a (Å)

Size: px
Start display at page:

Download "a (Å)"

Transcription

1 Supplementary Figures a Intens ity (a.u.) x=0.09 x=0.07 x=0.06 x=0.05 x=0.04 x=0.03 x=0.02 x=0.01 x=0.00 P 1- x S 2x/3 Se θ (deg.) a (Å) This work Vegard's law x (mol.) Supplementary Figure 1. Phase characterization. The X-ray diffraction patterns (a) and lattice parameters for P 1-x S 2x/3 Se (x = 0~0.09) solid solutions. ΔK (nm - 1 ) x = 0.00 x = 0.01 x = 0.03 x = 0.05 x = K 2 C (nm - 2 ) Supplementary Figure 2. The modified Williamson-Hall plots. The peak roadening analysis y the modified Williamson-Hall plots for P 1-x S 2x/3 Se (x = 0~0.07) solid solutions according to the XRD data.

2 a P 0.96 S Se P 0.96 S Se 1 µm 0.5 µm c P 0.93 S Se d P 0.93 S Se 1 µm 0.5 µm Supplementary Figure 3. Microstructures of P 0.96 S Se and P 0.93 S Se. Dislocations in P 0.96 S Se (a, ) and P 0.93 S Se (c, d), confirming the increased dislocation density with increasing S 2 Se 3 concentration.

3 Accumulative κ L (W m - 1 K - 1 ) a U- and N- s cattering PSe at 300 K Mean- free path (nm) Accumulative reduction in κ L (W m - 1 K - 1 ) Point defects Dis locations Point defects and dis lcations P 0.95 S Se at 300 K Frequency (THz) Supplementary Figure 4. Predictions of lattice thermal conductivity using Born-von Karman approximation. Predicted mean-free path dependent accumulative lattice thermal conductivity for PSe (a), and the predicted frequency dependent accumulative reduction in the lattice thermal conductivity for P 0.95 S 0.33 Se due to point defects and/or dislocations (). The modeling is ased on a Born-von Karman approximation and the predictions are for 300 K.

4 Supplementary Tales Supplementary Tale 1. Equations for phonon relaxation times (τ) associated with different types of scattering processes, where τ U, τ N, τ PD, τ DC and τ DS are the relaxation times due to the scattering of Umklapp processes, Normal processes, point defects, dislocation cores and dislocation strains, respectively. Types of scattering mechanisms Relaxation times (τ (s 1 )) 1 Umklapp processes τ 1 2 k B V0 3γ 2 ω 2 T U = (6π 2 ) 1 3 M5v 3 1 Normal processes τ 1 2 k B V0 3γ 2 ω 2 T N = (6π 2 ) 1 3 M5v 3 Point defects τ PD 1 = V (ω 4 4πv 3. x i i 4 3 V) Dislocation cores τ 1 DC = N D Dislocation strains 12 M i M M ε` 9 a i a a ; 2 < τ 1 DS = A B 2 D γ 2 ω r r v 2 2 L v T v 3 ω3 Supplementary Tale 2. Parameters used for the Deye modeling. Parameters Description Values Ref. β ratio of N- to U- processes 4 1, estimated V" Average atomic volume of P 1-x S 2x/3 Se a 3 i /8 m 3 - M" Average atomic mass for P 1-x S 2x/3 Se M P1-xS2x/3Se /( ) kg - v Average sound speed 1787 m s -1 This work v L Longitudinal sound speed 3150 m s -1 This work v T Transverse sound speed 1600 m s -1 This work γ Gruneisen parameter 1.7 x i Impurities concentration in solid solutions x S 0.07 This work M i Atomic mass of impurities Μ S = g mol -1 - M Atomic mass of matrix Μ P = g mol -1 - ε` Anharmonic parameter 64 a i Lattice parameters for P 1-x S 2x/3 Se x i Å This work A Lattice parameters for PSe Å This work N D Dislocation density of P 1-x S 2x/3 Se [60(x i -0.01)+1] x i 0.01 cm -2 This work B D Burgers vector m This work A Pre-factor for dislocation scattering 0.96 r Poisson s ratio

5 Supplementary Tale 3. Parameters used for the modified Williamson-Hall model. Parameters Description Value Ref. θ B Diffraction angle at the exact Bragg position This work hkl Indices of crystal plane (200) (220) (400) (420) (422) - Δ2θ Full width at half-maximum (FWHM) of the corresponding diffraction peak at θ B This work λ Wavelength of the synchrotron X-ray 6.87 Å - K K=2sinθ B /λ 2sinθ B /λ ΔK ΔK=(Δ2θ)cosθ B /λ (Δ2θ)cosθ B /λ A Parameter determined y the effective outer cut-off radius of dislocations 2.6 B D Burgers vector m This work C Average dislocation contrast factor C h00 (1-q(h 2 k 2 +h 2 l 2 +k 2 l 2 )/(h 2 +k 2 +l 2 ) 2 ) Average dislocation contrast factor C h00 corresponding to the h00 reflection determining This work, y elastic modulus q Parameter determined y the elastic modulus -2.7 This work, c 11 c 12 c GPa Elastic modulus 19.3 GPa 15.9 GPa O Non-interpreted higher-order error terms Not included in this work d Average crystallite size nm This work, fitted N D Dislocation density m -2 This work, fitted 7 8 Supplementary Tale 4. Mechanical strength measured y modified small punch (MSP) technique for several materials at room temperature. Composition of compounds Thickness of samples (mm) Load at failure (N) MSP strength (MPa) PSe Na 0.02 P 0.98 Te P 0.98 S Se P 0.95 S Se P 0.95 S Se P 0.93 S Se P 0.93 S Se

6 Supplementary Discussion To etter understand the mean free path and the frequency dependent lattice thermal conductivity (κ L ) accumulation, it is elieved to e more precise if taking the effect of reduced phonon group velocity at high phonon energies into account 9, 10. This leads the Born-von Karman 11 dispersion relationship to e more reliale than that of Deye model. This improvement has een adopted to understand the lattice thermal conductivity of ulk and low-dimensional thermoelectrics or metals including Si-Ge 12 and PTe 13, silver 14 and Al-Si etc. 15. Using the same method, we modeled the phonon transport for PSe, ased on a Born-von-Karman type phonon dispersion of ω = 2vq/πSin(2q/q c π) rather than the Deye type assuming ω = vq, where ω is the phonon frequency, v is the sound velocity, q is the wave vector and q c is the cut-off wave vector. The predicted accumulative κ L due to Umklapp and Normal scattering in pure PSe, helps us understand the important range of mean free path that contriutes to heat conduction. Furthermore, the predicted phonons frequency dependent accumulative reduction in κ L distinguishes the effect of each scattering mechanism. As shown in the Supplementary Fig. 4a, 50% of the heat in pure PSe is carried y phonon of mean-free path up to 13 nm and the central 80% heat is carried y mean-free path (MFP) etween 4 nm and 400 nm at 300 K. As compared with the availale prediction y first-principles calculations 16, which includes the contriutions of optical phonons (with even shorter MFPs) and results in a higher lattice thermal conductivity, the current model prediction shows a very good agreement on the normalized κ L -accumulation within the overlapped range of MFP. The randomly distriuted dense in-grain dislocations here roughly enale a range of mean-free path to e achieved for reducing the lattice thermal conductivity y 50% at the 300 K (Fig. 3a). It is shown that dense in-grain dislocations, indeed lead to an effective scattering of phonons with mid-frequencies and therefore a significantly reduced lattice thermal conductivity (Supplementary Fig. 4). The mechanical property measurements were carried out y modified small punch (MSP) technique 17, a method has een successfully used to characterize the mechanical strength of thermoelectric materials 18, 19. For the MSP measurements, the disk sample was supported y a die with a center hole of 3.93 mm in diameter, and was punched y a cylindrical pressure head of 2.35 mm in diameter with a speed of 0.05 mm min -1. All of the specimens were fine polished and the load was monitored y a high-accuracy transducer. The MSP strength σ MSP can e calculated via: σ MSP = 3P max /(2πt 2 )[1-(1-ν 2 )/4 2 /a 2 +(1+ ν)ln(a/)], where P max is the measured load at failure, t is the thickness of the sample, ν is the Poisson s ratio which is estimated as for PSe-ased materials and as for PTe-ased materials, a is radius of the center hole and is the radius of pressure head, respectively. The mechanical strength is otained y averaging 3~5 samples for each composition, and the results for P 1-x S 2x/3 Se, PSe and PTe are shown in Supplementary Tale 4. One may claim that the mechanical strength of P 1-x S 2x/3 Se decreases a little with increasing density of dislocations (increasing x), however, the strength for samples with dense dislocations is still comparale to that of PTe without dislocations. Therefore, dense in-grain dislocations here do not degrade the mechanical strength to e unacceptale.

7 Supplementary References 1. Wang H, Pei Y, LaLonde AD, Snyder GJ. Weak electron- phonon coupling contriuting to high thermoelectric performance in n- type PSe. Proc Natl Acad Sci USA 109, (2012). 2. Ravich YI, Efimova BA, Smirnov IA. Semiconducting Lead Chalcogenides (Plenum Press, 1970). 3. Wang H, Wang J, Cao X, Snyder GJ. Thermoelectric alloys etween PSe and PS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry A 2, 3169 (2014). 4. Kemp WRG, Klemens PG, Tainsh RJ. The lattice thermal conductivity of copper alloys: Effect of plastic deformation and annealing. Philos Mag 4, (1959). 5. Ungár T, Dragomir I, Revesz A, Borély A. The contrast factors of dislocations in cuic crystals: the dislocation model of strain anisotropy in practice. Journal of applied crystallography 32, (1999). 6. Ungar T, Ott S, Sanders P, Borély A, Weertman J. Dislocations, grain size and planar faults in nanostructured copper determined y high resolution X- ray diffraction and a new procedure of peak profile analysis. Acta Mater 46, (1998). 7. Riárik G. Modeling of diffraction patterns ased on microstructural properties. (ed^(eds). Institute of Physics (2008). 8. Lippmann G, Kästner P, Wanninger W. Elastic constants of PSe. physica status solidi (a) 6, K159- K161 (1971). 9. Ashcroft N, Mermin N. Solid State Physics (Harcourt Brace College, 1976). 10. Ziman JM. Electrons and phonons: the theory of transport phenomena in solids (Oxford University Press, 1960). 11. Born M, von Kármán T. On fluctuations in spatial grids. Physikalische Zeitschrift 13, 18 (1912). 12. Dames C. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys 982 (2004). 13. Greig D. Thermoelectricity and Thermal Conductivity in the Lead Sulfide Group of Semiconductors. Phys Rev 120, (1960). 14. Leighton RB. The Virational Spectrum and Specific Heat of a Face- Centered Cuic Crystal. Rev Mod Phys 20, (1948). 15.Reddy P, Castelino K, Majumdar A. Diffuse mismatch model of thermal oundary conductance using exact phonon dispersion. Appl Phys Lett 87, (2005). 16. Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G. Phonon conduction in PSe, PTe, and PTe 1 x Se x from first- principles calculations. Phys Rev B 85, (2012). 17. Li J- F, Pan W, Sato F, Watanae R. Mechanical properties of polycrystalline Ti 3 SiC 2 at amient and elevated temperatures. Acta Mater 49, (2001). 18. Pan Y, Wei T- R, Cao Q, Li J- F. Mechanically enhanced p- and n- type Bi 2 Te 3 - ased thermoelectric materials reprocessed from commercial ingots y all milling and spark plasma sintering. Materials Science and Engineering: B 197, (2015). 19. Li J, et al. BiSTe Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties. Adv Funct Mater 23, (2013).

Supporting Information

Supporting Information Supporting Information Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature Yong Kyu Lee,, Kyunghan Ahn, Joonil Cha,, Chongjian Zhou, Hyo Seok Kim,

More information

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires Bull. Mater. Sci., Vol. 4, No. 3, June 217, pp. 599 67 DOI 1.17/s1234-17-1393-1 Indian Academy of Sciences Carrier concentration effect and other structure-related parameters on lattice thermal conductivity

More information

Low Effective Mass Leading to High Thermoelectric Performance

Low Effective Mass Leading to High Thermoelectric Performance Low Effective Mass Leading to High Thermoelectric Performance 3 Yanzhong Pei, Aaron D. LaLonde, Heng Wang and G. Jeffrey Snyder Materials Science, California Institute of Technology, Pasadena, CA 9, USA.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Soft Phonon Modes from Off-center Ge atoms Lead to

More information

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics

Thermal conductivity of bulk nanostructured lead telluride. in the view of phonon gas kinetics Thermal conductivity of bulk nanostructured lead telluride in the view of phonon gas kinetics Takuma Hori 1, Gang Chen 2, and Junichiro Shiomi 1,3,(a) 1 Department of Mechanical Engineering, The University

More information

Thermoelectrics: A theoretical approach to the search for better materials

Thermoelectrics: A theoretical approach to the search for better materials Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Large Enhancement of Thermoelectric Properties in

More information

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon School @ UWM 1 Classical MD simulations use an empirical potential fitted

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Model of transport properties of thermoelectric nanocomposite materials

Model of transport properties of thermoelectric nanocomposite materials PHYSICAL REVIEW B 79, 205302 2009 Model of transport properties of thermoelectric nanocomposite materials A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas Department of Physics, University of South

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Enhancing thermoelectric performance in hierarchically structured BiCuSeO by. increasing bond covalency and weakening carrier-phonon coupling

Enhancing thermoelectric performance in hierarchically structured BiCuSeO by. increasing bond covalency and weakening carrier-phonon coupling Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Enhancing thermoelectric performance in hierarchically

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Functional properties

Functional properties Functional properties Stéphane Gorsse ICMCB gorsse@icmcb-bordeaux.cnrs.fr Action Nationale de Formation en Métallurgie 22-25/10/2012 - Aussois Functional properties and microstructural features in ceramics

More information

Thermal conductivity of symmetrically strained Si/Ge superlattices

Thermal conductivity of symmetrically strained Si/Ge superlattices Superlattices and Microstructures, Vol. 28, No. 3, 2000 doi:10.1006/spmi.2000.0900 Available online at http://www.idealibrary.com on Thermal conductivity of symmetrically strained Si/Ge superlattices THEODORIAN

More information

Improvement of the Thermoelectric Properties of (Sr 0.9 La 0.1 ) 3 Ti 2 O 7 by Ag Addition

Improvement of the Thermoelectric Properties of (Sr 0.9 La 0.1 ) 3 Ti 2 O 7 by Ag Addition J Low Temp Phys (2013) 173:80 87 DOI 10.1007/s10909-013-0885-7 Improvement of the Thermoelectric Properties of (Sr 0.9 La 0.1 ) 3 Ti 2 O 7 by Ag Addition G.H. Zheng Z.H. Yuan Z.X. Dai H.Q. Wang H.B. Li

More information

Higher Order Elastic Constants of Thorium Monochalcogenides

Higher Order Elastic Constants of Thorium Monochalcogenides Bulg. J. Phys. 37 (2010) 115 122 Higher Order Elastic Constants of Thorium Monochalcogenides K.M. Raju Department of Physics, Brahmanand P.G. College, Rath (Hamirpur), Uttar Pradesh, 210 431, India Received

More information

Case Study: Residual Stress Measurement

Case Study: Residual Stress Measurement Case Study: Residual Stress Measurement Life Prediction/Prognostics 15 Alternating Stress [MPa] 1 5 1 2 service load natural life time with opposite residual stress intact (no residual stress) increased

More information

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES Song Mei, Zlatan Aksamija, and Irena Knezevic Electrical and Computer Engineering Department University of Wisconsin-Madison This work was supported

More information

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN

Materials & Properties II: Thermal & Electrical Characteristics. Sergio Calatroni - CERN Materials & Properties II: Thermal & Electrical Characteristics Sergio Calatroni - CERN Outline (we will discuss mostly metals) Electrical properties - Electrical conductivity o Temperature dependence

More information

Fig. 2. Intersection between X-ray and diffracted beams. 2θ 1 (1) (2) (3) (4) method.

Fig. 2. Intersection between X-ray and diffracted beams. 2θ 1 (1) (2) (3) (4) method. 2017A-E10 Program Title An attempt to measure strains of coarse grains and micro area using double exposure method 1), 2) 3) 3) 4) Username : K. Suzuki 1), T. Shobu 2) R. Yasuda 3) A. Shiro 3) Y. Kiso

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Methods Materials Synthesis The In 4 Se 3-δ crystal ingots were grown by the Bridgeman method. The In and Se elements were placed in an evacuated quartz ampoule with an excess of In (5-10

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Reduced Lattice Thermal Conductivity in Bi-doped Mg 2 Si 0.4 Sn 0.6

Reduced Lattice Thermal Conductivity in Bi-doped Mg 2 Si 0.4 Sn 0.6 Reduced Lattice Thermal Conductivity in Bi-doped Mg 2 Si 0.4 Sn 0.6 Peng Gao 1, Xu Lu 2, Isil Berkun 3, Robert D. Schmidt 1, Eldon D. Case 1 and Timothy P. Hogan 1,3 1. Department of Chemical Engineering

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

Supporting Information

Supporting Information Supporting Information Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg (Si,Sn) and Estimation of Optimum Thermoelectric Performance Abdullah S. Tazebay 1,

More information

Size-dependent model for thin film and nanowire thermal conductivity

Size-dependent model for thin film and nanowire thermal conductivity AIP/23-QED Size-dependent model for thin film and nanowire thermal conductivity Alan J. H. McGaughey,, a) Eric S. Landry,, 2 Daniel P. Sellan, 3 and Cristina H. Amon, 3 ) Department of Mechanical Engineering,

More information

High-temperature thermoelectric behavior of lead telluride

High-temperature thermoelectric behavior of lead telluride PRAMANA c Indian Academy of Sciences Vol. 62, No. 6 journal of June 24 physics pp. 139 1317 High-temperature thermoelectric behavior of lead telluride M P SINGH 1 and C M BHANDARI 2 1 Department of Physics,

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics

Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics Materials Science-Poland, Vol. 27, No. 3, 2009 Relaxor characteristics of ferroelectric BaZr 0.2 Ti 0.8 O 3 ceramics C. FU 1, 2*, F. PAN 1, W. CAI 1, 2, X. DENG 2, X. LIU 2 1 School of Materials Science

More information

Semiclassical Phonon Transport in the Presence of Rough Boundaries

Semiclassical Phonon Transport in the Presence of Rough Boundaries Semiclassical Phonon Transport in the Presence of Rough Boundaries Irena Knezevic University of Wisconsin - Madison DOE BES, Award No. DE-SC0008712 NSF ECCS, Award No. 1201311 Phonons in Nanostructures

More information

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY Proceedings of the ASME/JSME 2 8 th Thermal Engineering Joint Conference AJTEC2 March 3-7, 2, Honolulu, Hawaii, USA AJTEC2-4484 SIZE-DEPENDENT MODE FOR THIN FIM THERMA CONDUCTIVITY Alan J. H. McGaughey

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

Impact of size and temperature on thermal expansion of nanomaterials

Impact of size and temperature on thermal expansion of nanomaterials PRAMANA c Indian Academy of Sciences Vol. 84, No. 4 journal of April 205 physics pp. 609 69 Impact of size and temperature on thermal expansion of nanomaterials MADAN SINGH, and MAHIPAL SINGH 2 Department

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass Bull. Mater. Sci., Vol. 9, No. 4, August 6, pp. 357 363. Indian Academy of Sciences. Acoustic study of nano-crystal embedded PbO P O 5 glass SUDIP K BATABYAL, A PAUL, P ROYCHOUDHURY and C BASU* Department

More information

Supporting Information. Potential semiconducting and superconducting metastable Si 3 C. structures under pressure

Supporting Information. Potential semiconducting and superconducting metastable Si 3 C. structures under pressure Supporting Information Potential semiconducting and superconducting metastable Si 3 C structures under pressure Guoying Gao 1,3,* Xiaowei Liang, 1 Neil W. Ashcroft 2 and Roald Hoffmann 3,* 1 State Key

More information

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

CHARACTERIZATION AND SELECTED PHYSICAL PROPERTIES OF CdTe/MnTe SHORT PERIOD STRAINED SUPERLATTICES*

CHARACTERIZATION AND SELECTED PHYSICAL PROPERTIES OF CdTe/MnTe SHORT PERIOD STRAINED SUPERLATTICES* Vol. 90 (1996) ACTA PHYSICA POLONICA A Νo. 5 Proceedings of the XXV International School of Semiconducting Compounds, Jaszowiec 1996 CHARACTERIZATION AND SELECTED PHYSICAL PROPERTIES OF CdTe/MnTe SHORT

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Elastic properties of graphene

Elastic properties of graphene Elastic properties of graphene M. I. Katsnelson P. Le Doussal B. Horowitz K. Wiese J. Gonzalez P. San-Jose V. Parente B. Amorim R. Roldan C. Gomez-Navarro J. Gomez G. Lopez-Polin F. Perez-Murano A. Morpurgo

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1 Cross-sectional morphology and Chemical composition. (a) A low-magnification dark-field TEM image shows the cross-sectional morphology of the BWO thin film

More information

Sound Attenuation at High Temperatures in Pt

Sound Attenuation at High Temperatures in Pt Vol. 109 006) ACTA PHYSICA POLONICA A No. Sound Attenuation at High Temperatures in Pt R.K. Singh and K.K. Pandey H.C.P.G. College, Varanasi-1001, U.P., India Received October 4, 005) Ultrasonic attenuation

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

Thermal Conductivity in Superlattices

Thermal Conductivity in Superlattices 006, November Thermal Conductivity in Superlattices S. Tamura Department of pplied Physics Hokkaido University Collaborators and references Principal Contributors: K. Imamura Y. Tanaka H. J. Maris B. Daly

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2

Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2 Supplementary Table 1. Parameters for estimating minimum thermal conductivity in MoS2 crystal. The three polarizations (TL1 TL2 and TA) are named following the isoenergydecomposition process described

More information

STRUCTURE PERFECTION STUDY OF CRYSTALS CONTAINING MICRO- AND MACRODISTORTIONS BY X-RAY ACOUSTIC METHOD V.I. KHRUPA,, D.O. GRIGORYEV AND A.YA.

STRUCTURE PERFECTION STUDY OF CRYSTALS CONTAINING MICRO- AND MACRODISTORTIONS BY X-RAY ACOUSTIC METHOD V.I. KHRUPA,, D.O. GRIGORYEV AND A.YA. Vol. 86 (1994) ACTA PHYSICA POLONICA Α No. 4 Proceedings of tle ISSSRNS,94, Jaszowiec 1994 STRUCTURE PERFECTION STUDY OF CRYSTALS CONTAINING MICRO- AND MACRODISTORTIONS BY X-RAY ACOUSTIC METHOD V.I. KHRUPA,,

More information

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm).

Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Supplementary Figure 1 Characterization of the synthesized BP crystal (a) Optical microscopic image of bulk BP (scale bar: 100 μm). Inset shows as-grown bulk BP specimen (scale bar: 5 mm). (b) Unit cell

More information

Basics and Means of Positron Annihilation

Basics and Means of Positron Annihilation Basics and Means of Positron Annihilation Positron history Means of positron annihilation positron lifetime spectroscopy angular correlation Doppler-broadening spectroscopy Near-surface positron experiments:

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen Thermoelectric materials Presentation in MENA5010 by Simen Nut Hansen Eliassen Outline Motivation Background Efficiency Thermoelectrics goes nano Summary https://flowcharts.llnl.gov/archive.html Waste

More information

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N 5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Crystal structure of 1T -MoTe 2. (a) HAADF-STEM image of 1T -MoTe 2, looking down the [001] zone (scale bar, 0.5 nm). The area indicated by the red rectangle

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

Thermionic power generation at high temperatures using SiGe/ Si superlattices

Thermionic power generation at high temperatures using SiGe/ Si superlattices JOURNAL OF APPLIED PHYSICS 101, 053719 2007 Thermionic power generation at high temperatures using SiGe/ Si superlattices Daryoosh Vashaee a and Ali Shakouri Jack Baskin School of Engineering, University

More information

Effect of Piezoelectric Polarization on Phonon Relaxation Rates in Binary Wurtzite Nitrides

Effect of Piezoelectric Polarization on Phonon Relaxation Rates in Binary Wurtzite Nitrides Effect of Piezoelectric Polarization on Phonon Relaxation Rates in Binary Wurtzite Nitrides Bijay Kumar Sahoo Department of Physics, N. I.T, Raipur, India. Email: bksahoo.phy@nitrr.ac.in Abstract The piezoelectric

More information

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018 Good Vibrations Studying phonons with momentum resolved spectroscopy D.J. Voneshen 20/6/2018 Overview What probe to use? Types of instruments. Single crystals example Powder example Thing I didn t talk

More information

MATERIAL RESEARCH. SIZE EFFECTS IN THIN PbSe FILMS

MATERIAL RESEARCH. SIZE EFFECTS IN THIN PbSe FILMS MATERIAL RESEARCH SIZE EFFECTS IN THIN PbSe FILMS E.I. Rogacheva 1, O.N. Nashchekina 1, S.I. Ol khovskaya 1, M.S. Dresselhaus ( 1 National Technical University Kharkov Polytechnic Institute, 1, Frunze

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 132-136 Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Dushyant Pradeep, U C Naithani

More information

Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire

Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire Sādhanā Vol. 35, Part 2, April 2010, pp. 177 193. Indian Academy of Sciences Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire M S OMAR andhttaha Department

More information

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics Journal: 2014 MRS Fall Meeting Manuscript ID: 2035346.R1 Manuscript Type: Symposium NN Date Submitted

More information

Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method

Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method CHINESE JOURNAL OF PHYSICS VOL. 48, NO. 3 June 2010 Thermal Stress and Strain in a GaN Epitaxial Layer Grown on a Sapphire Substrate by the MOCVD Method H. R. Alaei, 1 H. Eshghi, 2 R. Riedel, 3 and D.

More information

Supporting information:

Supporting information: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information: A Simultaneous Increase in the ZT and the Corresponding

More information

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996). 1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

Models for the electronic transport properties of thermoelectric materials. Lars Corbijn van Willenswaard

Models for the electronic transport properties of thermoelectric materials. Lars Corbijn van Willenswaard Models for the electronic transport properties of thermoelectric materials Lars Corbijn van Willenswaard August 10, 2013 1 Introduction Providing the world with sustainable energy is one of the more challenging

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Temperature dependence of microwave and THz dielectric response

Temperature dependence of microwave and THz dielectric response The 10 th European Meeting on Ferroelectricity, August 2003, Cambridge, UK Ferroelectrics, in press. Temperature dependence of microwave and THz dielectric response in Sr n+1 Ti n O 3n+1 (n=1-4) D. Noujni

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Bandgap Modulated by Electronic Superlattice in Blue Phosphorene

Bandgap Modulated by Electronic Superlattice in Blue Phosphorene Bandgap Modulated by Electronic Superlattice in Blue Phosphorene Jincheng Zhuang,,,# Chen Liu,,# Qian Gao, Yani Liu,, Haifeng Feng,, Xun Xu, Jiaou Wang, Shi Xue Dou,, Zhenpeng Hu, and Yi Du*,, Institute

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 XRD patterns and TEM image of the SrNbO 3 film grown on LaAlO 3(001) substrate. The film was deposited under oxygen partial pressure of 5 10-6 Torr. (a) θ-2θ scan, where * indicates

More information

Understanding the role and interplay of heavy hole and light hole valence bands in the thermoelectric properties of PbSe

Understanding the role and interplay of heavy hole and light hole valence bands in the thermoelectric properties of PbSe Understanding the role and interplay of heavy hole and light hole valence bands in the thermoelectric properties of PbSe Thomas C. Chasapis 1, Yeseul Lee 1, Euripides Hatzikraniotis, Konstantinos M. Paraskevopoulos,

More information

Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium

Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium The MIT Faculty has made this article openly available. Please share how this

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

3-1-2 GaSb Quantum Cascade Laser

3-1-2 GaSb Quantum Cascade Laser 3-1-2 GaSb Quantum Cascade Laser A terahertz quantum cascade laser (THz-QCL) using a resonant longitudinal optical (LO) phonon depopulation scheme was successfully demonstrated from a GaSb/AlSb material

More information

Supplementary Information: The origin of high thermal conductivity and ultra-low thermal expansion in copper-graphite composites

Supplementary Information: The origin of high thermal conductivity and ultra-low thermal expansion in copper-graphite composites Supplementary Information: The origin of high thermal conductivity and ultra-low thermal expansion in copper-graphite composites Izabela Firkowska, André Boden, Benji Boerner, and Stephanie Reich S1 Thermal

More information

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2016 Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary

More information

Hole-doping effect on the thermoelectric properties and electronic structure of CoSi

Hole-doping effect on the thermoelectric properties and electronic structure of CoSi PHYSICAL REVIEW B 69, 125111 2004 Hole-doping effect on the thermoelectric properties and electronic structure of CoSi C. S. Lue, 1, * Y.-K. Kuo, 2, C. L. Huang, 1 and W. J. Lai 1 1 Department of Physics,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

Introduction into Positron Annihilation

Introduction into Positron Annihilation Introduction into Positron Annihilation Introduction (How to get positrons? What is special about positron annihilation?) The methods of positron annihilation (positron lifetime, Doppler broadening, ACAR...)

More information

Nanoscale interfacial heat transfer: insights from molecular dynamics

Nanoscale interfacial heat transfer: insights from molecular dynamics Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France

More information