PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures

Size: px
Start display at page:

Download "PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures"

Transcription

1 PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures Clivia M. Sotomayor Torres and Bartlomiej Graczykowski, Francesc Alzina, Marianna Sledzinska, Emigdio Chavez-Angel, Alexandros El Sachat, J S Reparaz, M R Wagner, Juliana Jaramillo-Fernandez Phonon School, Oléron, France, 3-8 th September 2017

2 P2N group research landscape Hypersonic phonons Optomechanics phonon-photon interactions Nanoscale thermal transport 1 GHz 1 THz Frequency (Hz) novel nanofabrication nanometrology instrumentation novel nanostructures methods 2

3 Concepts OUTLINE Instrumentation & methods Examples o Bulk Si and Si membranes o Optical phonon plasmon coupling, Atomic-like excitons in quantum dots and Surface phonons Laser Raman thermometry in 2D materials Conclusions 3

4 Frequency Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State 4 Phonons in solids WHAT IS DISPERSION RELATION? Dispersion relation: relationship between phonon frequency and its wavevector. Optical Longitudinal waves No motion of the centre of mass Direction of propagation Acoustic Wavevector Transverse waves

5 Phonons in solids Key excitation in energy and momentum relaxation. (mev) up to ~30 LO TO LA TA Typical dispersion relations of acoustic phonons in bulk material /2a k Acoustic phonons are heat carriers in non-metallic materials, whereas electrons are the heat carriers in metals.

6 Considerations Momentum conservation: Typical laser line incident = 4880Å Thus 2n k ; n(gaas) cm 4.33 maximum momentum transfer is twice this, i.e., 1.1 x 10 6 cm -1 Extent of the Brillouin Zone /a with a = lattice parameter = 5.65Å for GaAs B.Z. boundary ~ 6 x10 7 cm -1 Maximum wavevector transfer << B.Z. extent First order approximation: Raman scattering probes excitations with q0.

7 Phonons in Low Dimensional Systems Several types of phonons not found in bulk materials: Interface Zone-folded Geometrically confined surface modes Localised and or confined Treat as standing waves (eg., confined) or propagating waves (eg., zone-folding in superlattices) Phonons in Semiconductor Nanotructures, Eds J-P Leburton, J Pascual and C M Sotomayor Torres, Kluwer Publishing, The Netherlands, 1993

8 PHONON DETECTION: INELASTIC LIGHT SCATTERING Light-matter interactions Processes studied by Optical spectroscopy. Inelastic light scattering detects the transfer of energy and momentum between photons and phonons and directly measures the phonon energy. Rayleigh scattering sub mev Brillouin scattering - mev Raman scattering 10s mev Other techniques to study phonons include: Far infrared Fourier Spectroscopy Neutron scattering X-ray synchrtron based-methods 8

9 f (THz) CONFINED PHONONS Displacement-Strain Relationship Hooke s Law Newton s Second Law Standing Waves d 0 q z Dispersion Relation Longitudinal [100] Transverse [100] Rayleigh SAW q // (nm -1 ) a Longitudinal and transverse standing waves at q // = 0 Analogous to acoustic modes in an organ pipe 9

10 ELASTIC CONTINUUM MODEL AND BULK WAVES Continuum Elasticity : Displacement-strain relationship Hooke s Law : Stress-strain relationship Newton s 2 nd Law : Force-displacement relation ship S Strain Continuum elasticity kl ( S kl U x j i S lk ) U x Displacement i j Hooke s law Stress T C ij ijkl S kl Elastic Tensor T x ij j Newton s 2 nd law density 2 U t i 2 U i u i e i( q x t) J. Cuffe, PhD Thesis, UCC, Cork, Ireland,

11 Raman scattering in semiconductors Raman scattering is one type of inelastic light scattering. S cb E g vb S l light incident Optical phonon scattering can be seen as a result of light interacting with dipoles in the solid. Dielectric function e as a measure of dipole activity D = e 0 E + P = ee 0 P Assumes P is constant over several interatomic distances. e is complex, includes terms for optical phonons, plasmons, magnons, etc. Formalism for allowed frequencies, polarisations and intensities needs crystal symmetry and its group representation.

12 Inelastic Light Scattering Light scattering Direction E i E s q Wavevector (q) of phonons Spectrum Frequency () of phonons

13 Sound waves 13 ACOUSTIC MODE DETECTION: SCATTERING MECHANISMS Ripple mechanism (surface) SAWs acts as dynamical diffraction grating Photoelastic effect (Bulk) Bulk waves modulates the dielectric constants producing a quasi-static grating. Incident light k I a I a S k s Scattered light Surface waves

14 PHONON DETECTION: BRILLOUIN LIGHT SCATTERING SPECTROSCOPY k I k s a y Energy and momentum conservation k S s k I I q Traveling Grating v saw a q 4 q// q sin( a) sin( a) Parallel component of the wavevector x q 2 q q Scattering wavevector ki ks 2 2 ki ks 2 ki ks cos( q ) 2 k (back scattering) I with k S k I 2 14

15 Inelastic Light Scattering Light scattering from Fluctionations Wavevector and Frequency r i q i des k s q k i q i Benedek, G. B. & Fritsch, K. Brillouin Scattering in Cubic Crystals Phys. Rev., American Physical Society, 1966, 149,

16 Concepts OUTLINE Instrumentation & methods Examples o Bulk Si and Si membranes o Optical phonon plasmon coupling, Atomic-like excitons in quantum dots and Surface phonons Laser Raman thermometry in 2D materials Conclusions 16

17 Overview of two set ups Vibrational+Optical THz cm -1 < 0.4 ev < 4 x J Rotational 100 GHz 1 THz 3.83 cm -1 <4 mev < 4 x J Translational cm GHz < 0.4 mev < 4 x J Raman Triple Grating Spectrometer Tandem Fabry-Perot Interferometer Range > 90 GHz Res. = 3 GHz Range > 3 cm -1 Res. = 0.1 cm-1 Range = GHz Res. = 0.2 GHz Mainly for Optical modes Range = cm -1 Res. = cm -1 Mainly for Acoustic modes 17

18 Schematics of a triple Raman spectrometer

19 Schematics of a Brillouin spectrometer

20 TANDEM FABRY-PEROT KIT FOR BRILLOUIN SCATTERING Single Fabry-Perot Tandem Fabry-Prot Input Detector q FP2 FP1 20 Multi-Pass q

21 Concepts OUTLINE Instrumentation & methods Examples o Bulk Si and Si thin films o Optical phonon plasmon coupling, Atomic-like excitons in quantum dots and Surface phonons o 2D materials 2LRT Conclusions and perspectives 21

22 Raman scattering spectrum of Si 300 K, 514 nm unanalysed Supported BESOI, ca 30 nm thick A Balandin 2000

23 Confined Acoustic Phonons: Phonon cavity approach Acoustic mismatch air Si 2 V 2 / 1 V 1 i density V i =sound velocity q // in-plane (small) q z v sound transverse longitudinal + q z Large wave vector LA phonon scattering allowed due to lack of translational invariance SOI

24 Sample for Si thin film studies 40 nm SOI Buried (thermal) oxide (SiO 2 ) 400 nm Native oxide 3 nm 28 nm air SOI BOX 2 V 2 / 1 V 1 i density V i =sound velocity Base Si wafer CZ p-type <100> 525 micrometer Phonons in SOI/BOX Longitudinal acoustic mismatch = 0.69 (significant) Transverse acoustic mismatch = 0.99 (almost negligible)

25 Confined acoustic phonons in 30 nm SOI membranes Confined phonons observed in supported thin films. Laser spot 500 mm - Validation of photo-elastic model in thin membranes for q=0. - Mode assignment incomplete. Need dispersion relations of confined phonons C M Sotomayor Torres et al Physica Status Solidi (C), 1, 2609 (2004). J Groenen et al, PRB, (2008) 2 5

26 EFFECT OF BOUNDARY: RAYLEIGH WAVES Boundary effect Dispersion Relation 0 z x y T zj z0 0 U i u e i e q z i( q// x t) SAW J. Cuffe, PhD Thesis, UCC, Cork, Ireland,

27 EFFECT OF BOUNDARY: LAMB WAVES Membrane T jz za / 2 0 Isotropic approximation Sagittal solutions 2 4Q// QlQ ( Q Q 2 t t 2 2 // ) tan( Qt tan( Ql / 2) / 2) 1 T jz za / n Q v i 2 L aq i ; a Q Q v Q Q // l, n T // t, n 2 n Shear solutions 2 v T q 2 // ( n / a) 2 Dilatational (Symmetric) Flexural (Anti-symmetric) Decomposition of wavevectors 27

28 f (THz) CONFINED PHONONS Longitudinal and transverse standing waves at q // = 0 Analogous to acoustic modes in an organ pipe Standing Waves q // = 0 d 6 Dispersion Relation: 520 nm nm 0 q z 4 2 Bulk q // (nm -1 ) 28

29 CONFINED PHONONS Dispersion Relation Membrane (Lamb) modes 6 Dilatational (Symmetric) f (THz) Flexural (Anti-symmetric) q// (nm ) Coupling of L and SV polarizations 29

30 . INELASTIC SCATTERING MECHANISMS Experimental Set-Up Surface ripple scattering: Momentum conservation Conservation of in-plane wavevector, q // 4 q// 2ki sinq sinq 30

31 INELASTIC SCATTERING MECHANISMS Surface ripple scattering mechanism Surface Displacement U ( x,0, t ) U e i z ( q // xt ) Intensity proportional to RMS displacement I(, q 2 //) U z (, q// ) z0 Calculated with Green s functions U k T G zz, q// z 0 2 B z (, q// ) Im z0 Conservation of in-plane wavevector, q // Projected LDOS at the surface El Boudouti, E. H., Djafari-Rouhani, B., Akjouj, A., & Dobrzynski, L. (2009). Surface Science Reports, 64(11),

32 IN-PLANE DISPERSION: ULTRA-THIN MEMBRANES 31 nm membrane - Fundamental Flexural Mode (F0) Flexural Mode (Exp.) F0 D0 Calculations with Green s functions U z 2 (, q // ) kbt Im z0 G zz, q // z 0 Scattering intensity well described by z-component of surface displacement

33 10 NM MEMBRANES Spectra at 3 mm Mirror Spacing Shear Dilatational Spectra at 10 mm Mirror Spacing Flexural Dilatational 33

34 IN-PLANE DISPERSION: ULTRA-THIN MEMBRANES Fundamental flexural mode (F0) Dispersion relation for ultra-thin membranes also described by calculations Experimental values slightly lower than predicted 34

35 Slow phonons Dimensionless Dispersion relation Membranes from nm v ph q // Fundamental flexural mode (A0) Membranes from 8 30 nm 2 Aq // Aq// v ph v g 2Aq// All membranes of different thickness values plotted on same dimensionless dispersion relation Phase (Group) velocity decreases dramatically for thinner membranes J Cuffe et al., Nano Letters (2012)

36 Phonons dispersion relations in Si membranes Band structure from atomistic models WITH Tersoff potentials Flexural modes data points from Brillouin Scattering in free-standing membranes from 5 to 27 nm thick S Neogi et. Al, ACS Nano, 9, 3820(2015)

37 Phonon lifetimes Pump-and-probe ASOP Track D1 mode Boundary scattering tanh 1 L 2 B 2 2 L v 2 L J Cuffe et al., Phys. Rev. Lett., (2013)

38 Phonon engineering with membranes Membrane thickness modifications: Dispersion relations from continuum-like to discrete acoustic phonon frequencies Velocities and lifetimes of phonon modes Membrane patterning modifications: Thermal conductivity tuning Heat directionality (Nomura s group) Membranes with additional nano/microstructures Hybrid modes energy storage and transfer Possible path towards 3D integration Coupling to photons optomechanics, RF techniques

39 Concepts OUTLINE Instrumentation & methods Examples o Bulk Si and Si thin films o Optical phonon plasmon coupling, Atomic-like excitons in quantum dots and Surface phonons o 2D materials 2LRT Conclusions 39

40 LO phonon-plasma coupling splits LO phonons into L1 and L2. Optical phonon-plasmon coupling 2 2 LO 2 p e = e00 ( ) 2 2 TO 2 - depletion layer - confirm carrier concentration - Monitor surface damage in reactive ion etching Assumption: abrupt change in carrier density between depleted and doped regions. P D Wang, et al, JAP 71, 3714 (19

41 Atomic-like excitons in doped quantum dots Measured and calculated Raman spectra of quantum dots (8x10 11 cm -2 ) 75 nm radius. Hartree energy levels and DOS of a dot in B=0 and 5T. Arrows denote strong Raman transitions. D Lockwood et al, PRL 77, 354 (1996)

42 M Watt et al, Semicond Sci Technol (1990) Surface Phonons in semiconductor cylinders ( nh ) 2 /( TO ) 2 =(e o e m nh )/(e o e m nh ), with nh in terms of modified Bessel functions and derivatives. Electrostatic continuum model of Ruppin and Engelman (1970) with geometry determined by boundary conditions, neglecting retardation effects. M Watt et al 1989 GaAs pillar 100 nm diameter 700 nm high.

43 Surface Phonons in semiconductor cylinders M Watt et al, Semicond Sci Technol (1990) GaAs cylinders of 80 nm diameter and 250 nm high. The contribution of surface phonons to the Raman signal appear between the TO and LO phonons as expected. Pillars coated with SiN: surface phonon frequencies decrease.

44 Concepts OUTLINE Instrumentation & methods Examples o Bulk Si and Si thin films o Optical phonon plasmon coupling, Atomic-like excitons in quantum dots and Surface phonons o 2D materials 2LRT Conclusions 44

45 From dispersion relations to thermal conduction Modified phonon dispersion relation in Si membranes measured. Good agreement v ph / q// between experiment / Q// theory Group velocity (dω/dq) depends on wavevector. Decrease of the phase velocity (/q) of fundamental flexural waves. From Boltzmann transport equation: 2 v g ( qs) CV ( qs) ( q, s Dispersion relation Group velocity Relaxation time Specific heat qs ) 45

46 Contactless thermal conductivity experiment Experiment Schematic Model Microscope Objective = nm Steady-State Heat Equation 2 T P 0 ( r, z) b r Gaussian Power Source 2Pabs 2 P0 ( r, z) exp[ 2r / b 2 ab 2 ] T=300K a Laser Gaussian heat source Room temperature condition at the boundary Steady-State Heat Equation kñ r 2 T = - 2P abs pab 2 exp[-2r 2 / b 2 ] E Chavez-Angel et al, APL Materials 2 (1) (2014) & JS Reparaz et al Rev Sci Inst (2014). 25

47 One- and Two-Laser Raman Thermometry Assumptions for analysis on one-laser Raman thermometry exposed setting conditions for - Light penetration depth vs laser spot - Laser spot and sample thickness (J Jaramillo-Fernandez, submitted for publication)

48 Thermal conductivity of MoS 2 polycrystalline nanomembranes 488 nm probing laser 405 nm heating laser Room temperature 10-3 mbar pressure M Sledzinska et al, 2D Materials, 3, (2016)

49 Raman spectroscopy of MoS 2 nanosheets On Si/SiO 2 substrate Raman active modes E 2g mode ~ 383 cm -1 A 1g mode ~ 408 cm -1 Free-standing nanosheets M. Placidi, M. Sledzinska et al. MRS conference 2014

50 Temperature dependence of the Raman shift w 0 (cm -1 ) w/ 10-2 T= 294K (cm -1 /K) Ref. Bulk MoS Adv. Phys. 18, (1969) Bulk MoS Adv. Phys. 18, (1969) Nanosheets MoS J.of Phys.Chem. C, 117, 9042 (2013) Nanosheets MoS J.of Phys.Chem. C, 117, 9042 (2013) Nanosheets MoS This work Nanosheets MoS This work 488nm line

51 2LRT of MoS 2 P abs = mW Thermal conductivity: k=0.75 +/ W/mK Lower than previously reported for single and few-layer crystalline MoS 2 M Sledzinska et al., 2D Mater. 3 (2016)

52 Finite element method (FEM) simulations Reconstruction of the nanocrystalline 2D films (3000 grains), <d> = 5 nm (Laguerre tessellation, Neper package) Heat flux Temperature Phonon blocking on grain boundaries Grain size below 10nm comparable with the THz phonon wavelength Possible application in thermoelectricity 100 W/mK (full points) 34 W/mK (open squares) M Sledzinska et al., 2D Mater. 3 (2016)

53 Stop press: K of 2D membrane-based PnCs B Graczykowski et al, Nature Comms 8, art nr 415 (2017) PnCs diameter: 100 um Heating island: 5 um PnCs period: 200, 250, 300nm Hole diameter: around 135 nm Square lattice Thickness: 250 nm

54 Convection: 2D membrane-based Phononic Crystals (PnCs) PnC, lattice parameter a = 200 nm, hole diameter d = 130 nm Profile Slope Thermal conductivity k 350 K = 3 W/(m*K) k 350 K = 76 W/(m*K) k 350 K = 140 W/(m*K) 50-fold reduction of k at 350 K 300pitch/135diametre and 250/140 nm also examined- trend confirmed B Graczykowski et al, Nature Comms 8, art nr 415 (2017) 54

55 2D membrane-based PnCs Temperature fields B Graczykowski et al, Nature Comms 8, art nr 415 (2017) 55

56 2D membrane-based PnCs Thermal conductivity d = lattice parameter a = hole diameter B Graczykowski et al, Nature Comms 8, art nr 415 (2017) 56

57 2D membrane-based PnCs Thermal conductivity K of a-si 1.5 Wm -1 K -1 Take home messages: - Strong suppression of temperature dependence of κ. - No signature of coherent effects from 2-phonon Raman spectra. - Air-mediated losses are significant and size tunable. B Graczykowski et al, Nature Comms 8, art nr 415 (2017) 57

58 Conclusions 58 Inelastic light scattering is a powerful research set of techniques to study phonons. Augmented power with magnetic and electric fields, also with high pressure

59 Related topics Confocal Raman scattering- kind of tomography good for 2D materials (but resolution and flexibility re lateral sizes. New experimental tools: micro and scanning probe Raman scattering, time-resolved RS. Single and many-particle excitations (single particle excitations, charge density waves, in 2D materials Time-resolved methods (Perrin s lectures) Link between low frequency phonons and the fluctuation regime. 59

60 References - 1 C M Sotomayor Torres et al, Phys Stat Sol (c) 1, 2609 (2004) J Groenen et al, PRB 77, (2008) J Cuffe et al., NanoLetters 12, 3569 (2012) E Chavez et al JPCS 395, (2012) J Cuffe et al., PRL 110, (2013) E Chavez et al, IoP Journal of Physics: Conference Series, 395 (1) (2013) A Shchepetov et al., Appl Phys Lett 102, (2013) E Chavez et al., IEEE 14th Intl Conf on Ultimate Integration on Silicon (ULIS), 186 (2013) J A Johnson et al., Phys Rev Letts 110 (2) (2013) E Chavez Angel et al., Appl Phys Lett Materials 2 (1) (2014) J S Reparaz et al., Review of Scientific Instruments (2014). S D Rhead et al, Applied Physics Letters 107 (17) (2014). B Graczykowski et al., Applied Physics Letters 104 (12) (2014). E Chávez-Ángel et al., Semiconductor Science and Technology 29 (12) (2014). B Graczykowski et al., NJP 16, (2014)

61 References - 2 B Graczykowski et al., PRB 91, (2015) S Neogi et al., ACS Nano 9, 4, 3820 (2015) J Cuffe et al., Physical Reviews B. 91 (24) (2015). J Jaramillo-Fernandez et al., ECS Transactions, 69 (9) 53 (2015). M Sledzinska et al., Microelectronic Engineering 149, 41 (2016) B Graczykowski et al, Journal of Applied Physics 119, (2016) J Ordonez-Miranda et al., International Journal of Thermal Sciences 108, 185 (2016) D Yudistira et al., Physical Review B 94, (2016). M Sledzinska et al., 2D Materials, 3, (2016). M R Wagner et al., Nano Letters 16, 5661 (2016) A Vega-Flick et al., AIP Advances 6 (12) (2016) J Jaramillo-Fernandez et al., Crystal Engineering Communications, 19, (14) 1843 (2017) B Graczykowski et al., accepted Nature Comms, ms ID NCOMMS T

62 References - 3 BOOK CHAPTERS: D Leadley et al, Chapter 12 Thermal Isolation via Nanostructuring, in: Beyond-CMOS Nanodevices 1, Ed F Ballestra, Wiley (2014) M Mouis et al., Chapter 7 Thermal Energy Harvesting, in: Beyond-CMOS Nanodevices 1, Ed F Ballestra, Wiley (2014) C M Sotomayor Torres et al., Acoustic phonons in ultrathin free-standing silicon membranes: Fundamental science and applications, chapter 12 in: Silicon Nanomembranes, J Roger and J Ahn (Eds.), Wiley, Berlin, (2016)

63 COLLABORATORS & SUPPORT VTT: Jouni Ahopelto Andrey Shchepetov Mika Prunnila Univ Lille - IEMN Bahram Djafari-Rouhani Yan Pennec Univ Mohamed I, Oujda El Houssain El Boudouti Univ Konstanz: Thomas Dekorsy Oliver Ristow Mike Hettich, Alex Bruchhausen MPI-Polymer Mainz Davide Donadio Shangamitra Neogi Luiz F. C. Pereira CNRS Centrale Supelec Sebastian Volz MIT: Alex Maznev A Minnich Jeremy Johnson Jeremy Eliason Kimberly Collins Keith A Nelson Gang Chen PHENTOM

CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES. Clivia M Sotomayor Torres

CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES. Clivia M Sotomayor Torres CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES Clivia M Sotomayor Torres COLLABORATORS J Cuffe, E Chavez, P-O. Chapuis, F Alzina, N Kehagias, L Schneider, T Kehoe, C Ribéreau-Gayon, L Schneider A Shchepetov,

More information

CONFINED ACOUSTIC PHONONS IN SILICON

CONFINED ACOUSTIC PHONONS IN SILICON PHONON ENGINERING & CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES Clivia M Sotomayor Torres COLLABORATORS J Cuffe (UCC-IRCSET, IE), E Chavez (CONICYT, Chile), P-O. Chapuis, F Alzina, N Kehagias, L Schneider,

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider. Catalan Institute of Nanotechnology (CIN2-ICN-CSIC)

C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider. Catalan Institute of Nanotechnology (CIN2-ICN-CSIC) Phonon Engineering: an introduction part 1 C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider Catalan Institute of Nanotechnology (CIN2-ICN-CSIC) 1 NISP Summer School on Energy

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules Outline Raman Scattering Spectroscopy Resonant Raman Scattering: RRS in crystals RRS in molecules Surface Enhaced Raman Scattering Applications Charging and discharging of single molecules probed by SERS

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Brillouin-Light-Scattering Spectroscopy

Brillouin-Light-Scattering Spectroscopy Brillouin-Light-Scattering Spectroscopy 20th 21th of July 2010 Content Spin waves Brillouin Light Scattering (BLS) Quantum mechanical picture Conventional experimental setup Applications Time-resolved

More information

FMM, 15 th Feb Simon Zihlmann

FMM, 15 th Feb Simon Zihlmann FMM, 15 th Feb. 2013 Simon Zihlmann Outline Motivation Basics about graphene lattice and edges Introduction to Raman spectroscopy Scattering at the edge Polarization dependence Thermal rearrangement of

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors

Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors Resonator Fabrication for Cavity Enhanced, Tunable Si/Ge Quantum Cascade Detectors M. Grydlik 1, P. Rauter 1, T. Fromherz 1, G. Bauer 1, L. Diehl 2, C. Falub 2, G. Dehlinger 2, H. Sigg 2, D. Grützmacher

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

Supplementary Figure 1: SAW transducer equivalent circuit

Supplementary Figure 1: SAW transducer equivalent circuit Supplementary Figure : SAW transducer equivalent circuit Supplementary Figure : Radiation conductance and susceptance of.6um IDT, experiment & calculation Supplementary Figure 3: Calculated z-displacement

More information

Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure

Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure. Graczykowski 1, S. Mielcarek 1, A. Trzaskowska 1, P. Patoka 2, M. Giersig 2 1 Faculty of Physics, Adam

More information

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr 10.1149/05305.0203ecst The Electrochemical Society Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr Institute for

More information

Mie resonators on silicon Fabrication and optical properties

Mie resonators on silicon Fabrication and optical properties Mie resonators on silicon Fabrication and optical properties Marco Abbarchi 1, Meher Naffouti 1,4, Thomas David 1, Benjamin Vial 2, Abdelmalek Benkouider 1, Laurent Lermusiaux 3,Luc Favre 1, Antoine Ronda

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects PHYSICAL REVIEW B VOLUME 61, NUMBER 24 Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects 15 JUNE 2000-II Rong-ping Wang Laboratory of Optical Physics, Institute

More information

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid) MPIP-Mainz T.Still,W.Cheng,N.Gomopoulos G.F FORTH Heraklion G.F Sculpture by E.Sempere (Madrid) Cubic arrays of hollow stainless-steel cylinders [diameter: 2.9 cm and lattice constant:a=0 cm] Minimum sound

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Solid-state physics Review of Semiconductor Physics The daunting task of solid state physics Quantum mechanics gives us the fundamental equation The equation is only analytically solvable for a handful

More information

Nanophotonics: solar and thermal applications

Nanophotonics: solar and thermal applications Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University http://www.stanford.edu/~shanhui Nanophotonic Structures Photonic

More information

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide Mat. Res. Soc. Symp. Proc. Vol. 737 2003 Materials Research Society E13.8.1 Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide D. A. Tenne, A. G.

More information

Nanophononics: state of the art and perspectives

Nanophononics: state of the art and perspectives Eur. Phys. J. B (2016) 89: 15 DOI: 10.1140/epjb/e2015-60727-7 Colloquium THE EUROPEAN PHYSICAL JOURNAL B Nanophononics: state of the art and perspectives Sebastian Volz 1, Jose Ordonez-Miranda 1, Andrey

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Resonant Inelastic X-ray Scattering on elementary excitations

Resonant Inelastic X-ray Scattering on elementary excitations Resonant Inelastic X-ray Scattering on elementary excitations Jeroen van den Brink Ament, van Veenendaal, Devereaux, Hill & JvdB Rev. Mod. Phys. 83, 705 (2011) Autumn School in Correlated Electrons Jülich

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Inset shows as-grown bulk BP specimen (scale bar: 5 mm). (b) Unit cell

More information

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures

Simulation and Optimization of an In-plane Thermal Conductivity Measurement Structure for Silicon Nanostructures 32nd International Thermal Conductivity Conference 20th International Thermal Expansion Symposium April 27 May 1, 2014 Purdue University, West Lafayette, Indiana, USA Simulation and Optimization of an

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018 Good Vibrations Studying phonons with momentum resolved spectroscopy D.J. Voneshen 20/6/2018 Overview What probe to use? Types of instruments. Single crystals example Powder example Thing I didn t talk

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium

A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium Abstract Yu Peng School of Physics, Beijing Institute of Technology, Beijing, 100081,

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France Supporting information Direct band gap germanium microdisks obtained with silicon nitride stressor layers Moustafa El Kurdi, 1 Mathias Prost, 1 Abdelhamid Ghrib, 1 Sébastien Sauvage, 1 Xavier Checoury,

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Normal modes are eigenfunctions of T

Normal modes are eigenfunctions of T Quasiparticles Phonons N atom atoms in crystal 3N atom normal modes p atoms in the basis N atom /p unit cells N atom /p translational symmetries N atom /p k-vectors 3p modes for every k vector 3 acoustic

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka Coherent THz Noise Sources T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka 1 Noise Source An unusual source Broadband Incoherent Lambertian emission Why consider it? 2 Power from various devices in

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Micro-Raman study of columnar GaAs nanostructures

Micro-Raman study of columnar GaAs nanostructures phys. stat. sol. (a) 202, No. 8, 1562 1566 (2005) / DOI 10.1002/pssa.200461183 Micro-Raman study of columnar GaAs nanostructures Pavel Prunici *, 1, Gert Irmer 1, Jochen Monecke 1, Lilian Sirbu 2, and

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Effect of phonon confinement on the heat dissipation in ridges

Effect of phonon confinement on the heat dissipation in ridges Effect of phonon confinement on the heat dissipation in ridges P.-O. Chapuis 1*, A. Shchepetov 2*, M. Prunnila 2, L. Schneider 1, S. Lasko 2, J. Ahopelto 2, C.M. Sotomayor Torres 1,3 1 Institut Catala

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging Supplementary Information to Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging M. B. Gongalsky 1, L.A. Osminkina 1,2, A. Pereira 3, A. A. Manankov 1, A. A. Fedorenko 1, A. N. Vasiliev

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Main Notation Used in This Book

Main Notation Used in This Book Main Notation Used in This Book z Direction normal to the surface x,y Directions in the plane of the surface Used to describe a component parallel to the interface plane xoz Plane of incidence j Label

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 MOSFET Transport Issues semiconductor band structure quantum confinement effects low-field mobility and high-field saturation Reading: - M. Lundstrom,

More information

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie I + II: Struktur und Dynamik kondensierter Materie Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 G. Grübel, M. Martins, E. Weckert, W. Wurth 1 Trends in Spectroscopy 23.4. 28.4. 30.4. 5.4. Wolfgang

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information