Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Size: px
Start display at page:

Download "Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1"

Transcription

1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon UWM 1

2 Classical MD simulations use an empirical potential fitted to reproduce lattice constant, cohesive energy, elastic properties, some phonons But are not supposed to produce correct third derivatives of the potential energy, determining phonon lifetimes They can be used to explain trends in thermal transport, but can not predict quantitatively the thermal conductivity. 5/23/2012 Phonon UWM 2

3 Goal To develop a general methodology to get accurate estimates of thermal properties using available density functional theory (DFT) tools. To make accurate / reliable predictions without fitting any parameters to experimental data. 5/23/2012 Phonon UWM 3

4 Outline New force field based on FP-DFT Approaches for thermal conductivity calculation + illustrations Lattice dynamics model MD Green s functions for coherent transport Conclusions 5/23/2012 Phonon UWM 4

5 Force Force field model 1 F E u u u i i i ij j ijk j k j, 2! jk, 1 3! displacements jkl, ijkl j k l 2 3 E E E i ij ijk ui ui u j ui u j u k 4 ijkl ui u j uk ul u u u ; ; ; E Derivatives are calculated at or near equilibrium Exact for small displacements! 5/23/2012 Phonon UWM 5

6 As the FCs are 2 nd or higher rank tensors, there are a huge number of terms in the Taylor expansion! 9 for each pair * number of pairs 27 for each triplet * number of triplets 81 for each quadruplet * number of quadruplets They need to be reduced Method to extract anharmonic force constants from first principles calculations Keivan Esfarjani and Harold T. Stokes Phys. Rev. B 77, (2008) 5/23/2012 Phonon UWM 6

7 Symmetry constraints The FCs are related by the following symmetry constraints: Permutation of the order of derivatives ij ji Global Translational invariance ij ijk j j 0 ; 0 5/23/2012 Phonon UWM 7 Method to extract anharmonic force constants from first principles calculations Keivan Esfarjani and Harold T. Stokes, Phys. Rev. B 77, (2008)

8 Symmetry constraints Global Rotational invariance Links FCs to higher-order ones R R ; R Group symmetry operation invariance ' ' ij ' ' S(i)S( j) ' ' These symmetries must be enforced for any FC model to be physically correct R S S... 5/23/2012 Phonon UWM 8

9 Methodology : FP-DFT calculations in a supercell (real space) Supercell size should ideally be larger than the range of the force constants 5/23/2012 Phonon UWM 9

10 Extraction of FCs: 1 F u u u... i i ij j ijk j k j, 2! jk, Constraints are linear in FCs Force-displacement relations also linear in FCs U Invariance constraints 0 F FP-DFT Force-displacement data Over-complete system of linear equations FCs are deduced from a SVD algorithm Method to extract anharmonic force constants from first principles calculations Keivan Esfarjani and Harold T. Stokes, Phys. Rev. B 77, (2008) 5/23/2012 Phonon UWM 10

11 How accurate are the obtained FCs? Move one Si atom along [111] 5/23/2012 Phonon UWM 11

12 More validation Use the FCs to calculate forces for arbitrary atomic displacements Denominator s(poly) s(sw) DISP=0.1 Ang DISP=0.2 Ang Error is due to choosing (5,1,1) neighbors in the model 5/23/2012 Phonon UWM 12

13 Now what? Use second derivatives to get phonon dispersion Use the third derivatives to get phonon lifetimes Use all to do MD Alternative approach to determining FCs uses DFPT (See talk by Derek Stewart) 5/23/2012 Phonon UWM 13

14 Summary of the approach FP-DFT in a supercell MD-GK Model Potential Thermal Properties Latt Dyn 5/23/2012 Phonon UWM 14

15 Phonon Dispersion For Si, Graphene, ZrCoSb N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart Phys. Rev. B 81, (2010) K. Esfarjani, G. Chen, and H. T. Stokes Phys. Rev. B 84, (2011) k d ln d ln V k ZrCoSb Half-heusler; By J. Shiomi, KE, G. Chen, PRB 84 (2011) 5/23/2012 Phonon UWM 15

16 Lifetimes due to 3-phonon processes G q2 q2 q2 q3 q i q i q i q1 Normal process q1 Umklapp process q1 a 4-phonon process V 1 3! ijk, ijk u i u j u k 1 4! ijkl ijkl, u i u j u k u l... Phonon creation and annihilation operators W( i, f ) 2 i V f 2 ( E i E f ) Fermi Golden Rule 5/23/2012 Phonon UWM 16

17 Thermal conductivity Use of the relaxation time approximation Relaxation time C v per mode 5/23/2012 Phonon UWM 17

18 ZrCoSb lifetimes: LD-FGR versus MD 70 Velocity autocorrelation (5x5x5 supercell=1000 Si atoms) Frequency (Thz) 5/23/2012 Phonon UWM 18 Shiomi, Esfarjani, Chen, Phys. Rev. B 84, (2011)

19 Thermal conductivity of ZrCoSb Simulations vs Experiments Impurity scattering 1/ 1/ B 0 4 Sb Zr Co Y. Xia et al., J. Appl. Phys. 88, 1952 (2000). T. Sekimoto et al., Jpn. J. Appl. Phys. 46, L673 (2007). Shiomi, Esfarjani, Chen, Phys. Rev. B 84, (2011)

20 Alloying effect on half-heusler thermal conductivity Transferability of force constants 22 Wm -1 K -1 Sb Co Zr ZrCoSb Only changing mass k (Wm -1 K -1 ) Green Kubo Calculation (300 K) Hf x Zr 1-x CoSb Hf 1-x Ti x CoSb Zr x Ti 1-x CoSb Experiment Hf 0.5 Zr 0.5 CoSb 0.8 Sn 0.2 (Yan, Nano Lett, 2011) 5 16 Wm -1 K -1 Sb Hf Co HfCoSb x Shiomi, Esfarjani, Chen, Phys. Rev. B 84, (2011)

21 Gruneisen parameter Frequency (THz) Frequency (mev) Thermal conductivity of PbTe Microscopic mechanism of low thermal conductivity in lead telluride T Shiga, J Shiomi, J Ma, O Delaire, T Radzynski, A Lusakowski, K E, and G Chen Phys. Rev. B 85, (2012) Takuma Shiga 4 This work W. Cochran, et al., (1966) 16 Why is thermal conductivity of PbTe so low (~2 Wm -1 K TO 0 0 Rocksalt PbTe X K L

22 Phonons in lead telluride Microscopic mechanism of low thermal conductivity in lead telluride T Shiga, J Shiomi, J Ma, O Delaire, T Radzynski, A Lusakowski, K E, and G Chen Phys. Rev. B 85, (2012) Takuma Shiga

23 5/23/2012 Phonon UWM 23

24 Summary of LD: MFP distribution 5/23/2012 Phonon UWM 24

25 MD using the polynomial force field PROS: Of accuracy similar to DFT Includes anharmonic effects to higher order CONS: Can not describe structural changes Hard to include surfaces and defects Ideal for thermal conductivity using GK 5/23/2012 Phonon UWM 25

26 Equilibrium Green-Kubo (GK) 5/23/2012 Phonon UWM 26

27 k (W/mK) Half-Heuslers 25 k xx 20 k yy k zz t (ps) 5/23/2012 Phonon UWM 27

28 Silicon 5/23/2012 Phonon UWM 28

29 Wave effects in thermal transport Quantization of thermal conductance Coherent (ballistic) phonon contribution 5/23/2012 Phonon UWM 29

30 Coherent phonon transport Landauer formula d n(t, ) G D m( ) v gm ( ) m 2 T 0 Transmission formula = 1 5/23/2012 Phonon UWM 30

31 Experimental samples 12 nm AlAs 9 periods 7 periods 5 periods 12 nm GaAs 3 periods 1 period ~100 nm Al 12 nm GaAs 12 nm AlAs 350μm GaAs 5/23/2012 Phonon UWM 31

32 GaAs-[(AlAS) 22 /(GaAs) 22 ] N=1,,9 -Al GaAs AlAs GaAs AlAs GaAs Al 1 unit= 22 layers AlAs+22 layers GaAs Period length=2*(22*5.4 Ang)=23.76 nm N-periods (N=1,3,5,7,9); 3x3 cross section for a total of 1584,,up to atoms 5/23/2012 Phonon UWM 32

33 Transmission and Conductivity (a) (b) 5/23/2012 Phonon UWM 33

34 Conclusions The developed force field can be calculated for an arbitrary crystal structure It can be used to: Do LD, get phonon spectra, lifetimes, k (fast) Do MD, get lifetimes and k including alloy scattering and anharmonic effects nonperturbatively Set up the GFs to calculate transmission & conductance LD faster and more accurate than GK-MD, but valid at low T In nanostructured materials: Wave effects are important, Heat transport can have a large ballistic component Boundary scattering can be dominant Optical modes contribution is increased 5/23/2012 Phonon UWM 34

35 Acknowledgements Gang Chen (MIT) Junichiro Shiomi (U Tokyo) ZrCoSb, PbTe Takuma Shiga (U Tokyo) PbTe Maria Luckyanova (MIT) GaAs/AlAs SLs J. Garg (MIT) GaAs/AlAs phonon lifetimes TF Luo (Notre Dame) GaAs 5/23/2012 Phonon UWM 35

Phonon Transport Theories and Simulation

Phonon Transport Theories and Simulation Phonon Transport Theories and Simulation Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 http://web.mit.edu/nanoengineering Annual Review of Heat Transfer,

More information

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics Thermal conductivity of bulk nanostructured lead telluride in the view of phonon gas kinetics Takuma Hori 1, Gang Chen 2, and Junichiro Shiomi 1,3,(a) 1 Department of Mechanical Engineering, The University

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Nanoscale Heat Transfer from Computation to Experiment

Nanoscale Heat Transfer from Computation to Experiment Nanoscale Heat Transfer from Computation to Experiment Tengfei Luo a and Gang Chen* b Perspective 5 Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement

More information

Introduction to phonon transport

Introduction to phonon transport Introduction to phonon transport Ivana Savić Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12,

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Thermoelectric materials for energy harvesting new modelling tools with predictive power

Thermoelectric materials for energy harvesting new modelling tools with predictive power Thermoelectric materials for energy harvesting new modelling tools with predictive power Ole Martin Løvvik 1,2 1 SINTEF Materials Physics, Norway 2 University of Oslo, Norway Thermoelectric generators

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method

Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method The MIT Faculty has made this article openly available. Please share

More information

Thermal conductivity of half-heusler compounds from first-principles calculations

Thermal conductivity of half-heusler compounds from first-principles calculations Thermal conductivity of half-heusler compounds from first-principles calculations The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Revisiting PbTe to identify how thermal conductivity is

Revisiting PbTe to identify how thermal conductivity is Revisiting PbTe to identify how thermal conductivity is really limited Shenghong Ju 1,2, Takuma Shiga 1, Lei Feng 1, Junichiro Shiomi 1,2,3,* 1 Department of Mechanical Engineering, The University of Tokyo,

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Phonons mean free paths and sound absorption Theory and Experiments B. Perrin Institut des NanoSciences de Paris

Phonons mean free paths and sound absorption Theory and Experiments B. Perrin Institut des NanoSciences de Paris Phonons mean free paths and sound absorption Theory and Experiments B. Perrin Institut des NanoSciences de Paris Phonon School 2017 : Wave Phenomena and Phonon Thermal Transport Oléron - September 3-8,

More information

Perspectives on Thermoelectrics : from fundamentals to device applications

Perspectives on Thermoelectrics : from fundamentals to device applications Perspectives on Thermoelectrics : from fundamentals to device applications M. Zebarjadi, a K. Esfarjani a, M.S. Dresselhaus, b Z.F. Ren* c and G. Chen* a This review is an update of a previous review 1

More information

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of

More information

Accuracy and transferability of GAP models for tungsten

Accuracy and transferability of GAP models for tungsten Accuracy and transferability of GAP models for tungsten Wojciech J. Szlachta Albert P. Bartók Gábor Csányi Engineering Laboratory University of Cambridge 5 November 214 Motivation Number of atoms 1 1 2

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES Song Mei, Zlatan Aksamija, and Irena Knezevic Electrical and Computer Engineering Department University of Wisconsin-Madison This work was supported

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Thermal Conductivity of Isotopically Modified Graphene Shanshan Chen 1,, Qingzhi Wu, Columbia Mishra, Junyong Kang 1, Hengji Zhang 3 Kyeongjae Cho 3, Weiwei Cai 1, *, Alexander A. Balandin 4* and Rodney

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Nanoscale interfacial heat transfer: insights from molecular dynamics

Nanoscale interfacial heat transfer: insights from molecular dynamics Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France

More information

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213 M. I. Hussein Department of Aerospace

More information

Semiclassical Phonon Transport in the Presence of Rough Boundaries

Semiclassical Phonon Transport in the Presence of Rough Boundaries Semiclassical Phonon Transport in the Presence of Rough Boundaries Irena Knezevic University of Wisconsin - Madison DOE BES, Award No. DE-SC0008712 NSF ECCS, Award No. 1201311 Phonons in Nanostructures

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Lecture 11: Coupled Current Equations: and thermoelectric devices

Lecture 11: Coupled Current Equations: and thermoelectric devices ECE-656: Fall 011 Lecture 11: Coupled Current Euations: and thermoelectric devices Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 9/15/11 1 basic

More information

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL

More information

T hermal transport in nanostructures has been a topic of intense interest in recent years1 3. When the characteristic

T hermal transport in nanostructures has been a topic of intense interest in recent years1 3. When the characteristic OPEN SUBJECT AREAS: CHARACTERIZATION AND ANALYTICAL TECHNIQUES NANOWIRES Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures Hang Zhang, Chengyun Hua,

More information

Tianli Feng and Xiulin Ruan. 1. Introduction

Tianli Feng and Xiulin Ruan. 1. Introduction Journal of Nanomaterials Volume 204, Article ID 206370, 25 pages http://dx.doi.org/0.55/204/206370 Review Article Prediction of Spectral Phonon Mean Free Path and Thermal Conductivity with Applications

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Thermal Conductivity in Superlattices

Thermal Conductivity in Superlattices 006, November Thermal Conductivity in Superlattices S. Tamura Department of pplied Physics Hokkaido University Collaborators and references Principal Contributors: K. Imamura Y. Tanaka H. J. Maris B. Daly

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany Prerequisites for reliable modeling with first-principles methods P. Kratzer Fritz-Haber-Institut der MPG D-14195 Berlin-Dahlem, Germany Prerequisites for modeling (I) Issues to consider when applying

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

Supporting information:

Supporting information: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information: A Simultaneous Increase in the ZT and the Corresponding

More information

a (Å)

a (Å) Supplementary Figures a Intens ity (a.u.) x=0.09 x=0.07 x=0.06 x=0.05 x=0.04 x=0.03 x=0.02 x=0.01 x=0.00 P 1- x S 2x/3 Se 0 10 20 30 40 50 60 70 80 90 2θ (deg.) a (Å) 6.130 6.125 6.120 6.115 This work

More information

Crystal Relaxation, Elasticity, and Lattice Dynamics

Crystal Relaxation, Elasticity, and Lattice Dynamics http://exciting-code.org Crystal Relaxation, Elasticity, and Lattice Dynamics Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org PART I: Structure Optimization Pasquale Pavone Humboldt-Universität

More information

Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions

Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions Daniele Stradi www.quantumwise.com daniele.stradi@quantumwise.com Introduction

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

Complex superlattice unit cell designs for reduced thermal conductivity

Complex superlattice unit cell designs for reduced thermal conductivity Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA M. I. Hussein

More information

Research Article Isotope Effect on the Thermal Conductivity of Graphene

Research Article Isotope Effect on the Thermal Conductivity of Graphene Nanomaterials Volume 2, Article ID 537657, 5 pages doi:.55/2/537657 Research Article Isotope Effect on the Thermal Conductivity of Graphene Hengji Zhang, Geunsik Lee, Alexandre F. Fonseca, 2 Tammie L.

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Soft Phonon Modes from Off-center Ge atoms Lead to

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

PHONON TRANSPORT IN AMORPHOUS SILICON NANOWIRES. D.V. Crismari

PHONON TRANSPORT IN AMORPHOUS SILICON NANOWIRES. D.V. Crismari PHONON TRANSPORT IN AMORPHOUS SILICON NANOWIRES D.V. Crismari E. P. Pokatilov Laboratory of Physics and Engineering of Nanomaterials and Synergetics Moldova State University, Chisinau, Republic of Moldova

More information

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal Page 1 Lina Yang 1, Nuo Yang 2a, Baowen Li 1,2b 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore 2

More information

The effect of coherent optical phonon on thermal transport

The effect of coherent optical phonon on thermal transport Appl. Phys. A DOI 1.17/s339-14-8642-6 The effect of coherent optical phonon on thermal transport Y. Zhang Y. Wang Received: 8 May 214 / Accepted: 22 July 214 Ó Springer-Verlag Berlin Heidelberg 214 Abstract

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

D I S P E R S I O N AND D A M P I N G OF SECOND SOUND IN ) Abstract

D I S P E R S I O N AND D A M P I N G OF SECOND SOUND IN ) Abstract Physics Vol. 3, No. 4. pp. 221-229, 1967. Physics Publishing Co. Printed in Great Britain. D I S P E R S I O N AND D A M P I N G OF SECOND SOUND IN N O N - I S O T R O P I C SOLIDS P H I L I P C. K WOK

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

arxiv: v1 [cond-mat.mes-hall] 2 May 2014

arxiv: v1 [cond-mat.mes-hall] 2 May 2014 Towards a microscopic understanding of phonon heat conduction A. J. Minnich 1, 1 Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125 arxiv:1405.0532v1 [cond-mat.mes-hall]

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys, Scott Dunham Department of Electrical Engineering Multiscale Modeling Hierarchy Configuration energies and transition

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

First-Principles Prediction of Phononic Thermal Conductivity of Silicene: a. Comparison with Graphene

First-Principles Prediction of Phononic Thermal Conductivity of Silicene: a. Comparison with Graphene First-Principles Prediction of Phononic Thermal Conductivity of Silicene: a Comparison with Graphene Xiaokun Gu and Ronggui Yang Department of Mechanical Engineering University of Colorado at Boulder,

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

T wo-dimensional (2D) materials (e.g., graphene, MoS2, silicene) are a focus of intense research because of

T wo-dimensional (2D) materials (e.g., graphene, MoS2, silicene) are a focus of intense research because of OPEN SUBJECT AREAS: TWO-DIMENSIONAL MATERIALS APPLIED PHYSICS Strongly anisotropic in-plane thermal transport in single-layer black phosphorene Ankit Jain & Alan J. H. McGaughey Received 23 October 2014

More information

Accepted Manuscript. First-principles Debye-Callaway approach to lattice thermal conductivity. Yongsheng Zhang

Accepted Manuscript. First-principles Debye-Callaway approach to lattice thermal conductivity. Yongsheng Zhang Accepted Manuscript First-principles Debye-Callaway approach to lattice thermal conductivity Yongsheng Zhang PII: S2352-8478(16)30044-2 DOI: 10.1016/j.jmat.2016.06.004 Reference: JMAT 66 To appear in:

More information

Multiscale phonon blocking in Si phononic crystal nanostructures

Multiscale phonon blocking in Si phononic crystal nanostructures Multiscale phonon blocking in Si phononic crystal nanostructures M. Nomura 1,2,*, Y. Kage 1, J. Nakagawa 1, T. Hori 3, J. Maire 4, J. Shiomi 3, D. Moser 5, and O. Paul 5 1 Institute of Industrial Science,

More information

Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice

Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice Appl. Phys. A (2016) 122:777 DOI 10.1007/s00339-016-0309-z Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice Feng He 1,2 Wenzhi Wu 1,3 Yaguo Wang 1,2 Received: 11 May

More information

Comparison of the 3ω method and time-domain

Comparison of the 3ω method and time-domain Comparison of the 3ω method and time-domain thermoreflectance David G. Cahill, Shawn Putnam, Yee Kan Koh Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois, Urbana,

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite

A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite J. Phys.: Condens. Matter 9 (1997) 7071 7080. Printed in the UK PII: S0953-8984(97)83513-8 A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite G Kopidakis, C Z

More information

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Inset shows as-grown bulk BP specimen (scale bar: 5 mm). (b) Unit cell

More information

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach» - k.p method I.3. Effectie mass approximation - Electrons - Holes I.4. train effect on band structure - Introduction:

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Carbon Nanocone: A Promising Thermal Rectifier

Carbon Nanocone: A Promising Thermal Rectifier Carbon Nanocone: A Promising Thermal Rectifier Nuo Yang 1, Gang Zhang 2, a) 3,1, b) and Baowen Li 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore,

More information

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects

Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects PHYSICAL REVIEW B VOLUME 61, NUMBER 24 Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects 15 JUNE 2000-II Rong-ping Wang Laboratory of Optical Physics, Institute

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility Li-Chuan Zhang, Guangzhao Qin, Wu-Zhang Fang, Hui-Juan Cui, Qing-Rong Zheng, Qing-Bo

More information

Basics and Means of Positron Annihilation

Basics and Means of Positron Annihilation Basics and Means of Positron Annihilation Positron history Means of positron annihilation positron lifetime spectroscopy angular correlation Doppler-broadening spectroscopy Near-surface positron experiments:

More information

Magneto-Optical Properties of Quantum Nanostructures

Magneto-Optical Properties of Quantum Nanostructures Magneto-optics of nanostructures Magneto-Optical Properties of Quantum Nanostructures Milan Orlita Institute of Physics, Charles University Institute of Physics, Academy of Sciences of the Czech Republic

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Jul 2017

arxiv: v1 [cond-mat.mtrl-sci] 6 Jul 2017 Lower lattice thermal conductivity in than or monolayer: a first-principles study San-Dong Guo School of Physics, China University of Mining and Technology, Xuzhou 22111, Jiangsu, China arxiv:177.1752v1

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Numerical Simulation of

Numerical Simulation of Numerical Simulation of Phonon Dispersion Relations for 2D Phononic Crystals Gaohua Zhu, Eric Dede Toyota Research Institute of North America 10/03/2012 Excerpt from the Proceedings of the 2012 COMSOL

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Electron-phonon interaction. Can dispersionless phonons provide relaxation?

Electron-phonon interaction. Can dispersionless phonons provide relaxation? Electron-phonon interaction. Can dispersionless phonons provide relaxation? P. Gartner, J. Seebeck, F. Jahnke Institute for Theoretical Physics University of Bremen Kiel, 21 Introduction Self-assembled

More information

Size-dependent model for thin film and nanowire thermal conductivity

Size-dependent model for thin film and nanowire thermal conductivity AIP/23-QED Size-dependent model for thin film and nanowire thermal conductivity Alan J. H. McGaughey,, a) Eric S. Landry,, 2 Daniel P. Sellan, 3 and Cristina H. Amon, 3 ) Department of Mechanical Engineering,

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

atomistic Green s function study

atomistic Green s function study Phonon transmission across Mg 2 Si/Mg 2 Si 1-x Sn x interfaces: A first-principlesbased atomistic Green s function study Xiaokun Gu, 1 Xiaobo Li, 2 1,3, a) and Ronggui Yang 1 Department of Mechanical Engineering,

More information

Classical molecular dynamics simulations of crystal lattices with truncated Taylor series-based interatomic potentials

Classical molecular dynamics simulations of crystal lattices with truncated Taylor series-based interatomic potentials Classical molecular dynamics simulations of crystal lattices with truncated Taylor series-based interatomic potentials Shrikant KSHIRSAGAR, Kranthi K. MANDADAPU, and Panayiotis PAPADOPOULOS Table of contents

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Hydrogenation of Penta-Graphene Leads to Unexpected Large. Improvement in Thermal Conductivity

Hydrogenation of Penta-Graphene Leads to Unexpected Large. Improvement in Thermal Conductivity Supplementary information for Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity Xufei Wu, a Vikas Varshney, b,c Jonghoon Lee, b,c Teng Zhang, a Jennifer L. Wohlwend,

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Geometry Optimisation

Geometry Optimisation Geometry Optimisation Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, UK http://www.cmt.york.ac.uk/cmd http://www.castep.org Motivation Overview of Talk Background

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information