CONFINED ACOUSTIC PHONONS IN SILICON

Size: px
Start display at page:

Download "CONFINED ACOUSTIC PHONONS IN SILICON"

Transcription

1 PHONON ENGINERING & CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES Clivia M Sotomayor Torres

2 COLLABORATORS J Cuffe (UCC-IRCSET, IE), E Chavez (CONICYT, Chile), P-O. Chapuis, F Alzina, N Kehagias, L Schneider, T Kehoe, C Ribéreau-Gayon, (ECP, FR) the ICN team A Shchepetov, M Prunnila, S Laakso, J Ahopelto MIT J Johnson, A A. Maznev J Eliason, A Minnich, K Collins, G Chen, K A Nelson, A Bruchhausen, M Hettich, O Ristow and T Dekorsy. El-Houssain,(U Oujda), Y Pennec, B Djafari-Rouhani i A Mlayah, J Groenen, A Zwick and F Poinsotte, U P Sabatier, Toulouse

3 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations Impact on heat transfer Perspectives and Conclusions

4 MOTIVATION Modification of dispersion relation (phonon engineering) i Modification of group velocity Modification of relaxation rate Thermal conductivity Improve ZT Improve ZT Towards zero power ICT

5 LENGTH SCALES in Si Phonon MPF in bulk Si = 41 RT Debye model 260 nm considering dispersion 300 nm (Ju & Goodson, APL 1999) Dominant phonon wavelength d = v s / f d (cf Electron MFP = 7.6 nm) in Si d = 1.4 RT = 4000 K velocity of 148/k 1.48 B T sound From A Balandin, UC Riverside To confine phonons in the strong regime at RT need structures with ~ 1-10 nm lateral dimensions

6 MOTIVATION Double-gate SOI transistors top pg gate oxide, SiO2 Top gate n+ poly Si BOX (back gate ox) Al bonded interface n+ top gate (111) n+ Si subst. n+ contact Back gate n- or p- Si n+ back gate M Prunnila, J Ahopelto, K Henttinen and F Gamiz APL 85, 5442 (2004) Cross-sectional bright field TEM image of a DG-SOI FET with a 18 nm-thick channel

7 MOTIVATION Effect on charge carrier mobility L. Donetti et al J. Appl. Phys. 100(2006),

8 MOTIVATION Effect of phonon confinement on ZT of quantum wells Hicks & Dresselhaus 1993; A Balandin and K L Wang 1998 See also, M.S. Dresselhaus et al, Adv Mat 19, 1043 (2007). Rather controversial but crucial for thermoelectric energy conversion in the nm scale. Suitable charge conduction in phonon glasses needed.

9 MOTIVATION Phononic crystals Acoustic and elastic analogues of photonic crystals stop bands in phonon spectrum (phonon mirrors); negative refraction of phonons (phonon caustics) Good theory available: Multiple scattering theory for elastic and acoustic waves. See, for example: Kafesaki & Economou PRB 60, (1999), Liu et al PRB 62, 2446 (2000) Psaroba et al PRB 62, 278 (2000). And for a database : ml cell phones have phononic crystal-like BAW filters

10 2D infinite phononic crystal: air holes in silicon matrix (B Djafari-Rouhani, Y Pennec, IEMN, U Lille) Square Hexagonal Honeycomb reduce ed frequency 1.0 square, f= M X M wavenumber reduce ed frequency X triangular, f=0.6 J X wavenumber reduce ed frequency X honeycomb, f=0.3 J X wavenumber ncy uced freque red 1.0 square, f= M X M wavenumber ncy uced freque red X triangular, f=0.85 J X wavenumber red duced freque ency X honeycomb, f=0.6 J X wavenumber

11 MOTIVATION Coupled cavities: photon-photon cavities. Trigo et al PRL 2002

12 MOTIVATION Physics of weak to strong coupling regimes Trigo et al PRL 2002

13 MOTIVATION Optical forces control mechanical modes prospects for cooling, heating, M Eichenfield et al. Optomechanical Crystals, Nature 462, (2009)

14 MOTIVATION Acoustic phonons have also an impact in: Noise and thermal limits in NEMS and nanoelectronics Coherence control in quantum information processing Phonon engineering: sources, detectors and other components Photon-phonon coupling: Phoxonic Crystals and Opto mechanical oscillators Energy harvesting and storage THz technologies for medical diagnostic and security Elastic material parameters down to the nm-scale

15 Previous work: 30 nm SOI membrane

16 HYPOTHESIS and STATEMENT The confinement of phonons modifies their frequencies and density of states affecting group velocities of modes, scattering mechanisms, lifetimes and changes assumptions about boundary conditions and transport properties. Understanding of acoustic phonons confinement in nanostructures is crucial for phonon engineering and strategies for low power nanoelectronics.

17 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations Impact on heat transfer Perspectives and Conclusions

18 MEMBRANES Free-standing Si membranes Corrugation due to residual compressive strain in SOI films Methods to avoid corrugation are being developed. 200nm 50nm 50nm with weak vacuum

19 MEMBRANES HRTEM image of freestanding Si membrane, thickness 6 nm A Schcepetov M Prunnila J Ahopelto VTT A. Schcepetov, M. Prunnila, J. Ahopelto, VTT J. Hua, Aalto University

20 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations Impact on heat transfer Perspectives and Conclusions

21 Scattering Mechanisms Photoelastic Scattering Corrugation (Ripple) Scattering I s 2 u( z) dzp( z) G( z, z') E( z) z q i i r des 1 LDOS Im G ( z EHElB El Boudouti et al, Surf fsci ireports 64, 471 (2009) q, z ) k i k s Related to power spectrum of normal displacement Benedek, G B & Fritsch, K Phys Rev, 149, 647 (1966) Rowell, N. L. & Stegeman, G. I. PRB (1978,)

22 Raman scattering of Silicon 300 K, 514 nm unanalysed A Balandin 2000

23 Thin film SOI sample cross-section 40 nm SOI Native oxide 3 nm 28 nm Buried (thermal) oxide (SiO 2 ) 400 nm Base Si wafer CZ p-type <100> 525 micrometer SOI is a key European technology

24 Simulations Raman spectra SOI thin film Photoelastic model 2 * ( z ) for scattering by LA phonos I( qz) dz. EL. ES. p( z). z Φ 1 (z) oxide Φ2(z) silicon E L (E S ) : laser (scattered) field p(z) : photoelastic constant Φ(z) : phonon displacement Φ3(z) oxide Silicon buffer F Poinsotte et al Proc Phonons 2004

25 Simulations Vibrational Raman part spectra SOI thin film { 1( zox / Si ) 2( zox / Si ) - phonons displacement and stress boundary conditions 1 2 C ( ) ( ) 1 zox / Si C2 zox / Si - Assumptions Phonons stationary waves Free surface Dispersion relation Infinite silicon buffer z z iq1 z iq1 z 1 ( z) Ae 1 B1 e 1 C 1 ( z air / Ox ) z sound velocity q qz q z. v Vac(oxide) =5970 m.s ac -1 Vac(silicon) =8433 m.s-1 0 Electronic part F Poinsotte et al Proc Phonons 2004 { P P Ox Si (z) z 0 ( z) 1

26 Free standing 30 nm silicon membranes SOI membranes and configuration 500 m Back-scattering Laser spot Forward scattering Sotomayor Torres et al phys stat sol c 2004

27 Simulations of RS spectra of SOI membranes Treat SOI layer as a cavity for acoustic phonons, ie, confined since longitudinal v s in Si = 8433 m/s (cf. 332 m/s in air at 0 C). Displacement field of acoustic vibrations in a slab of thickness t is proportional to: n is the order of the confined frequencies can be derived from LA dispersion branch, considering discrete wave vectors q = n /t Acoustic vibration periodic variation of strain polarisation field in presence of em wave cos( n z) ) t u z ( z, t) P( z, t) ps E i (z,t) z p s photo-elastic coefficient of slab P(z,t) )OKf for anti-stokes is part. Obtain Stoke part by changing u z ( z, t) z by u z ( z, t) zz *

28 RS spectra of 31.5 nm thick SOI membrane ) ( 1 ) ( ) ( P E E Thus, scattered field: ), ( 1 ), ( ), ( t t z P c t t z Es c n z t z Es 0 Where n = slab index of refraction. Forward scattering B k Back scattering Wavenumber cm -1 J Groenen et al, PRB 2008

29 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations (mainly by J Cuffe, E Chavez, both PhD students at ICN, work unpublished) Impact on heat transfer Perspectives and Conclusions

30 From bulk to membranes Elastic continuum approach Displacement Strain Relationship Hooke s Law Newton s Second Law Membrane (Lamb) z = +a/2 iz =0 Dispersion Relation z = a/2 iz =0 Flexural (Anti symmetric) Dilatational (Symmetric) 30

31 430 nm Si Membrane Spectra at 3mm Mirror Spacing Dispersion Relation LA 35GHz (Reference Peak) Spectra observed with Brillouin Light Scattering spectroscopy Multiple l modes observed d(deviation from bulk lkbehaviour) Good agreement with theoretical calculations (Lamb waves)

32 10 nm Si Membrane Spectra at 3 mm Mirror Spacing Shear Dilatational Spectra at 10 mm Mirror Spacing Flexural Dilatational Shear (SH) 32

33 Phase Velocity vs q.a Phase(Group) velocity decreases dramatically for thinner membranes

34 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations Impact on heat transfer Perspectives and Conclusions

35 Impact on thermal conductivity Spatial confinement Modification of dispersion relation Modification of group velocity rad/ /sec DW FW SW aq // velocity Km/sec Group aq // Increase of relaxation rate Decrease of thermal conductivity membrane e / bulk 0,18 0,16 0,14 5 nm 4 nm 0,12 3nm 0, Temperature K

36 Impact on thermal conductivity Change in dispersion relation and the emergence of more branches increases interaction ti between phonons increase in relaxation rates and a corresponding decrease in the thermal conductivity The thinner the membrane the lower the thermal conductivity K. Including all the confined modes and calculating Umklapp processes

37

38 Phonon anharmonic decay Optical phonons Acoustic phonons (10 s ofmev) (few mev) optac ~ 5 ps in Si e-opt ph ~ 100s fs Optical phonon emissionhigh-field i h Joule heating Acoustic phonons carry heat away from hot spots

39 Phonon anharmonic decay Decay can involve only acoustic phonons. Cubic case and frequency < Debye frequency Higher energy Lower energy acoustic acoustic phonons phonons (few mev) (few mev) 3-phonon decay rate v v acac ~ fs-s in Si But the smaller the acoustic phonons energy difference, the longer the lifetime & mfp. Caustics increasingly important. v = Gruneisen constant Must understand and control anharmonic decay into and propagation of acoustic phonons.

40 COMMUNITIES The Summer School Series Son et Lumiere participating groups CA ZEROPOWER partners The members of the European CNRS-sponsored Network for Thermal Nanoscience and Nanoengineering The Fluctuations ti and Statistical ti ti Physics community The Phonons & Fluctuation informal community The solid state quantum physics community The mechanical engineering heat transfer community The multi-scale physics modelling community Partners of the EU projects, eg: NANOPOWER three future scenarios of future heta transport control NANOPACK thermal management in nanoelectronincs TAILPHOX, MINOS and QNEM on fluctuations, qbuts and phonon engineering CA NANOICT, NoE NANOFUNCTION,

41 OUTLINE Motivation Methods Membranes Inelastic light scattering Dispersion relations Impact on heat transfer Perspectives and Conclusions

42 Perspectives & Conclusions Dispersion relations of confined acoustic phonons have been measured and simulated in Silicon membranes. Phonon engineering is possible with membranes, phononic crystals, cavities and coupled cavities. Phonon sources are needed for progress in the field Nanofabrication (3D) and nanometrology developments are needed. Heterogeneous coupled cavities need better description with, e.g., quantum physics and elasticity theory. Phonon coherence ence studies in confined structures unavoidable Need contribution ti from statistical ti ti and quantum physics. Only then we can seriously address low power electronics.

43 Support Large Installation IMB CNM, GICSERV 2010 grant 43

CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES. Clivia M Sotomayor Torres

CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES. Clivia M Sotomayor Torres CONFINED ACOUSTIC PHONONS IN SILICON MEMBRANES Clivia M Sotomayor Torres COLLABORATORS J Cuffe, E Chavez, P-O. Chapuis, F Alzina, N Kehagias, L Schneider, T Kehoe, C Ribéreau-Gayon, L Schneider A Shchepetov,

More information

C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider. Catalan Institute of Nanotechnology (CIN2-ICN-CSIC)

C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider. Catalan Institute of Nanotechnology (CIN2-ICN-CSIC) Phonon Engineering: an introduction part 1 C M Sotomayor Torres, P.-O. Chapuis, F Alzina, D Dudek, J Cuffe and L Schneider Catalan Institute of Nanotechnology (CIN2-ICN-CSIC) 1 NISP Summer School on Energy

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures

PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures PROBING PHONONS WITH INELASTIC LIGHT SCATTERING: phonons in silicon nanostructures Clivia M. Sotomayor Torres and Bartlomiej Graczykowski, Francesc Alzina, Marianna Sledzinska, Emigdio Chavez-Angel, Alexandros

More information

Phonons in Slow Motion: Dispersion Relations in Ultra- Thin Si Membranes

Phonons in Slow Motion: Dispersion Relations in Ultra- Thin Si Membranes Phonons in Slow Motion: Dispersion Relations in Ultra- Thin Si Membranes John Cuffe a,b, Emigdio Chavez a,c, Andrey Shchepetov d, P-Olivier Chapuis a, El Houssaine El Boudouti e, f, Francesc Alzina a,

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane

Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane Excerpt from the Proceedings of the COMSOL Conference 010 Paris Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane Y. Pennec, Y. El Hassouani, C. Li, B. Djafari

More information

NANOPHONONICS: FINE-TUNING PHONON DISPERSION IN SEMICONDUCTOR NANOSTRUCTURES. A.A. Balandin

NANOPHONONICS: FINE-TUNING PHONON DISPERSION IN SEMICONDUCTOR NANOSTRUCTURES. A.A. Balandin NANOPHONONICS: FINE-TUNING PHONON DISPERSION IN SEMICONDUCTOR NANOSTRUCTURES A.A. Balandin Nano-Device Laboratory, Department of Electrical Engineering, University of California Riverside, Riverside, California,

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries

Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries Alexander Balandin Electrical Engineering Department, University of California Riverside, CA 92502 USA

More information

Anderson localization of photons and phonons for optomechanics Guillermo Arregui

Anderson localization of photons and phonons for optomechanics Guillermo Arregui Anderson localization of photons and phonons for optomechanics Catalan Institute of Nanoscience and Nanotechnology (ICN2), Bellaterra, Spain Dept. de Física, Universitat Autonoma de Barcelona, Bellaterra,

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

Effect of phonon confinement on the heat dissipation in ridges

Effect of phonon confinement on the heat dissipation in ridges Effect of phonon confinement on the heat dissipation in ridges P.-O. Chapuis 1*, A. Shchepetov 2*, M. Prunnila 2, L. Schneider 1, S. Lasko 2, J. Ahopelto 2, C.M. Sotomayor Torres 1,3 1 Institut Catala

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation

A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation Vazrik Chiloyan a, Lingping Zeng a, Samuel Huberman a, Alexei A. Maznev b, Keith

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules Outline Raman Scattering Spectroscopy Resonant Raman Scattering: RRS in crystals RRS in molecules Surface Enhaced Raman Scattering Applications Charging and discharging of single molecules probed by SERS

More information

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Nanoacoustics II Lecture #2 More on generation and pick-up of phonons Dr. Ari Salmi www.helsinki.fi/yliopisto 26.3.2018 1 Last lecture key points Coherent acoustic phonons = sound at nanoscale Incoherent

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate B. Djafari-Rouhani, Y. Pennec, H. Larabi, J. Vasseur and A.-C. Hladky IEN, UR CNRS 852, avenue Poincaré, BP 669, 59652

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Radiation Effects in Emerging Materials Overview Leonard C. Feldman

Radiation Effects in Emerging Materials Overview Leonard C. Feldman May, 2010 Radia%on Effects on Emerging Electronic Materials and Devices Radiation Effects in Emerging Materials Overview Leonard C. Feldman Vanderbilt University And Rutgers University Ionizing radia%on

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr 10.1149/05305.0203ecst The Electrochemical Society Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr Institute for

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 29: Electron-phonon Scattering Outline Bloch Electron Scattering Deformation Potential Scattering LCAO Estimation of Deformation Potential Matrix Element

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects PHYSICAL REVIEW B VOLUME 61, NUMBER 24 Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects 15 JUNE 2000-II Rong-ping Wang Laboratory of Optical Physics, Institute

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs

Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs Vincent Laude, 1, Jean-Charles Beugnot, 1 Sarah Benchabane, 1 Yan Pennec, 2 Bahram Djafari-Rouhani, 2 Nikos

More information

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin

More information

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE Phononic Crystals: Towards the Full Control of Elastic Waves propagation José Sánchez-Dehesa Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, SPAIN. OUTLINE

More information

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon School @ UWM 1 Classical MD simulations use an empirical potential fitted

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Surface compositional gradients of InAs/GaAs quantum dots

Surface compositional gradients of InAs/GaAs quantum dots Surface compositional gradients of InAs/GaAs quantum dots S. Heun, G. Biasiol, V. Grillo, E. Carlino, and L. Sorba Laboratorio Nazionale TASC INFM-CNR, I-34012 Trieste, Italy G. B. Golinelli University

More information

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal Tsung-Tsong Wu* Zin-Chen Hsu and Zi-ui Huang Institute of Applied

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Phononic Crystals. J.H. Page

Phononic Crystals. J.H. Page Phononic Crystals J.H. Page University of Manitoba with Suxia Yang and M.L. Cowan at U of M, Ping Sheng and C.T. Chan at HKUST, & Zhengyou Liu at Wuhan University. We study ultrasonic waves in complex

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Thermal Management at Nanoscale: Problems and Opportunities

Thermal Management at Nanoscale: Problems and Opportunities Thermal Management at Nanoscale: Problems and Opportunities Alexander A. Balandin Nano-Device Laboratory Department of Electrical Engineering and Materials Science and Engineering Program University of

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

MONTE CARLO MODELING OF HEAT GENERATION IN ELECTRONIC NANOSTRUCTURES

MONTE CARLO MODELING OF HEAT GENERATION IN ELECTRONIC NANOSTRUCTURES Proceedings of IMECE 2 22 ASME International Mechanical Engineering Congress and Exposition November 17-22, 22, New Orleans, Louisiana, USA IMECE2/HT-32124 MONTE CARLO MODELING OF HEAT GENERATION IN ELECTRONIC

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

The Interaction of Acoustic Phonons and Photons in the Solid State

The Interaction of Acoustic Phonons and Photons in the Solid State University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program Spring 5-2007 The Interaction of

More information

Ultralow thermal conductivity and the thermal conductance of interfaces

Ultralow thermal conductivity and the thermal conductance of interfaces Ultralow thermal conductivity and the thermal conductance of interfaces David G. Cahill, C. Chiritescu, Y.-K. Koh, X. Zheng, W.-P. Hsieh Materials Research Lab and Department of Materials Science, U. of

More information

Normal modes are eigenfunctions of T

Normal modes are eigenfunctions of T Quasiparticles Phonons N atom atoms in crystal 3N atom normal modes p atoms in the basis N atom /p unit cells N atom /p translational symmetries N atom /p k-vectors 3p modes for every k vector 3 acoustic

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project Feature-level Compensation & Control Process Integration September 15, 2005 A UC Discovery Project Current Milestones Si/Ge-on-insulator and Strained Si-on-insulator Substrate Engineering (M28 YII.13)

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew.kirk@mcgill.ca ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials A Kirk 11/24/2008 Photonic

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4

Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 Courtesy of S. Salahuddin (UC Berkeley) Lecture 4 MOSFET Transport Issues semiconductor band structure quantum confinement effects low-field mobility and high-field saturation Reading: - M. Lundstrom,

More information

Dynamics of Electrons at Organic/Dielectric Interfaces

Dynamics of Electrons at Organic/Dielectric Interfaces Dynamics of Electrons at Organic/Dielectric Interfaces S. Fratini 1 (simone.fratini@grenoble.cnrs.fr) G. Rastelli 1,2, S. Ciuchi 2, A. F. Morpurgo 3 1 LEPES, CNRS Grenoble, France 2 INFM-CNR SMC and Dipartimento

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information

Numerical Simulation of

Numerical Simulation of Numerical Simulation of Phonon Dispersion Relations for 2D Phononic Crystals Gaohua Zhu, Eric Dede Toyota Research Institute of North America 10/03/2012 Excerpt from the Proceedings of the 2012 COMSOL

More information

Metamaterials with tunable dynamic properties

Metamaterials with tunable dynamic properties Metamaterials with tunable dynamic properties Varvara Kouznetsova Marc Geers 6 October 2015 Mechanics of Materials Project aim development of new generation mechanical metamaterials with adaptive, tunable

More information

An Opto-Mechanical Microwave-Rate Oscillator

An Opto-Mechanical Microwave-Rate Oscillator An Opto-Mechanical Microwave-Rate Oscillator Tal Carmon and Kerry Vahala California Institute of Technology Diameter of a human hair Opto excited Vibration: Explanation Pump Res Wavelength Experimental

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Lecture 9. Strained-Si Technology I: Device Physics

Lecture 9. Strained-Si Technology I: Device Physics Strain Analysis in Daily Life Lecture 9 Strained-Si Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS

FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS ARCHIVES OF ACOUSTICS 32, 4 (Supplement), 41 46 (2007) FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS Mikołaj ALEKSIEJUK Institute of Fundamental

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Chapter 2 Fundamental Properties of Phononic Crystal

Chapter 2 Fundamental Properties of Phononic Crystal Chapter 2 Fundamental Properties of Phononic Crystal Yan Pennec and Bahram Djafari-Rouhani 2.1 Introduction to the Concept of Phononic Crystals and Their Band Structures The control and manipulation of

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid) MPIP-Mainz T.Still,W.Cheng,N.Gomopoulos G.F FORTH Heraklion G.F Sculpture by E.Sempere (Madrid) Cubic arrays of hollow stainless-steel cylinders [diameter: 2.9 cm and lattice constant:a=0 cm] Minimum sound

More information

Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal

Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal Journal of Engineering Technology and Education, Vol. 9, No. June 1, pp. 115-11 Acoustic pressure characteristic analysis in cavity of -D phononic crystal Jia-Yi Yeh 1, Jiun-Yeu Chen 1 Department of Information

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging

Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging Supplementary Information to Laser-synthesized oxide-passivated bright Si quantum dots for bioimaging M. B. Gongalsky 1, L.A. Osminkina 1,2, A. Pereira 3, A. A. Manankov 1, A. A. Fedorenko 1, A. N. Vasiliev

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Review of Semiconductor Physics

Review of Semiconductor Physics Solid-state physics Review of Semiconductor Physics The daunting task of solid state physics Quantum mechanics gives us the fundamental equation The equation is only analytically solvable for a handful

More information

arxiv: v1 [cond-mat.mes-hall] 28 Nov 2015

arxiv: v1 [cond-mat.mes-hall] 28 Nov 2015 Spectral energy analysis of locally resonant nanophononic metamaterials by molecular simulations Hossein Honarvar and Mahmoud I. Hussein Department of Aerospace Engineering Sciences, University of Colorado

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Material Property Tables Cited in Main Text Table SI. Measured parameters for the sapphire-derived optical fibers Fiber Maximum Alumina Content Δn 10-3 Core Size Mole Percent (%) Weight Percent

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France Supporting information Direct band gap germanium microdisks obtained with silicon nitride stressor layers Moustafa El Kurdi, 1 Mathias Prost, 1 Abdelhamid Ghrib, 1 Sébastien Sauvage, 1 Xavier Checoury,

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement IMPACT 2016, Cargese, France ICQM International Center for Quantum Materials Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement Nan-Lin Wang

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

Elastic properties of graphene

Elastic properties of graphene Elastic properties of graphene M. I. Katsnelson P. Le Doussal B. Horowitz K. Wiese J. Gonzalez P. San-Jose V. Parente B. Amorim R. Roldan C. Gomez-Navarro J. Gomez G. Lopez-Polin F. Perez-Murano A. Morpurgo

More information

Stress Measurements in Si and SiGe by Liquid-Immersion Raman Spectroscopy

Stress Measurements in Si and SiGe by Liquid-Immersion Raman Spectroscopy Chapter 9 Stress Measurements in Si and SiGe by Liquid-Immersion Raman Spectroscopy Daisuke Kosemura, Motohiro Tomita, Koji Usuda and Atsushi Ogura Additional information is available at the end of the

More information