M.Sc. 1* and Martins O. Olorunfemi,

More information

In situ stress estimation using acoustic televiewer data

In situ stress estimation using acoustic televiewer data Underground Mining Technology 2017 M Hudyma & Y Potvin (eds) 2017 Australian Centre for Geomechanics, Perth, ISBN 978-0-9924810-7-0 https://papers.acg.uwa.edu.au/p/1710_39_goodfellow/ SD Goodfellow KORE

More information

Electrical imaging techniques for hydrological and risk assessment studies

Electrical imaging techniques for hydrological and risk assessment studies Séminaire IPG le 9 mars 2006 Strasbourg Institute of Geophysics ETH Hoenggerberg CH-8093 Zurich Electrical imaging techniques for hydrological and risk assessment studies Laurent Marescot laurent@aug.ig.erdw.ethz.ch

More information

Combining airborne electromagnetics with geotechnical data for automated depth to bedrock tracking

Combining airborne electromagnetics with geotechnical data for automated depth to bedrock tracking Combining airborne electromagnetics with geotechnical data for automated depth to bedrock tracking Craig W Christensen a,b,1, Andreas A Pfaffhuber a, Helgard Anschütz a and Tone F Smaavik a a Norwegian

More information

Predicting rock conditions ahead of the face

Predicting rock conditions ahead of the face Predicting rock conditions ahead of the face Dr Thomas Dickmann, Product Manager Geophysics, Amberg Technologies AG Seismic methods of predicting rock conditions ahead of the tunnel face have developed

More information

Resistivity & IP methods

Resistivity & IP methods International PhD Course in HYDROGEOPHYSICS Resistivity & IP methods Andrew Binley Lancaster University Overview We have demonstrated links between hydrological and geophysical properties and show the

More information

Case Study: University of Connecticut (UConn) Landfill

Case Study: University of Connecticut (UConn) Landfill Case Study: University of Connecticut (UConn) Landfill Problem Statement:» Locate disposal trenches» Identify geologic features and distinguish them from leachate and locate preferential pathways in fractured

More information

Characterization of the geology and subsurface crystalline limestone mining using 2D ERI at Puthur Mines, Tirunelveli, Tamilnadu

Characterization of the geology and subsurface crystalline limestone mining using 2D ERI at Puthur Mines, Tirunelveli, Tamilnadu Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (3):1261-1265 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Characterization

More information

Real-time prediction during TBM advance.

Real-time prediction during TBM advance. Real-time prediction during TBM advance. Risk management through the BEAM in Doha Metro Project F. Bove Seli Overseas S.p.A., Rome, Italy. R. Grandori Seli Overseas S.p.A., Rome, Italy. ABSTRACT: The Bore

More information

The Preliminary Study of Meteorite Impact Crater at Bukit Bunuh, Lenggong

The Preliminary Study of Meteorite Impact Crater at Bukit Bunuh, Lenggong 2012 International Conference on Geological and Environmental Sciences IPCBEE vol.3 6(2012) (2012)IACSIT Press, Singapoore The Preliminary Study of Meteorite Impact Crater at Bukit Bunuh, Lenggong A. H.

More information

Elijah Adebowale Ayolabi, Ph.D. 1, Adetayo Femi Folorunso, M.Sc. 2*, Ayodele Franklin Eleyinmi, B.Sc. 1, and Esther O. Anuyah, B.Sc.

Elijah Adebowale Ayolabi, Ph.D. 1, Adetayo Femi Folorunso, M.Sc. 2*, Ayodele Franklin Eleyinmi, B.Sc. 1, and Esther O. Anuyah, B.Sc. Applications of 1D and 2D Electrical Resistivity Methods to Map Aquifers in a Complex Geologic Terrain of Foursquare Camp, Ajebo, Southwestern Nigeria. Elijah Adebowale Ayolabi, Ph.D. 1, Adetayo Femi Folorunso,

More information

Optimizing Geophysical Inversions for Archean Orogenic Gold Settings

Optimizing Geophysical Inversions for Archean Orogenic Gold Settings Geophysical Inversion and Modeling Optimizing Geophysical Inversions for Archean Orogenic Gold Settings 1. University of British Columbia Paper 103 Mitchinson, D. E. [1], Phillips, N. D. [1] ABSTRACT Geophysical

More information

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 Regional Workshop on Volcanic, Seismic, and Tsunami Hazard Assessment Related to NPP Siting Activities and

More information

PROCEEDING, SEMINAR NASIONAL KEBUMIAN KE-8 Academia-Industry Linkage OKTOBER 2015; GRHA SABHA PRAMANA

PROCEEDING, SEMINAR NASIONAL KEBUMIAN KE-8 Academia-Industry Linkage OKTOBER 2015; GRHA SABHA PRAMANA INCORPORATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) DATA IN GEOLOGICAL MODELLING AS METHOD TO INCREASE MODEL ACCURACY IN UNSERPENTINISED ULTRAMAFIC HOSTED NICKEL LATERITE DEPOSIT Budhi Kumarawarman

More information

CONTENTS 1. INTRODUCTION. 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction

CONTENTS 1. INTRODUCTION. 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction (i) CONTENTS 1. INTRODUCTION page 1 2. THE D.C. RESISTIVITY METHOD 2.1 Equipment 2.2 Survey Procedure 2.3 Data Reduction 3 3 3 3 3. GEOPHYSICAL RESULTS 3.1 General 3.2 Discussion 4 4 4 4. LIMITATIONS 5

More information

Measuring integral soil moisture variations using a geoelectrical resistivity meter

Measuring integral soil moisture variations using a geoelectrical resistivity meter Measuring integral soil moisture variations using a geoelectrical resistivity meter Thomas Klügel 1, Günter Harnisch 2 & Martina Harnisch 2 1 Bundesamt für Kartographie und Geodäsie, Fundamentalstation

More information

MOUNT POLLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT POLLEY TAILINGS DAM PROJECT

MOUNT POLLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT POLLEY TAILINGS DAM PROJECT MOUNT PLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT PLEY TAILINGS DAM PROJECT LIKELY, B.C. by Claudia Krumbiegel, M.Sc. Cliff Candy, P.Geo.

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods Ahmed Murad, Amir Gabr, Saber Mahmoud, Hasan Arman & Abdulla Al Dhuhoori Geology Department

More information

Combination of ID laterally constrained inversion and smooth inversion of resistivity data with a priori data from boreholes

Combination of ID laterally constrained inversion and smooth inversion of resistivity data with a priori data from boreholes Combination of ID laterally constrained inversion and smooth inversion of resistivity data with a priori data from boreholes Wisén, Roger; Auken, E; Dahlin, Torleif Published in: Near Surface Geophysics

More information

First Technical Report Geophysical experiments near Kajiado town

First Technical Report Geophysical experiments near Kajiado town First Technical Report Geophysical experiments near Kajiado town Synthesis Report of First case study within the ISGEAG VIA Water project By: Michel Groen *), Harry Rolf **), and Ammon Muiti ***) *) Acacia

More information

Geology 228/378 Applied and Environmental Geophysics Lecture 6. DC resistivity Surveys

Geology 228/378 Applied and Environmental Geophysics Lecture 6. DC resistivity Surveys Geology 228/378 Applied and Environmental Geophysics Lecture 6 DC resistivity Surveys Direct current (DC) Resistivity. Introduction 2. Current flow in the ground 3. Schlumberger, Wenner, dipole-dipole,

More information

NGU Report Resistivity Modelling of Fracture Zones and Horizontal Layers in Bedrock.

NGU Report Resistivity Modelling of Fracture Zones and Horizontal Layers in Bedrock. NGU Report 2009.070 Resistivity Modelling of Fracture Zones and Horizontal Layers in Bedrock. Geological Survey of Norway NO-7491 Trondheim, Norway Tel.: 47 73 90 40 00 Telefax 47 73 92 16 20 REPORT Report

More information

Instructional Objectives

Instructional Objectives GE 6477 DISCONTINUOUS ROCK 8. Fracture Detection Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives 1. List the advantages and disadvantages

More information

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements

Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements Anisotropic 2.5D Inversion of Towed Streamer EM Data from Three North Sea Fields Using Parallel Adaptive Finite Elements K. Key (Scripps Institution of Oceanography), Z. Du* (PGS), J. Mattsson (PGS), A.

More information

TWO DIMENSIONAL ELECTRICAL IMAGING OF THE SUBSURFACE STRUCTURE OF BOMO DAM ZARIA, KADUNA STATE NORTH CENTRAL NIGERIA

TWO DIMENSIONAL ELECTRICAL IMAGING OF THE SUBSURFACE STRUCTURE OF BOMO DAM ZARIA, KADUNA STATE NORTH CENTRAL NIGERIA TWO DIMENSIONAL ELECTRICAL IMAGING OF THE SUBSURFACE STRUCTURE OF BOMO DAM ZARIA, KADUNA STATE NORTH CENTRAL NIGERIA Felix O. Ojo, Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria. Oladimeji

More information

Geoelectrical characterization for liquefaction at coastal zone in South Aceh

Geoelectrical characterization for liquefaction at coastal zone in South Aceh Geoelectrical characterization for liquefaction at coastal zone in South Aceh Muhammad Syukri Laboratory of Geophysics, Department of Physics, Faculty of Mathematic and Sciences, Syiah Kuala University.

More information

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin

Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Focal Mechanism Analysis of a Multi-lateral Completion in the Horn River Basin Paige Snelling*, Cameron Wilson, MicroSeismic Inc., Calgary, AB, Canada psnelling@microseismic.com Neil Taylor, Michael de

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article

Available online   Journal of Scientific and Engineering Research, 2016, 3(2):1-7. Research Article Available online www.jsaer.com, 2016, 3(2):1-7 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Assessment of the Reliability of Magnetic Method to Delineate Geologic Features in a Basement Complex:

More information

C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT)

C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT) C18 Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT) J.E. Chambers* (British Geological Survey), P.I. Meldrum (British Geological

More information

Geologging Imagery, Applications and Geological Interpretation. Shea Altadonna 1, Jim Fulton 2, E.I.T.

Geologging Imagery, Applications and Geological Interpretation. Shea Altadonna 1, Jim Fulton 2, E.I.T. Geologging Imagery, Applications and Geological Interpretation Shea Altadonna 1, Jim Fulton 2, E.I.T. 1 Geologist, Advanced Construction Techniques Inc. 1000 N. West St. Ste 1200, Wilmington, DE 19801;

More information

SEISMIC RADAR AND ELECTRICAL TECHNIQUES FOR WASTE DISPOSAL ASSESSMENT. M. Pipan, G. Dal Moro, E. Forte & M. Sugan

SEISMIC RADAR AND ELECTRICAL TECHNIQUES FOR WASTE DISPOSAL ASSESSMENT. M. Pipan, G. Dal Moro, E. Forte & M. Sugan SEISMIC RADAR AND ELECTRICAL TECHNIQUES FOR WASTE DISPOSAL ASSESSMENT M. Pipan, G. Dal Moro, E. Forte & M. Sugan Department of Geological, Environmental and Marine Sciences, University of Trieste Via Weiss,

More information

Land Subsidence. Land subsidence is defined as the lowering of the land surface.

Land Subsidence. Land subsidence is defined as the lowering of the land surface. Land Subsidence Land subsidence is defined as the lowering of the land surface. Many different factors can cause the land surface to subside. Subsidence can occur rapidly due to: a sinkhole or under ground

More information

Application of geophysical results to designing bridge. over a large fault

Application of geophysical results to designing bridge. over a large fault Application of geophysical results to designing bridge over a large fault Ho-Joon Chung 1, Jung-Ho Kim 2, Keun-Pil Park 2, Hyoung-Seok Kwon 1, Ho-Sik Choi 3, Ki-Seog Kim 4, Jong-Soo Kim 5 1 Manager, HeeSong

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

10. GEOTECHNICAL EXPLORATION PROGRAM

10. GEOTECHNICAL EXPLORATION PROGRAM Geotechnical site investigations should be conducted in multiple phases to obtain data for use during the planning and design of the tunnel system. Geotechnical investigations typically are performed in

More information

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer

Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Electrical Resistivity Survey for Delineating Seawater Intrusion in a Coastal Aquifer Sung-Ho Song*, Gyu-Sang Lee*, Jin-Sung Kim*, Baekuk Seong*, Young-gyu Kim*, Myung-Ha Woo* and Namsik Park** Abstract

More information