LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

Size: px
Start display at page:

Download "LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION"

Transcription

1 LECTURE GEOPHYSICAL INVESTIGATION In geophysical methods of site investigation, the application of the principles of physics are used to the study of the ground. The soil/rock have different characteristics and comprised of materials that have different physical properties. Using some geophysical instruments, it is possible to map the ground characteristics together with their spatial variations. In this brief notes, an overview of the commonly adopted geophysical techniques used in geotechnical site investigation are discussed. The geophysical techniques which are discussed are, electrical resistivity method, seismic refraction technique, cross hole technique and ground penetrating radar (GPR) Electric resistivity method Electrical resistivity is the resistance of a volume of material to the flow of electrical current. current is introduced into the ground through a pair of current electrodes resulting potential difference is measured between another pair of potential electrodes. Apparent resistivity is then calculated as, V is the measured Potential difference (in Volts) and I is the current introduced (in Amperes). Figure 3.36: Electrical resistivity arrangement and cumulative resisvity plot 81

2 There are two different arrangements are possible with the four electrodes to be used. In Wenner aarrangements, the electrodes are kept at equal distances where as, in case of Schumberger arrangements, distances are different. Using Wenner arrangement arrangement the resistivity is given by Using Schumberger arrangement the resistivity is given by, Figure 3.37: Wenner aarrangement Figure 3.38: Schumberger arrangement 82

3 Figure 3.39: A typical circuit for resistivity determination and electrical field for a homogeneous sub surface stratum Table 3.1: Resistivity of Different strata Material Resistivity (ohm.m) Sand Clay, saturated silt Clayey sand Gravel Weathered rock Sound rock >

4 Advantages and limitations, Method can be used to determine the depth and thickness of subsurface layers, depth to the water table, and bedrock. Profiling can be used to detect and locate contaminant plumes. Resistivity values can be used to estimate geological formations. The resistivity data are sometimes ambiguous and proper interpretation is required. Method may be better supplemented with other investigation methods like boreholes etc. Electrical resistivity is slow because electrodes must be driven into the ground between measurements. Alignment with buried electrical power lines, utilities and fences must be avoided as the current injected into the ground will flow more easily through the metal feature. Data are influenced by near surface conductive layers. The current will always travel most easily along highly conductive layers. If the surface is highly conductive it may not be possible to collect data below the top layer Seismic refraction method Seismic refraction method is based on the measurement of the travel time of seismic waves refracted at the interfaces between subsurface layers of different velocity. Seismic energy is provided by a source (hammer, weight drop or small explosive charge) located on the surface. The seismic waves travel through the subsurface at a velocity dependent on the density of the soil/rock. When the seismic wave front encounters an interface where seismic velocity drastically increases, a portion of the wave critically refracts at the interface, travelling laterally along higher velocity layers. Due to compression stresses along the interface boundary, a portion of the wave front returns to the surface. A series of seismic receivers, geophones (right) are laid out along the survey line at regular intervals and receive the reflected wave energy. The test involves the measurement of travel times of P-and S-waves from an impulse source to a linear array of points along the ground surface at different distances from the source. The output of all of the receivers recorded when the impulse load is triggered. 84

5 Figure 3.40: Seismic Refraction Testing The arrival times of the first waves to reach each receiver are determined and plotted as a function of source-receiver distance. Used for determination of wave velocity and thickness of each layer, and the dip angle. Effective for sites at which layers velocities increase with depth. Figure 3.41: Seimic Refration testing for layered soil 85

6 Figure 3.42: Geophical test setup and geophone alighnment and corresponding arrival time of elastic waves Figure 3.43: Time distance graph of seismic refraction testing 86

7 Determine the thickness of the top layer The value can be obtained from the plot shown. Thickness of second layer can be obtained as Here is the time intercept of the line cd in figure, extended backwards. 87

8 Figure 3.44: Seismic velocities of some geologic material a) Unsaturated b) Saturated 88

9 Table 3.2: Wave velocity for different soil and rock types Type of soil or rock P-wave velocity (m/sec) Soil Sand, dry silt and fine grained top soil Alluvium Compacted clays, clayey gravel and dense clayey sand Loess Rock Slate and shale Sandstone Granite Sound Limestone Travel time of waves depend on media (greatest in igneous, i.e. consolidated rocks, and least in unconsolidated rocks) Seismic velocity increases markedly from unsaturated to saturated zone. The acoustic velocity of a medium saturated with water is greatly increased in comparison with velocities in the vadose zone. Thus, the refraction method is applicable in determining the depth to the water table in unconsolidated sediments. Limitations:- If the Upper strata is denser than the lower - the method may not be very successful. Velocity of contrast should be high. Surface terrain and the interfaces of the layers are steeply sloping method may not be successful 89

10 3.6.3 Cross hole test These test methods are limited to the determination of the velocity of two types of horizontally travelling seismic waves in soil materials; primary compression (P-wave) and secondary shear (S-wave) waves. It is assumes that, the method used to analyze the data obtained is based on first arrival times or interval arrival times over a measured distance. The Crosshole Seismic Test makes direct measurements of P-wave velocities, or S-wave velocities, in boreholes advanced primarily through soil. At selected depths down the borehole, a borehole seismic source is used to generate a seismic wave train. Downhole receivers are used to detect the arrival of the seismic wave train in offset borings at a recommended spacing of 3 to 6 m. The distance between boreholes at the test depths is measured using a borehole deviation survey. The borehole seismic source is connected to and triggers a data recording system that records the response of the downhole receivers, thus measuring the travel time of the wave train between the source and receivers. Figure 3.45: Typical sectional view of Cross hole test 90

11 The P-wave or S-wave velocity is calculated from the measured distance and travel time for the respective wave train. The seismic cross hole method provides a designer with information pertinent to the seismic wave velocities of the materials in question. This data may be used as follows: For input into static/dynamic analyses, For computing shear modulus, Young s modulus, and Poisson s ratio. For determining Seismic Site Class using the appropriate Building Code; and For assessing liquefaction potential. Assumptions inherent in the test methods are, Horizontal layering is assumed. Snell s law of refraction applies to P-waves and S- waves and to the velocities derived from crosshole tests. If Snell s law of refraction is not considered in the analysis of Crosshole seismic testing data, the report shall so state, and the P-wave and S-wave velocities obtained may be unreliable for certain depth intervals near changes in strata. 91

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to : DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC Presented to : TERRATECH 455, René-Lévesque Blvd. West Montreal, Québec HZ 1Z3 Presented by : GEOPHYSICS GPR INTERNATIONAL

More information

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar

Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Geophysical Site Investigation (Seismic methods) Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves

More information

Site Characterization & Hydrogeophysics

Site Characterization & Hydrogeophysics Site Characterization & Hydrogeophysics (Source: Matthew Becker, California State University) Site Characterization Definition: quantitative description of the hydraulic, geologic, and chemical properties

More information

Geophysics for Environmental and Geotechnical Applications

Geophysics for Environmental and Geotechnical Applications Geophysics for Environmental and Geotechnical Applications Dr. Katherine Grote University of Wisconsin Eau Claire Why Use Geophysics? Improve the quality of site characterization (higher resolution and

More information

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods

Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods Groundwater Sustainability at Wadi Al Bih Dam, Ras El Khaimah, United Arab Emirates (UAE) using Geophysical methods Ahmed Murad, Amir Gabr, Saber Mahmoud, Hasan Arman & Abdulla Al Dhuhoori Geology Department

More information

Module 1 : Site Exploration and Geotechnical Investigation

Module 1 : Site Exploration and Geotechnical Investigation Objectives In this section you will learn the following Displacement borings Wash boring Auger boring Rotary drilling Percussion drilling Continuous sampling Boring methods of exploration The boring methods

More information

Integration of Seismic Refraction and 2D Electrical Resistivity in Locating Geological Contact

Integration of Seismic Refraction and 2D Electrical Resistivity in Locating Geological Contact Open Journal of Geology, 2013, 3, 7-12 doi:10.4236/ojg.2013.32b002 Published Online April 2013 (http://www.scirp.org/journal/ojg) Integration of Seismic Refraction and 2D Electrical Resistivity in Locating

More information

ERTH2020 Tutorial Exercise 1: Basic Maths Revision - Answers

ERTH2020 Tutorial Exercise 1: Basic Maths Revision - Answers ERTH2020 Tutorial 1 Maths Revision Page 1 ERTH2020 Tutorial Exercise 1: Basic Maths Revision - Answers The purpose of this document is to provide answers - not working. Note that in an exam situation you

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM

ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM ambiguity in earth sciences IESO Geophysics Section Eddy hartantyo, Lab Geofisika FMIPA UGM Pelatihan Tahap II IESO Teknik Geologi UGM Februari 2009 1 Introduction Photos from http://www.eegs.org/whatis/

More information

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results Jim Berg and Todd Petersen Geophysicists, DNR Waters January 2000 Table of Contents

More information

Seismologia A Seismology A Lecture 9: Engineering seismology: seismic veloci:es in soils

Seismologia A Seismology A Lecture 9: Engineering seismology: seismic veloci:es in soils Seismologia 494304A Seismology 494304A 20.03.2018 Lecture 9: Engineering seismology: seismic veloci:es in soils h

More information

EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #:

EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #: EOS 350 MIDTERM OCT 4, 2013 STUDENT NAME: TEAM #: Some equations which may, or may not, be useful: Distance from sensor to a dipole z ~ x ½, Distance to line of dipoles z ~ 0.75x ½ B = μh, M = κh Seismic

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Beyond Rippability A Case History Integrating Seismic Refraction, Electrical Resistivity Imaging, and Geotechnical Boring Logs

Beyond Rippability A Case History Integrating Seismic Refraction, Electrical Resistivity Imaging, and Geotechnical Boring Logs Beyond Rippability A Case History Integrating Seismic Refraction, Electrical Resistivity Imaging, and Geotechnical Boring Logs Jonathan B. Shawver 1 (jb@geovision.com), William Dalrymple 1 (will@geovision.com),

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology

High Resolution Geophysics: A Better View of the Subsurface. By John Jansen, P.G., Ph.D., Aquifer Science and Technology High Resolution Geophysics: A Better View of the Subsurface By John Jansen, P.G., Ph.D., Aquifer Science and Technology Geologist Use Only Part of the Information Available To Them Most Geologist rely

More information

FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL

FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL APPENDIX B FINAL REPORT GEOPHYSICAL INVESTIGATION WATER TOWER NO. 6 SITE PLANT CITY, FL Prepared for Madrid Engineering Group, Inc. Bartow, FL Prepared by GeoView, Inc. St. Petersburg, FL February 28,

More information

Geo-imaging: An Introduction to Engineering Geophysics

Geo-imaging: An Introduction to Engineering Geophysics Geo-imaging: An Introduction to Engineering Geophysics Chih-Ping Lin Distinguished Professor, Department of Civil Engineering & Natural Hazard Mitigation Research Center National Chiao Tung University,

More information

A Study of Uphole to Determine the Shooting Medium for Seismic Reflection Survey at Himalayan Foot Hill Area

A Study of Uphole to Determine the Shooting Medium for Seismic Reflection Survey at Himalayan Foot Hill Area A Study of Uphole to Determine the Shooting Medium for Seismic Reflection Survey at Himalayan Foot Hill Area Summary Binode Chetia Frontier Basins, ONGC, Dehradun E-mail: chetia_binode@ongc.co.in Acquiring

More information

Appendix J. Geological Investigation

Appendix J. Geological Investigation Appendix J Geological Investigation Appendix J Geological Environment Table of Contents Page 1 INTRODUCTION...J-1 1.1 Purpose of the Investigation...J-1 1.2 Scope of the Investigation...J-1 2 METHODO OF

More information

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well

Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Tu P8 08 Modified Anisotropic Walton Model for Consolidated Siliciclastic Rocks: Case Study of Velocity Anisotropy Modelling in a Barents Sea Well Y. Zhou (Rock Solid Images), F. Ruiz (Repsol), M. Ellis*

More information

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities Journal of Earth Sciences and Geotechnical Engineering, vol. 6, no.1, 2016, 99-111 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2016 Determination of Incompressibility, Elasticity and the

More information

Sand Control Rock Failure

Sand Control Rock Failure Sand Control Rock Failure Why? A bit of Mechanics on rock failure How? Some choices that depend on the rock What is moving? Sand grains? Fines? 3/14/2009 1 Young s Modulus, E Young s Modulus is a material

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

GLG 471; MICHIGAN STATE UNIVERSITY INSTRUCTOR R.L. VAN DAM PROJECT: ELECTRICAL RESISTIVITY

GLG 471; MICHIGAN STATE UNIVERSITY INSTRUCTOR R.L. VAN DAM PROJECT: ELECTRICAL RESISTIVITY GLG 471; MICHIGAN STATE UNIVERSITY INSTRUCTOR R.L. VAN DAM PROJECT: ELECTRICAL RESISTIVITY General information: This is a group (2-3 students) project requiring lab-, computer-, and fieldwork. Work will

More information

ELECTRICAL RESISTIVITY TOMOGRAPHY

ELECTRICAL RESISTIVITY TOMOGRAPHY NOTIO Association Clay Technological Centre C/ Río Cabriel s/n 45007 Toledo Tel.: 925 24 11 62 info@notio.es www.notio.es Page 1 / 7 SUMMARY 1. PHYSICAL FUNDAMENTALS OF THE... 3 1.1. ELECTRICAL BEHAVIOR

More information

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical

Lima Project: Seismic Refraction and Resistivity Survey. Alten du Plessis Global Geophysical Lima Project: Seismic Refraction and Resistivity Survey Alten du Plessis Global Geophysical Report no 0706/2006 18 December 2006 Lima Project: Seismic Refraction and Resistivity Survey by Alten du Plessis

More information

Applying Seismic Refraction Method in Depicting Geological Contact at Bukit Bunuh, Lenggong, Perak, Malaysia

Applying Seismic Refraction Method in Depicting Geological Contact at Bukit Bunuh, Lenggong, Perak, Malaysia 2012 International Conference on Geological and Environmental Sciences IPCBEE vol.3 6(2012) (2012)IACSIT Press, Singapoore Applying Seismic Refraction Method in Depicting Geological Contact at Bukit Bunuh,

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Seismic and geoelectrical field explorations for parameter estimation in geotechnics

Seismic and geoelectrical field explorations for parameter estimation in geotechnics Bauhaus-University Weimar / Germany Seismic and geoelectrical field explorations for parameter estimation in geotechnics Site Parameter Investigations and Site Monitoring Dipl.-Ing. Frank Wuttke Dr.-Ing.

More information

Site characterization at the Groundwater Remediation Field Laboratory

Site characterization at the Groundwater Remediation Field Laboratory Site characterization at the Groundwater Remediation Field Laboratory WILLIAM P. C LEMENT, STEVE CARDIMONA, ANTHONY L. ENDRES, Boston College, Boston, Massachusetts KATHARINE KADINSKY-CADE, Phillips Laboratory,

More information

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types ERTH2020 Introduction to Geophysics The Seismic Method 1. Basic Concepts in Seismology 1.1 Seismic Wave Types Existence of different wave types The existence of different seismic wave types can be understood

More information

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils

A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils Neil Anderson 1, Thanop Thitimakorn 1, David Hoffman 2, Richard Stephenson 2, Ronaldo Luna 2 Geological Sciences

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Geophysical Investigation: A Case Study of Basement Complex, Nigeria

Geophysical Investigation: A Case Study of Basement Complex, Nigeria Geophysical Investigation: A Case Study of Basement Complex, Nigeria Adiela U.P 1, Ayodele Moses Oyewole 2 and Omoirabor Omoleomo 3 1 Department of Petroleum Engineering, Nigerian Agip Oil Company, Port

More information

Applied Geophysics for Environmental Site Characterization and Remediation

Applied Geophysics for Environmental Site Characterization and Remediation Applied Geophysics for Environmental Site Characterization and Remediation MSECA Webinar September 24, 2015 John Mundell, P.E., L.P.G. Ryan Brumbaugh, L.P.G. MUNDELL & ASSOCIATES, INC. Webinar Objective

More information

Static Corrections for Seismic Reflection Surveys

Static Corrections for Seismic Reflection Surveys Static Corrections for Seismic Reflection Surveys MIKE COX Volume Editors: Series Editor: Eugene F. Scherrer Roland Chen Eugene F. Scherrer Society of Exploration Geophysicists Tulsa, Oklahoma Contents

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 5778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

INTRODUCTION TO LOGGING TOOLS

INTRODUCTION TO LOGGING TOOLS BY: MUHAMMAD ZAHID INTRODUCTION TO LOGGING TOOLS 1- SPONTANEOUS POTENTIAL (SP) The Spontaneous potential survey, (sp) was one of the first measurements, which was carried out, in a well bore. The SP log

More information

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 1 Emeritus Professor, Hachinohe Institute of Technology, Hachinohe, Japan 2 Chief Engineer, Izumo, Misawa, Aomori, Japan 3 Profesr, Geo-Technical Division, Fudo

More information

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 05 Field Tests Hello viewers, welcome back to the course on Foundation

More information

BELFAST SEWERS PROJECT

BELFAST SEWERS PROJECT BELFAST SEWERS PROJECT Adam Green - Atkins Tunnelling Scheme Overview New stormwater interceptor Tunnel Scheme within Belfast City Centre to alleviate flooding and divert storm water flows from existing

More information

EVALUATION OF DYNAMIC PROPERTIES AND GROUND PROFILES USING MASW: CORRELATION BETWEEN V S AND N 60

EVALUATION OF DYNAMIC PROPERTIES AND GROUND PROFILES USING MASW: CORRELATION BETWEEN V S AND N 60 13 th Symposium on Earthquake Engineering Indian Institute of Technology, Roorkee December 18-20, 2006 Paper No. 008 EVALUATION OF DYNAMIC PROPERTIES AND GROUND PROFILES USING MASW: CORRELATION BETWEEN

More information

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0)

Minnesota Department of Transportation Geotechnical Section Cone Penetration Test Index Sheet 1.0 (CPT 1.0) This Cone Penetration Test (CPT) Sounding follows ASTM D 778 and was made by ordinary and conventional methods and with care deemed adequate for the Department's design purposes. Since this sounding was

More information

Correlation Between P-wave Velocity and Strength Index for Shale to Predict Uniaxial Compressive Strength Value

Correlation Between P-wave Velocity and Strength Index for Shale to Predict Uniaxial Compressive Strength Value Correlation Between P-wave Velocity and Strength Index for Shale to Predict Uniaxial Compressive Strength Value H. Awang 1, N. R. Ahmad Rashidi 1, M. Yusof 1,*, and K. Mohammad 2 1 Institute for Infrastructure

More information

Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics

Mechanical Wave Measurements. Electromagnetic Wave Techniques. Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION. Mechanical Wave Geophysics Geophysical Methods GEOPHYSICAL SITE CHARACTERIZATION Mechanical Wave Measurements Electromagnetic Wave Techniques Mechanical Wave Measurements Crosshole Tests (CHT) Downhole Tests (DHT) Spectral Analysis

More information

Geoelectricity. ieso 2010

Geoelectricity. ieso 2010 Geoelectricity ieso 2010 1 RESISTIVITY SURVEY AT VENETO VILLA GRITTI AT THE TOWN OF TREVISO (VENETO REGION) The survey was carried out to verify the underground presence of the fondations of a rustic building.

More information

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT

GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT GEOPHYSICAL SITE CHARACTERIZATION IN SUPPORT OF HIGHWAY EXPANSION PROJECT * Shane Hickman, * Todd Lippincott, * Steve Cardimona, * Neil Anderson, and + Tim Newton * The University of Missouri-Rolla Department

More information

MOUNT POLLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT POLLEY TAILINGS DAM PROJECT

MOUNT POLLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT POLLEY TAILINGS DAM PROJECT MOUNT PLEY MINING CORPORATION TECHNICAL REPORT ON MULTI-ELECTRODE RESISTIVITY AND SEISMIC REFRACTION SURVEYS MOUNT PLEY TAILINGS DAM PROJECT LIKELY, B.C. by Claudia Krumbiegel, M.Sc. Cliff Candy, P.Geo.

More information

H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE)

H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE) DRAFT ONONDAGA LAKE CAPPING AND DREDGE AREA AND DEPTH INITIAL DESIGN SUBMITTAL H.1 SUMMARY OF SUBSURFACE STRATIGRAPHY AND MATERIAL PROPERTIES (DATA PACKAGE) Parsons P:\Honeywell -SYR\444576 2008 Capping\09

More information

GEOTECHNICAL SITE CHARACTERIZATION

GEOTECHNICAL SITE CHARACTERIZATION GEOTECHNICAL SITE CHARACTERIZATION Neil Anderson, Ph.D. Professor of Geology and Geophysics Richard W. Stephenson, P.E., Ph.D. Professor of Civil, Architectural and Environmental Engineering University

More information

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M.

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M. JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 11 2003 RESISTIVITY IMAGING

More information

Hydrogeophysics - Seismics

Hydrogeophysics - Seismics Hydrogeophysics - Seismics Matthias Zillmer EOST-ULP p. 1 Table of contents SH polarized shear waves: Seismic source Case study: porosity of an aquifer Seismic velocities for porous media: The Frenkel-Biot-Gassmann

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Seismic Surveying. Dr. Laurent Marescot. Course given at the University of Fribourg (2009) Contact:

Seismic Surveying. Dr. Laurent Marescot. Course given at the University of Fribourg (2009) Contact: Seismic Surveying Dr. Laurent Marescot Course given at the University of Fribourg (2009) Contact: laurent@tomoquest.com 1 Introduction Seismic surveying Investigation based on the propagation of man-made

More information

Downhole Seismic Velocity Logging Test

Downhole Seismic Velocity Logging Test Objective Downhole Seismic Velocity Logging Test In this experiment, Velocity Logging Test (Downhole method) is done to find the physical properties of the soil ground from site investigation. Velocity

More information

SEISMIC SURVEY METHODS

SEISMIC SURVEY METHODS SEISMIC SURVEY METHODS Seismic methods Seismic surveys are used in geology and geotechnical engineering to: a) define the depth of the bedrock; b) investigate the landslide areas, c) check the structural

More information

SEISMIC REFRACTION ANALYSIS OF EAST RIVER FLATS MINNEAPOLIS MINNESOTA A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA AUTUMN HAAGSMA

SEISMIC REFRACTION ANALYSIS OF EAST RIVER FLATS MINNEAPOLIS MINNESOTA A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA AUTUMN HAAGSMA SEISMIC REFRACTION ANALYSIS OF EAST RIVER FLATS MINNEAPOLIS MINNESOTA A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY AUTUMN HAAGSMA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Basic principles of the seismic method

Basic principles of the seismic method Chapter 2 Basic principles of the seismic method In this chapter we introduce the basic notion of seismic waves. In the earth, seismic waves can propagate as longitudinal (P) or as shear (S) waves. For

More information

SEISMIC REFRACTION INVESTIGATION OF THE SUBSURFACE STRUCTURE AT THE SOUTHERN PART OF NIGER STATE COLLEGE OF EDUCATION, MINNA, NIGERIA

SEISMIC REFRACTION INVESTIGATION OF THE SUBSURFACE STRUCTURE AT THE SOUTHERN PART OF NIGER STATE COLLEGE OF EDUCATION, MINNA, NIGERIA Bayero Journal of Pure and Applied Sciences, 3(2): 56-6 Received: May, 200 Accepted: October, 200 ISSN 2006-6996 SEISMIC REFRACTION INVESTIGATION OF TE SUBSURFACE STRUCTURE AT TE SOUTERN PART OF NIGER

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Electrical imaging techniques for hydrological and risk assessment studies

Electrical imaging techniques for hydrological and risk assessment studies Séminaire IPG le 9 mars 2006 Strasbourg Institute of Geophysics ETH Hoenggerberg CH-8093 Zurich Electrical imaging techniques for hydrological and risk assessment studies Laurent Marescot laurent@aug.ig.erdw.ethz.ch

More information

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History

Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History Shear Wave Velocity Comparisons; Surface Wave, Downhole and SCPT Measurement Methods - A Case History M.R. Lewis & J. Clemente Bechtel Corporation, California, USA I.A. Weemees ConeTec, Inc., British Columbia,

More information

Geological Mapping using Geophysics

Geological Mapping using Geophysics Geological Mapping using Geophysics Pugin, A.J.M. and T.H. Larson Illinois State Geological Survey, 615 E Peabody Dr., Champaign, IL 61820; E-mail: A.J.M. Pugin at pugin@isgs.uiuc.edu Mapping Techniques.

More information

DATE: 5/17/2012. LOGGED BY: Geoff Richards. COMPANY: Tetra Tech EM, Inc. DRILL FOREMAN: Walter

DATE: 5/17/2012. LOGGED BY: Geoff Richards. COMPANY: Tetra Tech EM, Inc. DRILL FOREMAN: Walter ATTACHMENT 2 Page 1 of 1 B1 0 1 2 FILL, Dry; brownish red; clayey silt and gravel; ~30% gravel size fragments of dark grey microcrystalline (aphanetic), extrusive, igneous, rock 3 B1-4a 1100 B1-4b-duplicate

More information

Micro Seismic Hazard Analysis

Micro Seismic Hazard Analysis Micro Seismic Hazard Analysis Mark van der Meijde INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Overview Site effects Soft ground effect Topographic effect Liquefaction Methods

More information

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA

IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA IMAGING OF DEEP SINKHOLES USING THE MULTI-ELECTRODE RESISTIVITY IMPLANT TECHNIQUE (MERIT) CASE STUDIES IN FLORIDA David Harro The G3 Group, 2509 Success Drive, Suite 1, Odessa, FL 33556, david.harro@geo3group.com

More information

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract

GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS. Abstract GEOPHYSICAL IMAGING TO ENHANCE ANALYSIS, DESIGN AND DRILLING OF LARGE-SCALE GEOTHERMAL SYSTEMS John A. Mundell, Mundell & Associates, Inc., Indianapolis, Indiana Gabriel Hebert, Mundell & Associates, Inc.,

More information

SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS

SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE BOULDERS IN GLACIAL DEPOSITS 51 SASKATCHEWAN STRATIGRAPHY GLACIAL SURFICIAL STRATIFIED DEPOSITS 52 SASKATCHEWAN STRATIGRAPHY GLACIAL EXAMPLE OF SEDIMENT DEPOSITION

More information

Electrical Methods. Resistivity Surveying

Electrical Methods. Resistivity Surveying Electrical Methods Resistivity Surveying Geologic Resistivity 1101 Resistivity surveying investigates variations of electrical resistance, by causing an electrical current to flow through the subsurface

More information

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA

KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA KARST MAPPING WITH GEOPHYSICS AT MYSTERY CAVE STATE PARK, MINNESOTA By Todd A. Petersen and James A. Berg Geophysics Program Ground Water and Climatology Section DNR Waters June 2001 1.0 Summary A new

More information

Geophysical mapping and imaging of soil structures: basic overview

Geophysical mapping and imaging of soil structures: basic overview Geophysical mapping and imaging of soil structures: basic overview Stéphane Garambois Landslide team, LGIT, Université Joseph Fourier 3D imaging of the water table (seismic) Geophysical methods 1 Plan

More information

Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho

Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho Lee M. Liberty Center for Geophysical Investigation of the Shallow Subsurface Boise State University Boise, Idaho 1. Summary CGISS conducted walkaway

More information

CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT)

CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) CHARACTERIZATION OF SOIL PROFILE OF DHAKA CITY USING ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) Mehedi Ahmed ANSARY 1, B.S. Pushpendue BISWAS 2 and Abul KHAIR 3 1 Professor, Department of Civil Engineering

More information

Groundwater Level Monitoring of the Quaternary Aquifer at Al Ain City, United Arab Emirates (UAE) using Geophysical Methods

Groundwater Level Monitoring of the Quaternary Aquifer at Al Ain City, United Arab Emirates (UAE) using Geophysical Methods Groundwater Level Monitoring of the Quaternary Aquifer at Al Ain City, United Arab Emirates (UAE) using Geophysical Methods Ahmed Murad & Amir Gabr Geology Department UAE University Outlines Introduction

More information

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES John Seitz, RA, LEED AP Assistant Adjunct Professor Professor Paul C. King, RA, AIA, ARA Assistant Professor Geology Geology is the scientific study of the structure and composition of the earth s surface

More information

Acquisition and preliminary analysis of the Castle Mountain shallow VSP dataset

Acquisition and preliminary analysis of the Castle Mountain shallow VSP dataset Castle Mountain shallow VSP Acquisition and preliminary analysis of the Castle Mountain shallow VSP dataset Joe Wong, Henry C. Bland, Kevin W. Hall and Robert R. Stewart ABSTRACT As part of the 2006 geophysics

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC

Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI Federal Highway Administration Washington, DC Manual on Subsurface Investigations National Highway Institute Publication No. FHWA NHI-01-031 Federal Highway Administration Washington, DC Geotechnical Site Characterization July 2001 by Paul W. Mayne,

More information

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground.

Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical Surveys in Geophysics Electrical prospecting involves detection of surface effects produced by electrical current flow in the ground. Electrical resistivity method Induced polarization (IP)

More information

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc.

Geophysical Exploration in Water Resources Assessment. John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Geophysical Exploration in Water Resources Assessment John Mundell, P.E., L.P.G., P.G. Ryan Brumbaugh, L.P.G. Mundell & Associates, Inc. Presentation Objective Introduce the use of geophysical survey methods

More information

INTRODUCTION TO APPLIED GEOPHYSICS

INTRODUCTION TO APPLIED GEOPHYSICS INTRODUCTION TO APPLIED GEOPHYSICS EXPLORING THE SHALL0W SUBSURFACE H. Robert Burger Anne F. Sheehan Craig H.Jones VERSITY OF COLORADO VERSITY OF COLORADO W. W. NORTON & COMPANY NEW YORK LONDON Contents

More information

FUNDAMENTALS OF ENGINEERING GEOLOGY

FUNDAMENTALS OF ENGINEERING GEOLOGY FUNDAMENTALS OF ENGINEERING GEOLOGY Prof. Dr. HUSSEIN HAMEED KARIM Building and Construction Engineering Department 2012 Preface The impulse to write this book stemmed from a course of geology given by

More information

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D) 1. During a heavy rainstorm, soil samples A and B both became saturated with water. However, 10 minutes after the storm ended, the soils appeared as shown below. Which statement best explains the observed

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

7.2.1 Seismic waves. Waves in a mass- spring system

7.2.1 Seismic waves. Waves in a mass- spring system 7..1 Seismic waves Waves in a mass- spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass-

More information

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling 6298 Stress induced azimuthally anisotropic reservoir - AVO modeling M. Brajanovski* (Curtin University of Technology), B. Gurevich (Curtin University of Technology), D. Nadri (CSIRO) & M. Urosevic (Curtin

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 1052 Determination of Lame s Constants of Surface soils and Shallow Sediments from Seismic Wave Velocities

More information

Engineering Geophysical Application to Mine Subsidence Risk Assessment

Engineering Geophysical Application to Mine Subsidence Risk Assessment Engineering Geophysical Application to Mine Subsidence Risk Assessment By: Kanaan Hanna, Sr. Mining Engineer Steve Hodges, Sr. Geophysicist Jim Pfeiffer, Sr. Geophysicist Dr. Keith Heasley, Professor West

More information

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01

patersongroup Design for Earthquakes Consulting Engineers May 19, 2016 File: PG3733-LET.01 patersongroup May 19, 2016 File: PG3733-LET.01 Hydro Ottawa Limited c/o Cresa Toronto 170 University Avenue, Suite 1 Toronto, Ontario M5H 3B3 Attention: Ms. Barbara Wright Consulting Engineers 154 Colonnade

More information

SUBMITTAL FEASIBILITY STUDY GEOPHYSICAL INVESTIGATION SAN JUAN BASIN SAN JUAN CAPISTRANO, CALIFORNIA. GEOVision Project No

SUBMITTAL FEASIBILITY STUDY GEOPHYSICAL INVESTIGATION SAN JUAN BASIN SAN JUAN CAPISTRANO, CALIFORNIA. GEOVision Project No SUBMITTAL FEASIBILITY STUDY GEOPHYSICAL INVESTIGATION SAN JUAN BASIN SAN JUAN CAPISTRANO, CALIFORNIA GEOVision Project No. 15027 Prepared for Santa Margarita Water District 26111 Antonio Parkway Rancho

More information

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423

Enhanced In-Situ Testing for Geotechnical Site Characterization. Graduate Course CEE 6423 Enhanced In-Situ Testing for Geotechnical Site Characterization SPT, VST, DMT, PMT, CHT, DHT, CPT Graduate Course CEE 6423 Paul W. Mayne, PhD, P.E. Professor, Geosystems Program Civil & Environmental Engineering

More information

Geotechnical verification of impact compaction

Geotechnical verification of impact compaction PII-73 Geotechnical verification of impact compaction P. J. Waddell1, R. A. Moyle2 & R. J. Whiteley1 1 2 Coffey Geotechnics, Sydney, Australia Coffey Geotechnics, Harrogate, UK Abstract Remediation of

More information

Geophysical Study of Limestone Attributes At Abudu Area of Edo State, Nigeria

Geophysical Study of Limestone Attributes At Abudu Area of Edo State, Nigeria Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (5): 795-800 Scholarlink Research Institute Journals, 2011 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging

More information

Page 1. Name: Period: Date: WS Metamorphic Rocks. The diagram below represents a rock with a distorted layer structure.

Page 1. Name: Period: Date: WS Metamorphic Rocks. The diagram below represents a rock with a distorted layer structure. Name: Period: Date: 9317-1 - Page 1 WS Metamorphic Rocks 1) The diagram below represents a rock with a distorted layer structure. 5) Which rock is most likely a nonsedimentary rock? A) a rock showing mud

More information

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY

DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY DEVELOPMENT OF EMPIRICAL CORRELATION BETWEEN SHEAR WAVE VELOCITY AND STANDARD PENETRATION RESISTANCE IN SOILS OF CHENNAI CITY Uma Maheswari R 1, Boominathan A 2 and Dodagoudar G.R 3 1 Research Scholar,

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

Resistivity & IP methods

Resistivity & IP methods International PhD Course in HYDROGEOPHYSICS Resistivity & IP methods Andrew Binley Lancaster University Overview We have demonstrated links between hydrological and geophysical properties and show the

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information