Phonon Transport Theories and Simulation

Size: px
Start display at page:

Download "Phonon Transport Theories and Simulation"

Transcription

1 Phonon Transport Theories and Simulation Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA

2 Annual Review of Heat Transfer, v. 17, 2013 Phonon Mean Free in Bulk Materials DFT MD equilibrium Interfaces Green's function Equilibrium MD Transport Nonequilibrium MD Monte Carlo Simulation Boltzmann equation Dissipative Particle Dynamics Effective Media, maybe in composite application Electron-Phonon Interactions First principle on electron phonon scattering Electron Monte Carlo Applications Phonon control Nanowires and nanoporous materials CNT/graphene Thermoelectric materials Polymers Keivan Esfarjani and Jivtesh Garg Alan McGaughey Tim Fisher Yann and Volz Shiomi Nicolas Hajicontantinou Jayathi Murthy Jennifer Lukes Nan CeWen Natalie Mingo Eric Pop Baowen Li Julia Galli Maruyama Ronggui Yang Asegun Henry

3 DFT: Multiscale Simulation Continuum Band Structure Interatomic Potentials Effective Medium Properties Boltzmann Transport Equation, Monte Carlo DFT: 1 nm 10 nm 100 nm 1 m 10 m 100 Band m Ab-Initio Molecular Dynamics? Green s Function Classical Nonequilibrium Or Equilibrium Molecular Dynamics: Transport Properties Structure Interatomic Potentials Equilibrium Molecular Dynamics: Bulk material properties

4 Phonon Mean Free Paths from Molecular Dynamics 1. Equilibrium MD Simulations Provide Atomic Velocities. 2. Project Velocities onto Phonon Modes from Lattice Dynamics Calculations. 3. Auto-correlation and Fourier Transform of Phonon Kinetic Energy. 4. Extract Phonon Lifetime Mean Free Path = Lifetime x Group Velocity v g Alan McGaughey, Carnegie Mellon University

5 First Principle (DFT)calculations First Principle Calculation i t H e-band, e-dos ph-band, ph-dos Anharmonic Interatomic force constants 1 1 V V0 iui ijuiu j 2! 3! i ij ijk ijk u u i j u k 1 4! ijkl ijkl u u i j u k u l Scattering calculation k W i f k k k k 2 2 f V i k Molecular dynamics simulations m i d 2 ri 2 dt V Alloy effects Thermal conductivity + mean free path (mode-dependent) D. Brodio et al., PRB, 80 (2009) Esfarjani et al., Phys. Rev. B 84, , 2011.

6 1000K 300K 300K 1000K

7 Interface Transmission Green s Function Thermal conductance from Equilibrium Molecular Dynamics Z. Huang, T.S. Fisher, J.Y. Murthy, J. Appl. Phys. 109, , Chalopin et al., unpublished

8 Transport Process Phonon Boltzmann Transport Equation f t v f f t scat Equilibrium Monte Carlo McGauhey, APL, 2012 Effective Medium Theory Percolation regime Size and interface effects Thermoelectric effects 27 years becomes 1 day 1 day becomes 9 sec. Peraud and Hadjiconstantinou, Physical Review B, 84, , 2011

9 Internal vs. External Size Effects

10 Heat Conduction Mechanisms Inside Nanostructures Segment Length [nm] Si / Ge Regime Map Nanowire Bulk Avg SLNW k=5 [W/m-K] Super- (300 K) lattice Diameter [nm] Classical Size Effect Casimir winner D CNTs High Wave Effects 3D to 1D transition Coherence? Localization? Divergence?

11 Scattering and Correlation Paradigms Henry and Chen, PRB, 79, , Correlation p p dt E E E t E C C V k k v v 1

12 Conduction vs. Radiation Contact conductance ~10 8 W/m 2.K 12

13 Fluids and Convection Gas: Knudsen regime, well-established Microchannel convection: Single phase (Poiseuille went down to ~15 m) Multiphase flow and heat transfer Superhydrophilic/superhydrophobic surfaces Electrokinetic flow, heat, and mass transfer Nanofluids: thermal conductivity, radiative coupling We have limited understanding of thermal transport in fluids. Heat, mass, and charge transport in soft materials, complex fluids, and phase change.

14 Acknowledgements Inputs from Y. Chalopin: molecular dynamics T. Fisher: Green s function G. Galli: thermoelectrics N. Hajiconstantinou: Monte Carlo J. Lukes: dissipative particle dynamics A. McGauhey: molecular dynamics Sponsors: DOE (BES, ARPA-E, EERE, EFRC), AFOSR, NSF, Industry

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon School @ UWM 1 Classical MD simulations use an empirical potential fitted

More information

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Size-dependent model for thin film and nanowire thermal conductivity

Size-dependent model for thin film and nanowire thermal conductivity AIP/23-QED Size-dependent model for thin film and nanowire thermal conductivity Alan J. H. McGaughey,, a) Eric S. Landry,, 2 Daniel P. Sellan, 3 and Cristina H. Amon, 3 ) Department of Mechanical Engineering,

More information

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics Journal: 2014 MRS Fall Meeting Manuscript ID: 2035346.R1 Manuscript Type: Symposium NN Date Submitted

More information

ENERGY NANOTECHNOLOGY --- A Few Examples

ENERGY NANOTECHNOLOGY --- A Few Examples ENERGY NANOTECHNOLOGY --- A Few Examples Gang Chen Nanoengineering Group Rohsenow Heat and Mass Transfer Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 Email: gchen2@mit.edu http://web.mit.edu/nanoengineering

More information

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering December 11-14, 2011, Shima, Japan co-chairs: Shigeo Maruyama, Kazuyoshi Fushinobu, Jennifer Lukes, Li Shi

More information

Introduction to phonon transport

Introduction to phonon transport Introduction to phonon transport Ivana Savić Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12,

More information

A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation

A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation A Variational Approach to Extracting the Phonon Mean Free Path Distribution from the Spectral Boltzmann Transport Equation Vazrik Chiloyan a, Lingping Zeng a, Samuel Huberman a, Alexei A. Maznev b, Keith

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Nanoscale interfacial heat transfer: insights from molecular dynamics

Nanoscale interfacial heat transfer: insights from molecular dynamics Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France

More information

Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study

Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study J. Kaiser, 1,a) T. Feng, 2 J. Maassen, 3 X. Wang, 4 X. Ruan, 2 and M. Lundstrom 4 1 Department of Electrical Engineering

More information

Violation of Fourier s law and anomalous heat diffusion in silicon nanowires

Violation of Fourier s law and anomalous heat diffusion in silicon nanowires Nano Today (2010) 5, 85 90 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/nanotoday RAPID COMMUNICATION Violation of Fourier s law and anomalous heat diffusion in silicon

More information

Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method

Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method The MIT Faculty has made this article openly available. Please share

More information

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012 2371-2 Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries 15-24 October 2012 Atomistic Simulations of Thermal Transport in Nanostructured Semiconductors (Thermal

More information

Nanoscale Heat Transfer from Computation to Experiment

Nanoscale Heat Transfer from Computation to Experiment Nanoscale Heat Transfer from Computation to Experiment Tengfei Luo a and Gang Chen* b Perspective 5 Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement

More information

Solar Thermoelectric Energy Conversion

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Gang Chen Massachusetts Institute of Technology Cambridge, MA 02139 Email: gchen2@mit.edu http://web.mit.edu/nanoengineering NSF Nanoscale Science and Engineering

More information

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics Thermal conductivity of bulk nanostructured lead telluride in the view of phonon gas kinetics Takuma Hori 1, Gang Chen 2, and Junichiro Shiomi 1,3,(a) 1 Department of Mechanical Engineering, The University

More information

Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study

Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study Thermal Transport at the Nanoscale: A Fourier s Law vs. Phonon Boltzmann Equation Study J. Kaiser, 1,a) T. Feng, 2 J. Maassen, 3 X. Wang, 4 X. Ruan, 2 and M. Lundstrom 4 1 Department of Electrical Engineering

More information

ALMA: All-scale predictive design of heat management material structures

ALMA: All-scale predictive design of heat management material structures ALMA: All-scale predictive design of heat management material structures Version Date: 2015.11.13. Last updated 2015.12.02 Purpose of this document: Definition of a data organisation that is applicable

More information

T hermal transport in nanostructures has been a topic of intense interest in recent years1 3. When the characteristic

T hermal transport in nanostructures has been a topic of intense interest in recent years1 3. When the characteristic OPEN SUBJECT AREAS: CHARACTERIZATION AND ANALYTICAL TECHNIQUES NANOWIRES Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures Hang Zhang, Chengyun Hua,

More information

Complex superlattice unit cell designs for reduced thermal conductivity

Complex superlattice unit cell designs for reduced thermal conductivity Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA M. I. Hussein

More information

Semiclassical Phonon Transport in the Presence of Rough Boundaries

Semiclassical Phonon Transport in the Presence of Rough Boundaries Semiclassical Phonon Transport in the Presence of Rough Boundaries Irena Knezevic University of Wisconsin - Madison DOE BES, Award No. DE-SC0008712 NSF ECCS, Award No. 1201311 Phonons in Nanostructures

More information

Atomistic Green s Function Method: Density of States and Multi-dimensionality

Atomistic Green s Function Method: Density of States and Multi-dimensionality Atomistic Green s Function Method: Density of States and Multi-dimensionality Timothy S. Fisher Purdue University School of Mechanical Engineering, and Birck Nanotechnology Center tsfisher@purdue.edu Based

More information

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213 M. I. Hussein Department of Aerospace

More information

Minimum superlattice thermal conductivity from molecular dynamics

Minimum superlattice thermal conductivity from molecular dynamics Minimum superlattice thermal conductivity from molecular dynamics Yunfei Chen* Department of Mechanical Engineering and China Education Council Key Laboratory of MEMS, Southeast University, Nanjing, 210096,

More information

Multiscale phonon blocking in Si phononic crystal nanostructures

Multiscale phonon blocking in Si phononic crystal nanostructures Multiscale phonon blocking in Si phononic crystal nanostructures M. Nomura 1,2,*, Y. Kage 1, J. Nakagawa 1, T. Hori 3, J. Maire 4, J. Shiomi 3, D. Moser 5, and O. Paul 5 1 Institute of Industrial Science,

More information

First-principles Enabled Predictions of Conductive and Radiative Properties of Solids

First-principles Enabled Predictions of Conductive and Radiative Properties of Solids First-principles Enabled Predictions of Conductive and Radiative Properties of Solids Xiulin Ruan School of Mechanical Engineering and Birck Nanotechnology Center Purdue University ruan@purdue.edu UCLA

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Understanding Phonon Dynamics via 1D Atomic Chains

Understanding Phonon Dynamics via 1D Atomic Chains Understanding Phonon Dynamics via 1D Atomic Chains Timothy S. Fisher Purdue University School of Mechanical Engineering, and Birck Nanotechnology Center tsfisher@purdue.edu Nanotechnology 501 Lecture Series

More information

Heat Conduction by Molecular Dynamics Technique

Heat Conduction by Molecular Dynamics Technique Heat Conduction by Molecular Dynamics Technique Sebastian Volz National Engineering School of Mechanics and Aerotechnics Laboratory of Thermal Studies UMR CNRS 668 Poitiers, France Denis Lemonnier - Lab.

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions

Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions Electron-phonon scattering from green s function transport combined with molecular dynamics: Applications to mobility predictions Daniele Stradi www.quantumwise.com daniele.stradi@quantumwise.com Introduction

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang 1 and Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, Massachusetts,

More information

Droplet evaporation: A molecular dynamics investigation

Droplet evaporation: A molecular dynamics investigation JOURNAL OF APPLIED PHYSICS 102, 124301 2007 Droplet evaporation: A molecular dynamics investigation E. S. Landry, S. Mikkilineni, M. Paharia, and A. J. H. McGaughey a Department of Mechanical Engineering,

More information

Disparate Quasiballistic Heat Conduction Regimes from Periodic Heat Sources on a Substrate

Disparate Quasiballistic Heat Conduction Regimes from Periodic Heat Sources on a Substrate Disparate Quasiballistic Heat Conduction Regimes from Periodic Heat Sources on a Substrate Lingping Zeng 1 and Gang Chen 1,a) 1 Department of Mechanical Engineering, Massachusetts Institute of Technology,

More information

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY Proceedings of the ASME/JSME 2 8 th Thermal Engineering Joint Conference AJTEC2 March 3-7, 2, Honolulu, Hawaii, USA AJTEC2-4484 SIZE-DEPENDENT MODE FOR THIN FIM THERMA CONDUCTIVITY Alan J. H. McGaughey

More information

- Supporting Information - Diffraction of Quantum-Dots Reveals Nano-Scale Ultrafast Energy. Localization

- Supporting Information - Diffraction of Quantum-Dots Reveals Nano-Scale Ultrafast Energy. Localization - Supporting Information - Diffraction of Quantum-Dots Reveals Nano-Scale Ultrafast Energy Localization Giovanni M. Vanacore 1, Jianbo Hu 1, Wenxi Liang 1, Sergio Bietti 2, Stefano Sanguinetti 2, and Ahmed

More information

Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps

Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Carbon Nanocone: A Promising Thermal Rectifier

Carbon Nanocone: A Promising Thermal Rectifier Carbon Nanocone: A Promising Thermal Rectifier Nuo Yang 1, Gang Zhang 2, a) 3,1, b) and Baowen Li 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore,

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

Quantitatively Analyzing Phonon Spectral Contribution of Thermal. Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation

Quantitatively Analyzing Phonon Spectral Contribution of Thermal. Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation Quantitatively Analyzing Phonon Spectral Contribution of Thermal Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation II: From Time Fourier Transform Yanguang Zhou 1 1, 2, * and Ming Hu

More information

Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths

Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 3-4-2013 Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths

More information

Modeling thermal conductivity: a Green-Kubo approach

Modeling thermal conductivity: a Green-Kubo approach Modeling thermal conductivity: a Green-Kubo approach Fabiano Oyafuso, Paul von Allmen, Markus Bühler Jet Propulsion Laboratory Pasadena, CA Funding: DARPA Outline Motivation -- thermoelectrics Theory Implementation

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass Transfer 61 (2013) 287 292 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

More information

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal Page 1 Lina Yang 1, Nuo Yang 2a, Baowen Li 1,2b 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore 2

More information

Characterize Individual Phonon Mode Contribution Directly from. Non-equilibrium Molecular Dynamics Simulation

Characterize Individual Phonon Mode Contribution Directly from. Non-equilibrium Molecular Dynamics Simulation Characterize Individual Phonon Mode Contribution Directly from Non-equilibrium Molecular Dynamics Simulation Yanguang Zhou 1, Xiaoliang Zhang 2 1, 2, *, and Ming Hu 1 Aachen Institute for Advanced Study

More information

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays David A. Reis PULSE Institute, Departments of Photon Science and Applied Physics, Stanford University SLAC National Accelerator

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Heat/phonons Transport in Nanostructures and Phononics

Heat/phonons Transport in Nanostructures and Phononics ELTE, Budapest 14 May, 2009 Heat/phonons Transport in Nanostructures and Phononics LI Baowen ( 李保文 ) Centre for Computational Science and Engineering, FOS, & Department of Physics NUS Graduate School for

More information

The effects of diameter and chirality on the thermal transport in free-standing and supported carbonnanotubes

The effects of diameter and chirality on the thermal transport in free-standing and supported carbonnanotubes Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 6-4-2012 The effects of diameter and chirality on the thermal transport in free-standing and supported carbonnanotubes

More information

The lattice thermal conductivity of a semiconductor nanowire

The lattice thermal conductivity of a semiconductor nanowire JOURNAL OF APPLIED PHYSICS 99, 438 2006 The lattice thermal conductivity of a semiconductor nanowire Mei-Jiau Huang, a Wen-Yen Chong, and Tai-Ming Chang Department of Mechanical Engineering, National Taiwan

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Phonon School May 21-22, 2102 PROGRAM

Phonon School May 21-22, 2102 PROGRAM Phonon School May 21-22, 2102 PROGRAM Phonon School Registration: Monday: Tuesday: 8:00-1:00 Engineering Hall Lobby 3:00-5:00 Engineering Hall Lobby 5:30-7:30 Union South, Varsity Lounge Technical program

More information

Phonon Coherent Resonance and Its Effect on Thermal Transport In. Core-Shell Nanowires

Phonon Coherent Resonance and Its Effect on Thermal Transport In. Core-Shell Nanowires Phonon Coherent Resonance and Its Effect on Thermal Transport In Core-Shell Nanowires Jie Chen, 1 Gang Zhang, 2, 1, 3, and Baowen Li 1 Department of Physics and Centre for Computational Science and Engineering,

More information

Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires

Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires NANO LETTERS 2008 Vol. 8, No. 1 276-0 Nuo Yang, Gang Zhang,*, and Baowen Li, Department of Physics and Centre for Computational Science

More information

Physics and methods of altering thermal conductivity in nanostructures

Physics and methods of altering thermal conductivity in nanostructures 1 - Pearson Physics and methods of altering thermal conductivity in nanostructures Richard L. Pearson III University of Denver Graduate Comprehensive Exam: Written January 15, 2013 richard.pearson@du.edu

More information

Lecture 11: Coupled Current Equations: and thermoelectric devices

Lecture 11: Coupled Current Equations: and thermoelectric devices ECE-656: Fall 011 Lecture 11: Coupled Current Euations: and thermoelectric devices Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 9/15/11 1 basic

More information

Introduction to Granular Physics and Modeling Methods

Introduction to Granular Physics and Modeling Methods Introduction to Granular Physics and Modeling Methods Stefan Luding MSM, TS, CTW, UTwente, NL Stefan Luding, s.luding@utwente.nl MSM, TS, CTW, UTwente, NL Granular Materials Real: sand, soil, rock, grain,

More information

Accepted Manuscript Not Copyedited

Accepted Manuscript Not Copyedited Heat Dissipation Mechanism at Carbon Nanotube Junctions on Silicon Oxide Substrate Liang Chen e-mail: lchen64@gatech.edu ABSTRACT Satish Kumar e-mail: satish.kumar@me.gatech.edu G.W. Woodruff School of

More information

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation

Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Symmetry of the linearized Boltzmann equation: Entropy production and Onsager-Casimir relation Shigeru TAKATA ( 髙田滋 ) Department of Mechanical Engineering and Science, (also Advanced Research Institute

More information

Research Article Isotope Effect on the Thermal Conductivity of Graphene

Research Article Isotope Effect on the Thermal Conductivity of Graphene Nanomaterials Volume 2, Article ID 537657, 5 pages doi:.55/2/537657 Research Article Isotope Effect on the Thermal Conductivity of Graphene Hengji Zhang, Geunsik Lee, Alexandre F. Fonseca, 2 Tammie L.

More information

Title: Modal analysis of heat transfer across crystalline Si and amorphous SiO2 interface

Title: Modal analysis of heat transfer across crystalline Si and amorphous SiO2 interface Title: Modal analysis of heat transfer across crystalline Si and amorphous SiO2 interface Authors: Kiarash Gordiz 1,*, Murali Gopal Muraleedharan 2,*, Asegun Henry 3** Affiliations: 1 Department of Physics,

More information

New thermal mechanisms in sub-10nm structures

New thermal mechanisms in sub-10nm structures New thermal mechanisms in sub-10nm structures Sebastian Volz Laboratoire d Energétique Moléculaire et Macroscopique, Combustion CNRS - Ecole Centrale Paris - France Seminar at Mechanical Engineering Dpt,

More information

Slip Boundary Conditions in Ballistic Diffusive Heat Transport in Nanostructures

Slip Boundary Conditions in Ballistic Diffusive Heat Transport in Nanostructures NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING 217, VOL. 21, NO. 3, 159 176 https://doi.org/1.18/15567265.217.1344752 Slip Boundary Conditions in Ballistic Diffusive Heat Transport in Nanostructures

More information

Effect of Adsorption in Flow of Gases in Organic Nanopores: A Molecular Dynamics Study. Mohammad Kazemi Ali Takbiri-Borujeni West Virginia University

Effect of Adsorption in Flow of Gases in Organic Nanopores: A Molecular Dynamics Study. Mohammad Kazemi Ali Takbiri-Borujeni West Virginia University Effect of Adsorption in Flow of Gases in Organic Nanopores: A Molecular Dynamics Study Mohammad Kazemi Ali Takbiri-Borujeni West Virginia University Multiscale Nature of Gas production Slide 2 Slide 3

More information

EFFECTS OF CONFINEMENT AND SURFACE RECONSTRUCTION ON THE LATTICE DYNAMICS AND THERMAL TRANSPORT PROPERTIES OF THIN FILMS

EFFECTS OF CONFINEMENT AND SURFACE RECONSTRUCTION ON THE LATTICE DYNAMICS AND THERMAL TRANSPORT PROPERTIES OF THIN FILMS Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference Vancouver, British Columbia, CANADA, July 8-12, 2007 HT2007-32274 EFFECTS OF CONFINEMENT AND SUACE RECONSTRUCTION

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Carnegie Mellon University Carnegie Institute of Technology

Carnegie Mellon University Carnegie Institute of Technology Carnegie Mellon University Carnegie Institute of Technology THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy TITLE THERMAL TRANSPORT BY PHONONS ACROSS

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

Curriculum Vitae ASEGUN HENRY

Curriculum Vitae ASEGUN HENRY Curriculum Vitae ASEGUN HENRY Assistant Professor Woodruff School of Mechanical Engineering School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0405 Email: ase@gatech.edu

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Heat Transfer at Intersects

Heat Transfer at Intersects Heat Transfer at Intersects Gang CHEN Abstract Research over the past three decades in understanding micro/nanoscale heat transfer phenomena and mechanisms has significantly broadened our knowledge base

More information

Systematic Closure Approximations for Multiscale Simulations

Systematic Closure Approximations for Multiscale Simulations Systematic Closure Approximations for Multiscale Simulations Qiang Du Department of Mathematics/Materials Sciences Penn State University http://www.math.psu.edu/qdu Joint work with C. Liu, Y. Hyon and

More information

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems THE JOURNAL OF CHEMICAL PHYSICS 124, 184101 2006 Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems Igor V. Pivkin and George E. Karniadakis a Division of Applied Mathematics,

More information

Non-Continuum Energy Transfer: Overview

Non-Continuum Energy Transfer: Overview Non-Continuum Energy Transfer: Overview D. B. Go Slide 1 Topics Covered To Date Conduction - transport of thermal energy through a medium (solid/ liquid/gas) due to the random motion of the energy carriers

More information

Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice

Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice Appl. Phys. A (2016) 122:777 DOI 10.1007/s00339-016-0309-z Direct measurement of coherent thermal phonons in Bi 2 Te 3 /Sb 2 Te 3 superlattice Feng He 1,2 Wenzhi Wu 1,3 Yaguo Wang 1,2 Received: 11 May

More information

Behaviour of microscale gas flows based on a power-law free path distribution function

Behaviour of microscale gas flows based on a power-law free path distribution function Behaviour of microscale gas flows based on a power-law free path distribution function Nishanth Dongari, Yonghao Zhang and Jason M Reese Department of Mechanical Engineering, University of Strathclyde,

More information

DSMC simulations of thermal escape

DSMC simulations of thermal escape DSMC simulations of thermal escape Alexey N. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin Materials Science & Engineering University of Virginia, USA Financial support is provided by NASA through Planetary

More information

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen Electronic Transport Peter Kratzer Faculty of Physics, University Duisburg-Essen molecular electronics = e2 n m Paul Drude (1863-1906) molecular electronics = e2 n m Paul Drude (1863-1906) g = e2 h N ch

More information

Noncontact thermal characterization of multiwall carbon nanotubes

Noncontact thermal characterization of multiwall carbon nanotubes JOURNAL OF APPLIED PHYSICS 97, 064302 2005 Noncontact thermal characterization of multiwall carbon nanotubes Xinwei Wang, a Zhanrong Zhong, and Jun Xu Department of Mechanical Engineering, N104 Walter

More information

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS Proceedings of HT 2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8 12, 2007, Vancouver, British Columbia, Canada HT2007-1520 MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY

More information

Defining interfacial thermal resistance between carbon nanotube and polymer with molecular dynamics method

Defining interfacial thermal resistance between carbon nanotube and polymer with molecular dynamics method Defining interfacial thermal resistance between carbon nanotube and polymer with molecular dynamics method Yuxiang i, Yann Chalopin, Hung Le Kanh 2, Pierre Lebarny 2, Laurent Divay 2, Sebastian Volz :

More information

MONTE CARLO METHODS FOR SOLVING THE BOLTZMANN TRANSPORT EQUATION

MONTE CARLO METHODS FOR SOLVING THE BOLTZMANN TRANSPORT EQUATION CHAPTER 7 MONTE CARLO METHODS FOR SOLVING THE BOLTZMANN TRANSPORT EQUATION Jean-Philippe M. Péraud, Colin D. Landon, & Nicolas G. Hadjiconstantinou Department of Mechanical Engineering, Massachusetts Institute

More information

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang

Introduction of Nano Science and Tech. Thermal and Electric Conduction in Nanostructures. Nick Fang Introduction of Nano Science and Tech Thermal and Electric Conduction in Nanostructures Nick Fang Course Website: nanohub.org Compass.illinois.edu ME 498 2006-09 Nick Fang, University of Illinois. All

More information

Nanophononics. Zlatan Aksamija. Thermal Generation, Transport, and Conversion at the Nanoscale. edited by

Nanophononics. Zlatan Aksamija. Thermal Generation, Transport, and Conversion at the Nanoscale. edited by Nanophononics Thermal Generation, Transport, and Conversion at the Nanoscale edited by Nanophononics Nanophononics Thermal Generation, Transport, and Conversion at the Nanoscale edited by Published by

More information

EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS

EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS Numerical Heat Transfer, Part B, 46: 429 446, 2004 Copyright # Taylor & Francis Inc. ISSN: 1040-7790 print/1521-0626 online DOI: 10.1080=10407790490487514 EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner Massachusetts Institute of Technology,

More information

Computational modeling & design of soft matter for engineering applications Thomas M. Truskett

Computational modeling & design of soft matter for engineering applications Thomas M. Truskett Computational modeling & design of soft matter for engineering applications Thomas M. Truskett Graduate student recruiting weekend 2015 Inverse design of self-assembling nanocrystalline materials: From

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

Laudatio of Kazuo Aoki for the Levi Civita Prize 2013

Laudatio of Kazuo Aoki for the Levi Civita Prize 2013 Laudatio of Kazuo Aoki for the Levi Civita Prize 2013 Kazuo Aoki was born in Kyoto, Japan in 1950. He obtained his degrees of Bachelor of Engineering (in 1973) and Master of Engineering (in 1975) at the

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information