Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal

Size: px
Start display at page:

Download "Acoustic pressure characteristic analysis in cavity of 2-D phononic crystal"

Transcription

1 Journal of Engineering Technology and Education, Vol. 9, No. June 1, pp Acoustic pressure characteristic analysis in cavity of -D phononic crystal Jia-Yi Yeh 1, Jiun-Yeu Chen 1 Department of Information Management, Chung Hwa University of Medical Technology Center for General Education, Hsing Kuo University of Management yeh@mail.hwai.edu.tw Abstract This paper investigated the acoustic pressure characteristics analysis in cavity of the two-dimensional phononic crystal. Present phononic crystal is composed of PMMA cylindrical with square array embedded in air background. In order to obtain the band structures and acoustic pressure characteristics of the phononic crystal system, the plane wave expansion method and supercell are adopted and utilized. In addition, the effects of sizes and filling fractions are also investigated. Finally, the acoustic wave propagation and pressure characteristics in the PCs with point defect are simulated by the COMSOL Multiphysics software. Keywords: phononic crystal, point defect, cavity, supercell, acoustic pressure. 1. Introduction Elastic and acoustic wave propagation in periodic composite materials has been extensively studied in recent years. Phononic crystals (PCs) named acoustic/sonic band gap media are the elastic analogues of photonic crystals and have also received renewed attention recently [1, ]. The PCs exhibit a unique characteristic called phononic band gaps (PBGs) within which sound and vibrations are forbidden, and those structures exhibit unique dynamic characteristics that make them act as elastic or acoustic filters for wave propagation. James et al. [3] presented the propagation of an acoustic wave through one-dimensional PCs and calculated the transmission coefficients of various finite structures. Then, the PBGs were investigated and calculated theoretically by Kushwaha et al. [4] and experimentally by Montero et al. [5] in composite systems constituted by periodic inclusions of a given material in a host matrix. The contrasts in elastic properties and densities between the constituents are emerging as critical parameters in determining the existence of PBGs and their width about -D and 3-D composites. Sigalas et al. [6] obtained the defect modes in two-dimensional PCs. Thereafter, Torres et al. [7] studied the surface waves and localization phenomena in linear and point defect. Point defect characteristics of acoustic waves in square arrays of water rods in a mercury host were studied by Wu et al. [8]. Several theoretical methods have been used to study the dynamics for wave propagation in PCs, such as, the plane-wave expansion (PWE) method, the finite difference time domain (FDTD) method and the multiple-scattering theory (MST). Among these methods, the PWE method is most extensively used to calculate band structure because of its convenience. The PWE method was adopted to investigate the characteristics of the periodic system by Kushwaha et al. [9]. The finite difference time domain method was presented to study the wave propagation problems of the PCs by Tanaka, Tamura [1] and Garcia-Pablo [11]. Kafesaki, Economou [1] and Lai [13] studied the wave propagation problems by multiple scattering theory. The properties of the PCs are studied and the defect bands, band structures are also determined in this study. The calculation is based on the plane wave expansion method and the defect mode is obtained by supercell 7 National Kaohsiung University of Applied Sciences, ISSN

2 116 Jia-Yi Yeh, Jiun-Yeu Chen calculation. This work investigates the acoustic pressure characteristics in cavity of two-dimensional PCs which are composed of PMMA cylinders with square arrays embedded in air background. A defect is introduced by removing one cylinder from the middle of the PCs and the point defect can act as the resonant cavity and by using commercial software, COMSOL Multiphysics [14], the pressure in the cavity was calculated in this study.. Analytical Model and Calculation Method The band structure of the two-dimensional periodic PCs with point defect is presented in this paper. The justification is that this seems to be the only case in which the wave equation for inhomogeneous solids greatly simplifies. Then, the wave equation of the PCs is known to be: 1 P 1 ( C 11) ( P), (1) t in which, is the mass density, C c is the longitudinal elastic constant, c l is the longitudinal speed of 11 l acoustic wave, P is the pressure, and is the two-dimensional nabla, respectively. Making use of the periodicity of the PCs system, the quantities ( ) and ( ) two-dimensional Fourier series as the following equations: 1 igr 1 r C 1 11 r can be expanded in the ( r ) ( G)e, () G 1 11 ( r) ( G G igr C ) e, (3) in which, G is the two-dimensional reciprocal-lattice vector. The supercell with 5 5 circular cylinders (material A, PMMA) embedded in a background medium (material B, air) as shown in Fig. 1. And, introduces a defect by removing a central cylinder, to form two dimensional lattices with lattice spacing a. The corresponding densities of the system are A and B, respectively. Then, the Fourier coefficient can be written as follows [15]: G) 1 ( A B 1 ( N 1) A f [1 ( N 1) f ] B, for G N N ig[( m 1, m ) a] ig (,) ) F( G) ( e ) e ( ) F( G), for G m1 N mn ( (4) r where f is the filling fraction of one cylinder in the supercell and F(G) is the structure factor. An N a 1 equation analogous to Eq.(4) can be written for (G) in terms of C. For the cylinder with radius r in present system, the structure factor F(G) can be written as follows: 11 1 ( Gr ) J F( G) f, (5) Gr

3 Acoustic pressure characteristic analysis in cavity of -D phononic crystal 117 where J 1 is the Bessel function of the first kind of order 1. Fig.1. The 5 5 supercell with a cavity (point defect). Then, the eigenvalue equation can be obtained as the following form by applying the Bloch theorem: GG 1 [ k G ( C ) ]Pk ( G) [ ( k G) ( k G) ( C ) ] F( G G)Pk ( G). (6) 1 11 This is a set of linear, homogeneous equations for the eigenvectors P k (G) and eigenfrequencies (k) if G is permitted to take all the possible values. By letting k scan the area of the irreducible region of the Brillouin zone as shown in Fig., the Band structures of the PCs can be obtained: Fig.. The first Brillouin zone of a square lattice crystal Additionally, the COMSOL Multiphysics software is used to simulate the acoustic wave propagation in the PCs with a point defect and the equation utilized to analyze present problem and pressure fields in the cavity of the PCs is the following equation:

4 118 Jia-Yi Yeh, Jiun-Yeu Chen P P (7) c l 3. Results and Discussions The acoustic pressure characteristic analysis in cavity of -D PCs system consisting of PMMA cylinders in 3 air background is presented in this study. The materials properties and relative parameters are 119kg / m, 3 1.5kg / m, c A 694 m / s, and c B 343m / s. Besides, the filling fractions of the cylinder in the unit cell, B f r a, investigated and discussed in this paper are.4 and.6 The band structures with filling fraction f. 4 and.63 for the PCs with a point defect are shown in Fig.3 and 4, respectively. A Fig. 3. The band structure for -D PCs with cavity ( f. 4 ) Fig. 4. The band structure for -D PCs with cavity ( f. 63 )

5 Acoustic pressure characteristic analysis in cavity of -D phononic crystal 119 The numerical results are calculated by the plane wave expansion method with considering 65 plane waves. According to the results, the defect mode can be found about 4.kHz for f. 4 and 3.9kHz, 5.16kHz for f.63. After obtaining the results, it can be utilized to design some novel acoustic devices. Then, the acoustic pressure characteristics analysis in the cavity of the PCs can be analyzed after getting the frequency of the defect mode. In order to simulate the pressure field characteristics of the cavity, the finite element analysis software (COMSOL multiphysics 3.5a) is adopted. Fig. 5 shows the pressure field simulation results of the 5 5 PCs with a cavity for filling ratio f. 4. The maximum pressure field in the cavity can be observed in the resonant frequency about 4.1kHz and the simulated result is similar with the numerical results obtained by the plane wave expansion method. Fig. 5. Pressure field simulation of the 5 5 PCs with a cavity ( f. 4 ) In addition, the pressure field simulation results of the 5x5 PCs with a cavity for filling ratio f. 63 are present in Fig. 6. According to the figure, the maximum pressure field in the cavity can be observed in the resonant frequency about 5.15kHz and the simulated result is also similar with the numerical results obtained by the plane wave expansion method in Fig.4. Fig. 6. Pressure field simulation of the 5x5 PCs with a cavity ( f. 63 )

6 1 Jia-Yi Yeh, Jiun-Yeu Chen In order to analyze and increase the pressure in cavity of the -D PCs, the 5 5, 5 7 and 7 7 supercell combinations for filling ratio f. 4 and.63 are discussed and present in Fig. 7 and 8, respectively. It can seen that the central pressure will increase with different combination of the PCs system and we can use the characteristics to design some novel acoustic devices, such as energy harvesting devices x5 5x7 7x7 4 Pa Hz Fig. 7. Central pressure field characteristics in cavity of -D PCs ( f. 4 ) 5 5x5 5x7 7x7 15 Pa Hz Fig. 8. Central pressure field characteristics in cavity of -D PCs ( f. 63 ) 4. Conclusions The acoustic pressure characteristic analysis in cavity of the PCs is investigated in this study. The defect bands, band structures of the PCs system with point defect are also calculated. The numerical calculation is based on the plane wave expansion method and the defect mode is obtained by supercell calculation. The following conclusions can be obtained according to the numerical and simulated results: (1) In the cavity (point defect), the incident acoustic wave with the resonant frequency will localize in the PCs

7 Acoustic pressure characteristic analysis in cavity of -D phononic crystal 11 system. () According to the simulated results, the pressure fields in cavity for the PCs can be utilized to design some novel acoustic devices, such as high-efficacy acoustic cavity and acoustic energy harvesting devices. (3) With different combination of the PCs system, the central pressure in the cavity will be increasing and strengthening. Those analytical results can be utilized in the development of the novel acoustic applications for the PCs with cavity. Acknowledgements This research was partially supported by the National Science Council in Taiwan through Grant NSC 1-1-E Reference [1] Vasseur J.O., Djafari-Rouhani B., Dobrzynski L., Kushwaha M.S. and Halevi P., Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems, Journal of Physics: Condensed Matter, Vol.6, pp. 8759,1994. [] Goffaux C. and Vigneron J.P., Theoretical study of a tunable phononic band gap system, Physical Review B, Vol. 64, pp , 1. [3] James R., Woodley S.M., Dyer C.M. and Humphrey V.F., Sonic bands, bandgaps, and defect states in layered structure-theory nad experiment, Journal of the Acoustical Society of America, Vol. 97, pp. 41, [4] Kushwaha M.S., Halevi P., Dobrzynski L. and Djafari-Rouhani B., Acoustic band structure of periodic elastic composites, Physical Review Letters, Vol. 71, pp., [5] Montero de Espinoza F.R., Jimenez E., and Torres M., Ultrasonic Band Gap in a Periodic Two-Dimensional Composite, Physical Review Letters, Vol. 8, pp. 18, 1998 [6] Sigalas M.M., Defect states of acoustic waves in a two-dimensional lattice of solid cylinders, Journal of Applied Physics, Vol. 84, pp. 36, 1998 [7] Torres M., Montero de Espinosa F.R. and Aragon J.L., Ultrasonic Wedges for Elastic Wave Bending and Splitting without Requiring a Full Band Gap, Physical Review Letters, Vol. 86, pp. 48, 1 [8] Wu F., Hou Z., Liu Z. and Liu Y., Point defect states in two-dimensional phononic crystals, Physics Letters A, Vol. 9, pp. 198, 1 [9] Kushwaha M. S. and Halevi P., Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders, Applied Physics Letters, Vol. 69(1), pp. 31, [1] Tanaka Y. and Tamura S.I., Two-dimensional phononic crystals: surface acoustic waves, Physica B, Vol. 63, pp. 77, [11] Garcia-Pablo D., Theory and Experiments on Elastic Band Gaps, Physical Review Letters, Vol.84, pp. 4349,. [1] Kafesaki M. and Economou E.N., Multiple-scattering theory for three-dimensional periodic acoustic composites, Physical Review B, Vol.6, pp , [13] Lai Y., Zhang X. and Zhang Z.Q., Engineering acoustic band gaps, Applied Physics Letters, Vol. 79, pp. 34, 1. [14] COMSOL 3.4a, The COMSOL Group, Stockholm, Sweden. [15] Wu F., Hou Z., Liu Z., and Liu Y., Point defect states in two-dimensional phononic crystals, Physics Letters A, Vol. 9(3), pp. 198, 1.

Application and analysis of phononic crystal energy harvesting devices

Application and analysis of phononic crystal energy harvesting devices J. Eng. Technol. Educ. (013) 10(1): 18-6 March 013 Application and analysis of phononic crystal energy harvesting devices Department of Information Management, Chung Hwa University of Medical Technology.

More information

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate

Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate Band gaps in a phononic crystal constituted by cylindrical dots on a homogeneous plate B. Djafari-Rouhani, Y. Pennec, H. Larabi, J. Vasseur and A.-C. Hladky IEN, UR CNRS 852, avenue Poincaré, BP 669, 59652

More information

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal Tsung-Tsong Wu* Zin-Chen Hsu and Zi-ui Huang Institute of Applied

More information

Complete band gaps in two-dimensional phononic crystal slabs

Complete band gaps in two-dimensional phononic crystal slabs Complete band gaps in two-dimensional phononic crystal slabs A. Khelif, 1 B. Aoubiza, 2 S. Mohammadi, 3 A. Adibi, 3 and V. Laude 1 1 Institut FEMTO-ST, CNRS UMR 6174, Université de Franche-Comté, Besançon,

More information

Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study

Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study PHYSICAL REVIEW E, VOLUME 65, 056608 Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study J. O. Vasseur, 1, * P.

More information

Phase-controlling phononic crystals: Realization of acoustic Boolean logic gates

Phase-controlling phononic crystals: Realization of acoustic Boolean logic gates Phase-controlling phononic crystals: Realization of acoustic Boolean logic gates S. Bringuier a) and N. Swinteck Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona

More information

Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy

Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy PHYSICAL REVIEW B 69, 094301 2004 Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy Tsung-Tsong Wu,* Zi-Gui Huang, and S. Lin Ultrasonics

More information

Method for retrieving effective properties of locally resonant acoustic metamaterials

Method for retrieving effective properties of locally resonant acoustic metamaterials Method for retrieving effective properties of locally resonant acoustic metamaterials Vladimir Fokin, Muralidhar Ambati, Cheng Sun, and Xiang Zhang* Nano-scale Science and Engineering Center, University

More information

Chapter 2 Fundamental Properties of Phononic Crystal

Chapter 2 Fundamental Properties of Phononic Crystal Chapter 2 Fundamental Properties of Phononic Crystal Yan Pennec and Bahram Djafari-Rouhani 2.1 Introduction to the Concept of Phononic Crystals and Their Band Structures The control and manipulation of

More information

There has been research pertaining to artificial crystals

There has been research pertaining to artificial crystals 48 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no., january 006 Three-Dimensional Phononic Band Gap Calculations Using the FDTD Method and a PC Cluster System Po-Feng

More information

Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane

Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane Excerpt from the Proceedings of the COMSOL Conference 010 Paris Dual phononic and photonic band gaps in a periodic array of pillars deposited on a membrane Y. Pennec, Y. El Hassouani, C. Li, B. Djafari

More information

Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media

Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media J. Phys.: Condens. Matter 10 (1998) 6051 6064. Printed in the UK PII: S0953-8984(98)93210-6 Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite

More information

Designable hybrid sonic crystals for transportation and division of acoustic images

Designable hybrid sonic crystals for transportation and division of acoustic images Designable hybrid sonic crystals for transportation and division of acoustic images Zhaojian He 1a), Ke Deng 1b), Heping Zhao 1, and Xiaochun Li 2, 3 1. Department of Physics, Jishou University, Jishou

More information

WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES

WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES WAVE PROPAGATION IN PLATES WITH PERIODIC ARRAY OF IMPERFECT ACOUSTIC BLACK HOLES Bing Han 1, Hongli Ji 2 and Jinhao Qiu 3 1 Yudao Street 29, Nanjing 210016, China, State Key Laboratory of Mechanics and

More information

Band gap structure of elliptic rods in water for a 2D phononic crystal

Band gap structure of elliptic rods in water for a 2D phononic crystal Appl. Phys. A (2017) 123:212 DOI 10.1007/s00339-016-0734-z Band gap structure of elliptic rods in water for a 2D phononic crystal Oral Oltulu 1 Amirullah M. Mamedov 2,3 Ekmel Ozbay 2 Received: 1 August

More information

On the Numerical Modeling of Elastic Resonant Acoustic Scatterers

On the Numerical Modeling of Elastic Resonant Acoustic Scatterers Excerpt from the Proceedings of the COMSOL Conference 009 Milan On the Numerical Modeling of Elastic Resonant Acoustic Scatterers V. Romero-García* 1, A. Krynkin, J.V. Sánchez-Pérez 1, S. Castiñeira-Ibáñez

More information

Surface acoustic wave band gaps in micro-machined air/silicon phononic structures theoretical calculation and experiment

Surface acoustic wave band gaps in micro-machined air/silicon phononic structures theoretical calculation and experiment Z. Kristallogr. 220 (2005) 841 847 841 # by Oldenbourg Wissenschaftsverlag, München Surface acoustic wave band gaps in micro-machined air/silicon phononic structures theoretical calculation and experiment

More information

RESONANCE-COUPLING EFFECT ON BROAD BAND GAP FORMATION AND SOUND ABSORPTION IN LOCALLY RESONANT SONIC METAMATERIALS WITH WOODPILE STRUCTURE

RESONANCE-COUPLING EFFECT ON BROAD BAND GAP FORMATION AND SOUND ABSORPTION IN LOCALLY RESONANT SONIC METAMATERIALS WITH WOODPILE STRUCTURE RESONANCE-COUPLING EFFECT ON BROAD BAND GAP FORMATION AND SOUND ABSORPTION IN LOCALLY RESONANT SONIC METAMATERIALS WITH WOODPILE STRUCTURE Wang Yuren Key Laboratory of Microgravity, Institute of Mechanics,

More information

Study of full band gaps and propagation of acoustic waves in two-dimensional piezoelectric phononic plates

Study of full band gaps and propagation of acoustic waves in two-dimensional piezoelectric phononic plates Study o ull band gaps and propagation o acoustic waves in two-dimensional pieoelectric phononic plates J.-C. Hsu and T.-T. Wu Institute o Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt

More information

Design of porous phononic crystals with combined band gaps

Design of porous phononic crystals with combined band gaps Design of porous phononic crystals with combined band gaps Y.F. Li¹, X.Huang, and S. Zhou Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Australia Presenting author:

More information

Numerical Simulation of

Numerical Simulation of Numerical Simulation of Phonon Dispersion Relations for 2D Phononic Crystals Gaohua Zhu, Eric Dede Toyota Research Institute of North America 10/03/2012 Excerpt from the Proceedings of the 2012 COMSOL

More information

Sonic Crystals: Fundamentals, characterization and experimental techniques

Sonic Crystals: Fundamentals, characterization and experimental techniques Sonic Crystals: Fundamentals, characterization and experimental techniques A. C e b r e c o s 1 L a u m, L e M a n s U n i v e r s i t é, C N R S, A v. O. M e s s i a e n, 7 2 0 8 5, L e M a n s Collaborators

More information

Full Band Gap and Defects States in Solid-in-Solid Three Dimensional Phononic Crystals

Full Band Gap and Defects States in Solid-in-Solid Three Dimensional Phononic Crystals 1 Full Band Gap and Defects States in Solid-in-Solid Three Dimensional Phononic Crystals Ke Sun and Z Yang 1 Department of Physics, the Hong Kong University of Science and Technology, Clearwater Bay, Kowloon,

More information

Negative-refraction imaging with two-dimensional phononic crystals

Negative-refraction imaging with two-dimensional phononic crystals Negative-refraction imaging with two-dimensional phononic crystals Manzhu Ke, Zhengyou Liu,* Chunyin Qiu, Wengang Wang, and Jing Shi Department of Physics, Wuhan University, Wuhan 430072, People s Republic

More information

A 5 B 6 C 7 Ferroelectrics as Novel Materials for Phononic Crystals

A 5 B 6 C 7 Ferroelectrics as Novel Materials for Phononic Crystals A 5 B 6 C 7 Ferroelectrics as Novel Materials for Phononic Crystals Selami Palaz 1, O. Oltulu 1, A.M. Mamedov* 2,3, E. Ozbay 2 1 Department of Physics, Harran University, Sanliurfa, Turkey 2 Nanotechnology

More information

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE

Phononic Crystals: Towards the Full Control of Elastic Waves propagation OUTLINE Phononic Crystals: Towards the Full Control of Elastic Waves propagation José Sánchez-Dehesa Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, SPAIN. OUTLINE

More information

NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS

NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS NATO ASI on Photonic Crystals and Light Localization, Crete, June 19-30, 2000 ACOUSTIC BAND GAP MATERIALS J.H. Page 1, A.L. Goertzen 1,*, Suxia Yang 1,2, Zhengyou Liu 2,3, C.T. Chan 2 and Ping Sheng 2

More information

Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media

Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media Karim G. Sabra, School of Mechanical Engineering,

More information

A Lumped Model for Rotational Modes in Phononic Crystals

A Lumped Model for Rotational Modes in Phononic Crystals A Lumped Model for Rotational Modes in Phononic Crystals Pai Peng, Jun Mei and Ying Wu Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology

More information

Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study

Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study J. Bucay, 1 E. Roussel, 2 J. O. Vasseur, 2 P. A. Deymier, 1 A-C. Hladky-Hennion,

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals PRAMANA c Indian Academy of Sciences Vol. 70, No. 1 journal of January 2008 physics pp. 153 161 Modelling and design of complete photonic band gaps in two-dimensional photonic crystals YOGITA KALRA and

More information

Colloidal Nanocrystal Superlattices as Phononic Crystals: Plane Wave Expansion Modeling of Phonon Band Structure

Colloidal Nanocrystal Superlattices as Phononic Crystals: Plane Wave Expansion Modeling of Phonon Band Structure Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Colloidal Nanocrystal Superlattices as Phononic Crystals:

More information

HACES SONOROS EN CRISTALES DE SONIDO FINITOS

HACES SONOROS EN CRISTALES DE SONIDO FINITOS HACES SONOROS EN CRISTALES DE SONIDO FINITOS PACS: 43.0.Fn R. Picó 1, V. Romero-García 1, V. Sánchez-Morcillo 1, L.M. Garcia-Raffi, J.V. Sánchez-Pérez 3, K. Staliunas 4 1 Instituto de Investigación para

More information

Metadamping: An emergent phenomenon in dissipative metamaterials

Metadamping: An emergent phenomenon in dissipative metamaterials Metadamping: An emergent phenomenon in dissipative metamaterials Mahmoud I. Hussein and Michael J. Frazier Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309

More information

Efficient boundary element analysis of periodic sound scatterers

Efficient boundary element analysis of periodic sound scatterers Boundary Element and Meshless Methods in Acoustics and Vibrations: Paper ICA2016-418 Efficient boundary element analysis of periodic sound scatterers M. Karimi, P. Croaker, N. Kessissoglou 1 School of

More information

Phononic Crystals. J.H. Page

Phononic Crystals. J.H. Page Phononic Crystals J.H. Page University of Manitoba with Suxia Yang and M.L. Cowan at U of M, Ping Sheng and C.T. Chan at HKUST, & Zhengyou Liu at Wuhan University. We study ultrasonic waves in complex

More information

Negative refraction of ultrasonic waves in 2D phononic crystals.

Negative refraction of ultrasonic waves in 2D phononic crystals. Negative refraction of ultrasonic waves in 2D phononic crystals. Alexey Sukhovich 1, John Page 1, Zhengyou Liu 2, Maria Kafesaki 3 1 University of Manitoba, Canada; 2 Wuhan University, China; 3 IESL-FORTH,

More information

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Z.A. Pyatakova M.V. Lomonosov Moscow State University, Physics Department zoya.pyatakova@gmail.com Abstract. The paper shows that silicon-based

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure

Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure Rayleigh surface waves propagating in (111) Si substrate decorated with Ni phononic nanostructure. Graczykowski 1, S. Mielcarek 1, A. Trzaskowska 1, P. Patoka 2, M. Giersig 2 1 Faculty of Physics, Adam

More information

Surface resonant states and superlensing in acoustic metamaterials

Surface resonant states and superlensing in acoustic metamaterials Surface resonant states and superlensing in acoustic metamaterials Muralidhar Ambati, Nicholas Fang, Cheng Sun, and Xiang Zhang* Center for Scalable and ntegrated Nanomanufacturing (SNAM), University of

More information

Photonic band gap engineering in 2D photonic crystals

Photonic band gap engineering in 2D photonic crystals PRAMANA c Indian Academy of Sciences Vol. 67, No. 6 journal of December 2006 physics pp. 1155 1164 Photonic band gap engineering in 2D photonic crystals YOGITA KALRA and R K SINHA TIFAC-Center of Relevance

More information

Evanescent waves and deaf bands in sonic crystals

Evanescent waves and deaf bands in sonic crystals Evanescent waves and deaf bands in sonic crystals V Romero-García, L M Garcia-Raffi, and J V Sánchez-Pérez Citation: AIP Advances 1, 041601 (2011); doi: 101063/13675801 View online: http://dxdoiorg/101063/13675801

More information

Redirection of flexural waves in platonic crystal slabs

Redirection of flexural waves in platonic crystal slabs Redirection of flexural waves in platonic crystal slabs Penglin Gao Center for Composite Materials, Harbin Institute of Technology, Harbin, China. Wave Phenomena Group, Department of Electronic Engineering,

More information

Band Gaps in a Multiresonator Acoustic Metamaterial

Band Gaps in a Multiresonator Acoustic Metamaterial G. L. Huang Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR 7 e-mail: glhuang@ualr.edu C. T. Sun School of Aeronautics and Astronautics, Purdue University, W.

More information

Acoustic metamaterials in nanoscale

Acoustic metamaterials in nanoscale Acoustic metamaterials in nanoscale Dr. Ari Salmi www.helsinki.fi/yliopisto 12.2.2014 1 Revisit to resonances Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto

More information

Acoustic one-way mode conversion and transmission by sonic crystal waveguides

Acoustic one-way mode conversion and transmission by sonic crystal waveguides Acoustic one-way mode conversion and transmission by sonic crystal waveguides Shiliang Ouyang 1, Hailong He 1, Zhaojian He a), Ke Deng a), and Heping Zhao Department of Physics, Jishou University, Jishou

More information

Full band gap for surface acoustic waves in a piezoelectric phononic crystal

Full band gap for surface acoustic waves in a piezoelectric phononic crystal Full band gap for surface acoustic waves in a piezoelectric phononic crystal Vincent Laude, Mikael Wilm, Sarah Benchabane, Abdelkrim Khelif To cite this version: Vincent Laude, Mikael Wilm, Sarah Benchabane,

More information

Two-dimensional ternary locally resonant phononic crystals with a comblike coating

Two-dimensional ternary locally resonant phononic crystals with a comblike coating Two-dimensional ternary locally resonant phononic crystals with a comblike coating Yan-Feng Wang, Yue-Sheng Wang,*, and Litian Wang Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing,

More information

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method

Analysis of Photonic Band Structure in 1-D Photonic Crystal using PWE and FDTD Method P P IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. Issue 8, August 05. Analysis of Photonic Band Structure in -D Photonic Crystal using PWE and FDTD Method Pooja ChhokerP

More information

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities

Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic Discontinuities 1398 Progress In Electromagnetics Research Symposium Abstracts, St Petersburg, Russia, 22 25 May 2017 Comparative Analysis of Techniques for Source Radiation in Cylindrical EBG with and without Periodic

More information

ACOUSTIC PERFORMANCE OF PERIODIC COMPOSITE MATERIALS

ACOUSTIC PERFORMANCE OF PERIODIC COMPOSITE MATERIALS ACOUSTIC PERFORMANCE OF PERIODIC COMPOSITE MATERIALS Abstract Gyani Shankar Sharma 1, Daniel Eggler 1, Herwig Peters 1, Nicole Kessissoglou 1, Alex Skvortsov 2, Ian MacGillivray 2 1 School of Mechanical

More information

Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals

Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals crystals Article Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals Alexandre Lardeau 1, Jean-Philippe Groby 2 and Vicente Romero-García 2, * 1 Laboratoire DRIVE-ISAT, 49

More information

Chapter 2 Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications

Chapter 2 Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications Chapter 2 Locally Resonant Structures for Low Frequency Surface Acoustic Band Gap Applications Abdelkrim Khelif, Younes Achaoui, and Boujemaa Aoubiza Abstract In this chapter we investigate the propagation

More information

Optical properties of metamaterial-based devices modulated by a liquid crystal

Optical properties of metamaterial-based devices modulated by a liquid crystal Appl. Phys. A (2014) 117:611 619 DOI 10.1007/s00339-014-8711-x Optical properties of metamaterial-based devices modulated by a liquid crystal Filiz Karaomerlioglu Amirullah M. Mamedov Ekmel Ozbay Received:

More information

Band structure and transmission of 3D chiral sonic crystals

Band structure and transmission of 3D chiral sonic crystals Band structure and transmission of 3D chiral sonic crystals R. Pico, V. Romero-Garcia, V. Sanchez-Morcillo, A. Cebrecos and L.M. Garcia-Raffi Universidad Politecnica de Valencia, Paranimf 1, 46730 Gandia,

More information

Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation Eur. Phys. J. Appl. Phys. (2015) 71: 30504 DOI: 10.1051/epjap/2015150310 Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation Fuyin Ma, Jiu Hui Wu,

More information

Miao Boya and An Yu Department of Physics, Tsinghua University, Beijing , People s Republic of China

Miao Boya and An Yu Department of Physics, Tsinghua University, Beijing , People s Republic of China Localization in an acoustic cavitation cloud Miao Boya and An Yu Department of Physics, Tsinghua University, Beijing 100084, People s Republic of China Using a nonlinear sound wave equation for a bubbly

More information

A Method Based on Wavelets for Band Structure Analysis of Phononic Crystals

A Method Based on Wavelets for Band Structure Analysis of Phononic Crystals Copyright 2008 Tech Science Press CMES, vol.38, no.1, pp.59-87, 2008 A Method Based on Wavelets for Band Structure Analysis of Phononic Crystals Zhi-Zhong Yan 1,2, Yue-Sheng Wang 1,3 and Chuanzeng Zhang

More information

Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals Acta Mech Sin (29) 25:95 99 DOI 1.17/s149-8-21-y RESEARCH PAPER Interfacial effects in electromagnetic coupling within pieoelectric phononic crystals F. J. Sabina A. B. Movchan Received: 14 July 28 / Accepted:

More information

SINCE discovering photonic crystals (PC s) a decade ago,

SINCE discovering photonic crystals (PC s) a decade ago, 2196 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999 Two-Dimensional Elastic Bandgap Crystal to Attenuate Surface Waves F. Meseguer, M. Holgado, D. Caballero, N. Benaches, C. López, J.

More information

Research Article Designing 2D Phononic Crystal Slabs with Transmission Gaps for Solid Angle as well as Frequency Variation

Research Article Designing 2D Phononic Crystal Slabs with Transmission Gaps for Solid Angle as well as Frequency Variation Advances in Acoustics and Vibration Volume 2009, Article ID 317890, 7 pages doi:10.1155/2009/317890 Research Article Designing 2D Phononic Crystal Slabs with Transmission Gaps for Solid Angle as well as

More information

Gradient-index phononic crystals

Gradient-index phononic crystals Gradient-index phononic crystals Sz-Chin Steven Lin and Tony Jun Huang* Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Jia-Hong

More information

VIBRO-THERMOGRAPHY OF DEBONDING DEFECTS IN COMPOSITE PLATES

VIBRO-THERMOGRAPHY OF DEBONDING DEFECTS IN COMPOSITE PLATES http://dx.doi.org/10.1611/qirt.017.06 VIBRO-THERMOGRAPHY OF DEBONDING DEFECTS IN COMPOSITE PLATES Liang Zhu, Xingwang Guo Beihang University, 37 Xue Yuan Rd. Haidian District, Beijing 100191,China ABSTRACT

More information

Exploring Tunable Phononic Crystals using Dielectric Elastomers

Exploring Tunable Phononic Crystals using Dielectric Elastomers Exploring Tunable Phononic Crystals using Dielectric Elastomers Penn State CAV Spring Workshop 2017 April 26, 2017 Michael Jandron Naval Undersea Warfare Center, Newport, RI michael.jandron@navy.mil David

More information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 551 Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Y. Y. Li, P. F. Gu, M. Y. Li,

More information

Vibration Attenuation and Frequency Band Gaps in Layered Periodic Foundation: Theory and Experiment

Vibration Attenuation and Frequency Band Gaps in Layered Periodic Foundation: Theory and Experiment Vibration Attenuation and Frequency Band Gaps in Layered Periodic Foundation: Theory and Experiment H.J. Xiang and Z.F. Shi School of Civil Engineering, Beijing Jiaotong University, Beijing 144, China

More information

Polarized pass band for longitudinal waves in solid. phononic crystal. Journal of Physics Communications. Related content PAPER OPEN ACCESS

Polarized pass band for longitudinal waves in solid. phononic crystal. Journal of Physics Communications. Related content PAPER OPEN ACCESS Journal of Physics Communications PAPER OPEN ACCESS Polarized pass band for longitudinal waves in solid phononic crystals To cite this article: S K Han et al 2017 J. Phys. Commun. 1 055026 View the article

More information

Development of an Acoustic Metamaterials for Aero Acoustic Noise Control

Development of an Acoustic Metamaterials for Aero Acoustic Noise Control Journal of Applied Fluid Mechanics, Vol., No., pp. 569-579, 7. Available online at www.jafmonline.net, ISSN 75-57, EISSN 75-645. DOI:.8869/acadpub.jafm.7.9.664 Development of an Acoustic Metamaterials

More information

Behavior of light at photonic crystal interfaces

Behavior of light at photonic crystal interfaces Behavior of light at photonic crystal interfaces Emanuel Istrate, Alexander A. Green, and Edward H. Sargent Department of Electrical and Computer Engineering, University of Toronto, 10 King s College Road,

More information

UC San Diego UC San Diego Electronic Theses and Dissertations

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Microstructurally Controlled Composites with Optimal Elastodynamic Properties Permalink https://escholarship.org/uc/item/9gw5w8tq Author

More information

Metamaterials with tunable dynamic properties

Metamaterials with tunable dynamic properties Metamaterials with tunable dynamic properties Varvara Kouznetsova Marc Geers 6 October 2015 Mechanics of Materials Project aim development of new generation mechanical metamaterials with adaptive, tunable

More information

Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps

Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps Eunho Kim William E. Boeing Department of Aeronautics & Astronautics, University of Washington 211 Guggenheim

More information

Jahn-Teller effect in two-dimensional photonic crystals

Jahn-Teller effect in two-dimensional photonic crystals PHYSICAL REVIEW 68, 045105 2003 Jahn-Teller effect in two-dimensional photonic crystals N. Malkova, S. Kim, and V. Gopalan Materials Research Institute, Pennsylvania State University, University Park,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

ENHANCEMENT OF PHOTONIC BAND GAP IN A DIS- ORDERED QUARTER-WAVE DIELECTRIC PHOTONIC CRYSTAL

ENHANCEMENT OF PHOTONIC BAND GAP IN A DIS- ORDERED QUARTER-WAVE DIELECTRIC PHOTONIC CRYSTAL Progress In Electromagnetics Research, PIER, 27 36, 1 ENHANCEMENT OF PHOTONIC BAN GAP IN A IS- ORERE QUARTER-WAVE IELECTRIC PHOTONIC CRYSTAL C.-J. Wu, Y.-N. Rau, and W.-H. Han Institute of Electro-Optical

More information

Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix

Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 007 Study and design of a composite acoustic sensor to characterize an heterogeneous media presenting a complex matrix PACS: 43.58.-e Georges,

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION

MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION MATEC Web of Conferences 55, 44 (8) IME&T 7 https://doi.org/.5/matecconf/85544 MODELING OF ACOUSTIC PROCESSES IN SOLIDS BASED ON PARTICLE INTERACTION Angela Kuzovova,, Timur Muksunov Tomsk State University,

More information

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers

Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers Electromagnetic Wave Guidance Mechanisms in Photonic Crystal Fibers Tushar Biswas 1, Shyamal K. Bhadra 1 1 Fiber optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute *196, Raja

More information

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal The Harvard community has made this article openly available. Please share how this access benefits you.

More information

FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS

FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS ARCHIVES OF ACOUSTICS 32, 4 (Supplement), 41 46 (2007) FREQUENCIES OF LOCALIZED ACOUSTIC MODES IN DEPENDENCE ON MUTUAL RELATION OF COMPONENTS OF Au/V NANOLAYERS Mikołaj ALEKSIEJUK Institute of Fundamental

More information

arxiv: v1 [physics.class-ph] 24 Jul 2008

arxiv: v1 [physics.class-ph] 24 Jul 2008 PS/123-QED Multiple Scattering and Visco-Thermal Effects on 2D Phononic Crystal. Duclos, D. afarge, and V. Pagneux aboratoire d coustique de l Université du Maine, arxiv:87.3867v1 [physics.class-ph] 24

More information

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2015

arxiv: v1 [cond-mat.mtrl-sci] 2 Apr 2015 Steering in-plane shear waves with inertial resonators in platonic crystals Younes Achaoui, André Diatta, and Sébastien Guenneau Aix-Marseille Université, CNRS, Centrale Marseille, arxiv:1504.00487v1 [cond-mat.mtrl-sci]

More information

Modelling and Simulation of Acoustic Wave Propagation in. Locally Resonant Sonic Materials

Modelling and Simulation of Acoustic Wave Propagation in. Locally Resonant Sonic Materials Special session: Ultrasonic Modelling INVITED PAPER Version 1, 06/04/2003 Modelling and Simulation of Acoustic Wave Propagation in Locally Resonant Sonic Materials M. Hirsekorn a, P. P. Delsanto a, N.

More information

Analysis of the Robustness of Conventional and Topologically Protected Edge. States in Phononic Crystal Plates

Analysis of the Robustness of Conventional and Topologically Protected Edge. States in Phononic Crystal Plates Analysis of the Robustness of Conventional and Topologically Protected Edge States in Phononic Crystal Plates Yabin Jin 1,*, Daniel Torrent 2,*, Bahram Djafari-Rouhani 3 1 Institut de Mécanique et d Ingénierie,

More information

Dispersion Relation of Defect Structure Containing Negative Index Materials

Dispersion Relation of Defect Structure Containing Negative Index Materials Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 8 (2013), pp. 965-970 Research India Publications http://www.ripublication.com/aeee.htm Dispersion Relation of Defect Structure

More information

NUMERICAL MODELING AND EXPERIMENTS ON SOUND PROPAGATION THROUGH THE SONIC CRYSTAL AND DESIGN OF RADIAL SONIC CRYSTAL ARPAN GUPTA

NUMERICAL MODELING AND EXPERIMENTS ON SOUND PROPAGATION THROUGH THE SONIC CRYSTAL AND DESIGN OF RADIAL SONIC CRYSTAL ARPAN GUPTA NUMERICAL MODELING AND EXPERIMENTS ON SOUND PROPAGATION THROUGH THE SONIC CRYSTAL AND DESIGN OF RADIAL SONIC CRYSTAL ARPAN GUPTA NATIONAL UNIVERSITY OF SINGAPORE 01 NUMERICAL MODELING AND EXPERIMENTS ON

More information

Acoustically penetrable sonic crystals based on fluid-like scatterers

Acoustically penetrable sonic crystals based on fluid-like scatterers Acoustically penetrable sonic crystals based on fluid-like scatterers A. Cebrecos Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, Paranimf 1

More information

A quasi two-dimensional model for sound attenuation by the sonic crystals

A quasi two-dimensional model for sound attenuation by the sonic crystals A quasi two-dimensional model for sound attenuation by the sonic crystals A. Gupta, a) K. M. Lim, and C. H. Chew Department of Mechanical Engineering, National University of Singapore, Singapore 117576,

More information

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs) FRISNO-9 Dominique Elser 15/02/2007 GAWBS Theory Thermally excited acoustic fiber vibrations at certain resonance frequencies

More information

ANALYSIS OF TRANSMISSION PROPERTIES IN A PHOTONIC QUANTUM WELL CONTAINING SUPER- CONDUCTING MATERIALS

ANALYSIS OF TRANSMISSION PROPERTIES IN A PHOTONIC QUANTUM WELL CONTAINING SUPER- CONDUCTING MATERIALS Progress In Electromagnetics Research, Vol. 140, 327 340, 2013 ANALYSIS OF TRANSMISSION PROPERTIES IN A PHOTONIC QUANTUM WELL CONTAINING SUPER- CONDUCTING MATERIALS Tsung-Wen Chang 1, Jia-Wei Liu 2, Tzong-Jer

More information

Part I. Mathematical Formalism

Part I. Mathematical Formalism 4 Part I Mathematical Formalism 5 Chapter 2 The Helmholtz Equation The underlying physics of photonic crystals follow Maxwell s equations, and in this chapter we derive from first principles the wave equation

More information

Exploiting pattern transformation to tune phononic band. gaps in a two-dimensional granular crystal. F. Göncü and S. Luding. Multiscale Mechanics,

Exploiting pattern transformation to tune phononic band. gaps in a two-dimensional granular crystal. F. Göncü and S. Luding. Multiscale Mechanics, Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal Göncü, JASA-EL F. Göncü and S. Luding Multiscale Mechanics, University of Twente, PO Box 27, 7500 AE Enschede,

More information

Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers

Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers Research on sound absorbing mechanism and the preparation of new backing material for ultrasound transducers Guofeng Bai a) Xiujuan Zhang b) Fusheng Sui c) Jun Yang d) Key Laboratory of Noise and Vibration

More information

Enhancing and suppressing radiation with some permeability-near-zero structures

Enhancing and suppressing radiation with some permeability-near-zero structures Enhancing and suppressing radiation with some permeability-near-zero structures Yi Jin 1,2 and Sailing He 1,2,3,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical

More information

DESIGN AND MODELING FOR ENHANCEMENT OF LIGHT EXTRACTION IN LIGHT-EMITTING DIODES WITH ARCHIMEDEAN LATTICE PHOTONIC CRYSTALS

DESIGN AND MODELING FOR ENHANCEMENT OF LIGHT EXTRACTION IN LIGHT-EMITTING DIODES WITH ARCHIMEDEAN LATTICE PHOTONIC CRYSTALS Progress In Electromagnetics Research B, Vol. 11, 265 279, 2009 DESIGN AND MODELING FOR ENHANCEMENT OF LIGHT EXTRACTION IN LIGHT-EMITTING DIODES WITH ARCHIMEDEAN LATTICE PHOTONIC CRYSTALS J.-Y. Chen Center

More information

h r,t G I. INTRODUCTION II. PRINCIPLES OF THE MODEL A. Basic definitions

h r,t G I. INTRODUCTION II. PRINCIPLES OF THE MODEL A. Basic definitions A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures Mikaël Wilm, Sylvain Ballandras, Vincent Laude, and Thomas Pastureaud Laboratoire de Physique et Métrologie des Oscillateurs/CNRS

More information

Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element Method

Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element Method Copyright 2014 Tech Science Press CMES, vol.97, no.5, pp.425-436, 2014 Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element Method Mao Liu 1,2, Jiawei Xiang 1,

More information