Thermoelectrics: A theoretical approach to the search for better materials

Size: px
Start display at page:

Download "Thermoelectrics: A theoretical approach to the search for better materials"

Transcription

1 Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State

2 Abram F. Ioffe The basics

3 The devices

4 The performance T 1 T 2 Q φ = = W φ MAX 2 1 ( 2 1) κ I R /2 2 SI( T2 T1) + I R SIT T T T ZT T2 / T 1 = ( T2 T1) 1+ ZT + 1 Z + T1 ( T T) 2 1 Z = σ S κ 2

5 Conductivity 101 Drude + Sommefeld σ = e 2 n m τ -q q

6 Conductivity 101 y x J = e f ( ) 0 ε v = 0 J = e f v 0

7 f f f H H + = t p r r p f t f {, } H f = t coll d dt ρ 1 i ( t) = H + H ( t), ρ ( t)

8 f f f H H + = t p r r p f t f {, } H f = t coll d dt ρ 1 i ( t) = H + H ( t), ρ ( t)

9 f f f f dr d + + = t dt r dt t coll

10 f f f f dr d + + = t dt r dt t coll f t = 0 f r = 0

11 d dt f f = t coll

12 d dt f f = t coll d 1 dp ee = = dt dt

13 d dt f f = t coll d 1 dp ee = = dt dt ( ε ) ( ε ) ( ε ) f f ε f = = ε ε v

14 d dt f f = t coll d 1 dp ee = = dt dt f t ( ε ) ( ε ) ( ε ) f f ε f ( ε ) 0 coll = = = ε ε f f τ v

15 d dt f f = t coll d 1 dp ee = = dt dt f t ( ε ) ( ε ) ( ε ) f f ε f ( ε ) 0 coll = = = ε ε f f τ v ( ) f 0 f = f 0 ε + e τ v E ε

16 d dt f f = t coll d 1 dp ee = = dt dt f t ( ε ) ( ε ) ( ε ) f f ε f ( ε ) 0 coll = = = ε ε f f τ v ( ) f 0 f = f 0 ε + e τ v E ε

17 ( ) f 0 f = f 0 ε + e τ v E ε

18 J = e f v ( ) f 0 f = f 0 ε + e τ v E ε

19 0 0 ( ) f f f e v E ε τ ε = + J e f v = 2 0 f J e vv E τ ε =

20 0 0 ( ) f f f e v E ε τ ε = + J e f v = 2 0 f J e vv E τ ε = E J = σ Ω

21 J Ω = σ J = e f v ( ) f 0 f = f 0 ε + e τ v E ε E f 2 0 J= e τ vv E ε σ = e f 2 0 τ vv ε

22 S σ = e κ e f J = σ E σs T J = σst E κ T Q τ v ε B = σ f ε τ v 0 2 ( ε µ ) T B ( ε µ ) 2 f = τ v el B ε T B Z = κ σ 0 el + S 2 κ κ κ σ ph 0 2 el = el ST

23 e 2 f f0 σ = e τ v = e dε Σ( ε) ε ε ( ε ) µ eb f ( ε µ ) ( ) f τ ε ε T B S = v = d Σ σ ε T B σ ε B 2 2 ( ε ) µ f ( ε µ ) () 2 f κel = B τ v = B dε Σ ε ε T B ε T B Σ = 2 ( ε) τ vδε ( ε) Transport distribution σ[ Σ ] S[ Σ] κel [ Σ]

24 2 f0 σ = e ( ε ) ε Σ dε S κ el ( ) B f0 ε µ = Σ( ε ) dε σ ε T B Z 2 = σ S Z[ ] 0 κ + κ = Σ Σ best el ph ( ε µ ) 2 2 f0 = B Σ( ε ) ε T B ( ε ) = Cδ ( ε ε 0) dε Σ max Z[ Σ ] = Z[ Σ ] best Σ T ε B The best thermoelectric, G. D. Mahan and J. O. Sofo Proc. Nat. Acad. Sci. USA, 93, 7436 (1996) best

25 The Best Thermoelectric ) ( ) ( ε ε δ τ ε = Σ v v ) ( ) ( ) ( 2 ε τ ε ε v N = ) ( ) ( 0 ε ε δ ε = Σ C best T ε B = ds N ε ε 1 ) ( v ε ε = ) (

26

27

28

29

30 J. O. Sofo, G. D. Mahan, Thermoelectric figure of merit of superlattices, Appl. Phys. Lett. 65, 2690 (1994).

31 J. O. Sofo, G. D. Mahan, Thermoelectric figure of merit of superlattices, Appl. Phys. Lett. 65, 2690 (1994).

32 Using Boltzman with ab-initio f 0 σ 2 = e ε τ τ v v v 1 ε 1 = p = pˆ m m C. Ambrosch-Draxl and J. O. Sofo Linear optical properties of solids within the full-potential linearized augmented planewave method Comp. Phys. Commun. 175, 1-14 (2006)

33 q q τ First Born Approximation Defect scattering Crystal defects Impurities Neutral Ionized Alloy Carrier-carrier scattering Lattice scattering Intravalley Acoustic Deformation potential Piezoelectric Optic Non-polar Polar Intervalley Acoustic Optic

34 B. R. Nag Electron Transport in Compound Semiconductors

35 B. R. Nag Electron Transport in Compound Semiconductors

36

37

38 T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo. Transport Coefficients from First-principles Calculations. Phys. Rev. B 68, (2003) Bi 2 Te 3

39

40 Georg Madsen s

41 Careful Doping: rigid band Gap problem Temperature dependence of the electronic structure. Alloys. Single site approximations do not wor. Many -points Correlated materials? Connection with magnetism and topology?

42 Ryogo Kubo

43 Linear Response Theory (Kubo) Valid only close to equilibrium 2 i ne σαβ ω δαβ αβ ω ω m 0 ( ) ( + q, = +Π q, + 0 ) β 1 iωτ n Π αβ ( qi, ωn ) = dτe Tj τ α ( q, τ) jβ ( q, τ) V 0 However Does not need well defined energy bands It is easy to incorporate most low energy excitations of the solid Amenable to diagrammatic expansions and controlled approximations Equivalent to the Boltzmann equation when both are valid.

44 Summary Loo for narrow transmission channels with high velocity Tool to explore new compounds, pressure, negative pressure. Prediction of a new compound by G. Madsen. Easy to expand adding new Scattering Mechanisms Limited to applications on non-correlated semiconductors. Magneto-Thermoelectric effects are beginning to be explored.

45 A final comment: EXPERIMENT<-> SIMULATION<->THEORY

46 Simulations describe complexity. Our theoretical wor is to mae it simple

47 Than you! Z 2 = σ S Z[ ] 0 κ + κ = Σ el ph Σ = v 2 ( ε) τ δε ( ε) Transport distribution

48 J = σ E σs T J = σst E κ T Q eq ( ) ( ) B t B L X t = µ µ µν ν ν eq ( ) χ ( ) ( ) ( ) = + Φ B t B X t dt t t X t µ µ µν ν µν ν ν ν ( s) lim Φ = µν 0 + s t eq ( ) χ ( ) ( ) ( ) = + Φ B t B X t ds s X t s µ µ µν ν µν ν ν 0 ν + + µν = χµν + Φµν 0 ( ) L ds s M. Toda, R. Kubo, N. Saitō, N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics. (Springer, Berlin, 2nd. Edition., 1992).

49 ( ) = δ δ ( ) X t t t 1 ν µκ eq ( ) = χ δ ( ) +Φ ( ) θ( ) B t B t t t t t t µ µ µκ 1 µκ 1 1 M. Toda, R. Kubo, N. Saitō, N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics. (Springer, Berlin, 2nd. Edition., 1992).

50 ( ) = δ θ( ) X t X t t ν νκ 1 B µ ( t) = + Φ > + eq Bµ + χµκ + ds Φ µκ ( s) for t < t1 0 + eq B µ ds µκ ( s) for t t1 t t 1 + ( t) ds ( s) Ψ = Φ µκ µκ t M. Toda, R. Kubo, N. Saitō, N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics. (Springer, Berlin, 2nd. Edition., 1992).

51 Onsager definition of heat flux to define the thermal conductivity Coarse graining in time Appearance of non locality through coarse graining projectors

52 Deformation Potential Calculations Bardeen, J., and W. Shocley. Deformation Potentials and Mobilities in Non-Polar Crystals. Phys. Rev. 80, (1950). D q ( ) = Van de Walle, Chris G. Band Lineups and Deformation Potentials in the Model-solid Theory. Phys. Rev. B 39, (1989). dε q dlnv Wagner, J.-M., and F. Bechstedt. Electronic and Phonon Deformation Potentials of GaN and AlN: Ab Initio Calculations Versus Experiment. Phys. Status Solidi (b) 234, (2002) Lazzeri, Michele, Claudio Attaccalite, Ludger Wirtz, and Francesco Mauri. Impact of the Electronelectron Correlation on Phonon Dispersion: Failure of LDA and GGA DFT Functionals in Graphene and Graphite. Physical Review B 78, no. 8 (August 26, 2008):

53 Relaxation time from e-p interaction f ( p) 2π dq t ( 2π ) { ( ) 1 ( ) 2 = M 3 q f p f p+ q e p ( N q 1) δ ( ε p ε p+ q ω q) N qδ ( ε p ε p+ q ω q) f p+ q f p N N ( ) 1 ( ) ( 1) ( ) ( ) } q δ ε p ε p+ q ω q qδ ε p ε p+ q ω q 1 2π = τ t dq 3 ( ) ( 2π ) 1 0 ( ) M q 2 q 2 ( ) ( ) ( N ( )) q + f + q δ ε ε ω q q + N q + f0 + q δ ( ε ε + ω + + q q) q M q = D 2 ρω q

54 The materials n-type p-type J.-P. Fleurial, DESIGN AND DISCOVERY OF HIGHLY EFFICIENT THERMOELECTRIC MATERIALS Download Design and Discovery, Jet Propulsion Laboratory/California Institute of Technology, 1993.

55 Limitations of the Boltzman Equation Method Also nown as the Kinetic Method because of the relation with classical inetic theory f f f f dr d + + = t dt r dt t According to Kubo, Toda, and Hashitsume (1) cannot be applied when the mean free path is too short (e.g., amorphous semiconductors) or the frequency of the applied fields is too high. However, it is very powerful and can be applied to non linear problems. (1) R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Non-equilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1991) p. 197 coll f H f H f f f + = { H, f } t p r r p t t coll

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

Journal of Atoms and Molecules

Journal of Atoms and Molecules Research article Journal of Atoms and Molecules An International Online Journal ISSN 77 147 Hot Electron Transport in Polar Semiconductor at Low Lattice Temperature A. K. Ghorai Physics Department, Kalimpong

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Numerical calculation of the electron mobility in ZnS and ZnSe semiconductors using the iterative method

Numerical calculation of the electron mobility in ZnS and ZnSe semiconductors using the iterative method International Journal o the Physical Sciences Vol. 5(11), pp. 1752-1756, 18 September, 21 Available online at http://www.academicjournals.org/ijps ISSN 1992-195 21 Academic Journals Full Length Research

More information

Thermoelectric Properties Modeling of Bi2Te3

Thermoelectric Properties Modeling of Bi2Te3 Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen Jet propulsion Laboratory, California Institute of Technology Funded by DARPA PROM program Overview Introduce EZTB a modeling

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION International Journal of Science, Environment and Technology, Vol. 1, No 2, 80-87, 2012 NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION H. Arabshahi,

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

High-temperature thermoelectric behavior of lead telluride

High-temperature thermoelectric behavior of lead telluride PRAMANA c Indian Academy of Sciences Vol. 62, No. 6 journal of June 24 physics pp. 139 1317 High-temperature thermoelectric behavior of lead telluride M P SINGH 1 and C M BHANDARI 2 1 Department of Physics,

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

ELECTRON MOBILITY CALCULATIONS OF n-inas

ELECTRON MOBILITY CALCULATIONS OF n-inas Digest Journal of Nanomaterials and Biostructures Vol. 6, No, April - June 0, p. 75-79 ELECTRON MOBILITY CALCULATIONS OF n-inas M. A. ALZAMIL Science Department, Teachers College, King Saud University,

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

ECE 656 Exam 2: Fall 2013 September 23, 2013 Mark Lundstrom Purdue University (Revised 9/25/13)

ECE 656 Exam 2: Fall 2013 September 23, 2013 Mark Lundstrom Purdue University (Revised 9/25/13) NAME: PUID: : ECE 656 Exam : September 3, 03 Mark Lundstrom Purdue University (Revised 9/5/3) This is a closed book exam. You may use a calculator and the formula sheet at the end of this exam. There are

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs

Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs Bulg. J. Phys. 37 (2010) 215 222 Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs H. Arabshahi 1, S. Golafrooz 2 1 Department of Physics, Ferdowsi University

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES Song Mei, Zlatan Aksamija, and Irena Knezevic Electrical and Computer Engineering Department University of Wisconsin-Madison This work was supported

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Thermionic power generation at high temperatures using SiGe/ Si superlattices

Thermionic power generation at high temperatures using SiGe/ Si superlattices JOURNAL OF APPLIED PHYSICS 101, 053719 2007 Thermionic power generation at high temperatures using SiGe/ Si superlattices Daryoosh Vashaee a and Ali Shakouri Jack Baskin School of Engineering, University

More information

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS

AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS Int. J. Chem. Sci.: 10(3), 01, 1419-147 ISSN 097-768X www.sadgurupublications.com AN EVALUATION OF OPTICAL CONDUCTIVITY OF PROTOTYPE NON-FERMI LIQUID KONDO ALLOYS A. K. SINGH * and L. K. MISHRA a Department

More information

Thermoelectric materials for energy harvesting new modelling tools with predictive power

Thermoelectric materials for energy harvesting new modelling tools with predictive power Thermoelectric materials for energy harvesting new modelling tools with predictive power Ole Martin Løvvik 1,2 1 SINTEF Materials Physics, Norway 2 University of Oslo, Norway Thermoelectric generators

More information

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen Electronic Transport Peter Kratzer Faculty of Physics, University Duisburg-Essen molecular electronics = e2 n m Paul Drude (1863-1906) molecular electronics = e2 n m Paul Drude (1863-1906) g = e2 h N ch

More information

CALCULATION OF ELECRON MOBILITY IN WZ-AlN AND AT LOW ELECTRIC FIELD

CALCULATION OF ELECRON MOBILITY IN WZ-AlN AND AT LOW ELECTRIC FIELD International Journal of Science, Environment and Technology, Vol. 1, No 5, 2012, 395-401 CALCULATION OF ELECRON MOBILITY IN AND AT LOW ELECTRIC FIELD H. Arabshahi, M. Izadifard and A. Karimi E-mail: hadi_arabshahi@yahoo.com

More information

Unit III Free Electron Theory Engineering Physics

Unit III Free Electron Theory Engineering Physics . Introduction The electron theory of metals aims to explain the structure and properties of solids through their electronic structure. The electron theory is applicable to all solids i.e., both metals

More information

Introduction to a few basic concepts in thermoelectricity

Introduction to a few basic concepts in thermoelectricity Introduction to a few basic concepts in thermoelectricity Giuliano Benenti Center for Nonlinear and Complex Systems Univ. Insubria, Como, Italy 1 Irreversible thermodynamic Irreversible thermodynamics

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Doping optimization for the power factor of bipolar thermoelectric materials. Abstract

Doping optimization for the power factor of bipolar thermoelectric materials. Abstract Doping optimization for the power factor of bipolar thermoelectric materials Samuel Foster * and Neophytos Neophytou School of Engineering, University of Warwick, Coventry, CV4 7AL, UK * S.Foster@warwick.ac.uk

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Lecture 11: Coupled Current Equations: and thermoelectric devices

Lecture 11: Coupled Current Equations: and thermoelectric devices ECE-656: Fall 011 Lecture 11: Coupled Current Euations: and thermoelectric devices Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 9/15/11 1 basic

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

THE ELECTRON-PHONON MATRIX ELEMENT IN THE DIRAC POINT OF GRAPHENE

THE ELECTRON-PHONON MATRIX ELEMENT IN THE DIRAC POINT OF GRAPHENE NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2014, 5 (1), P. 142 147 THE ELECTRON-PHONON MATRIX ELEMENT IN THE DIRAC POINT OF GRAPHENE 1,2 S. V. Koniakhin, 1,2,3 E. D. Eidelman 1 Ioffe Physical-Technical

More information

Modeling thermal conductivity: a Green-Kubo approach

Modeling thermal conductivity: a Green-Kubo approach Modeling thermal conductivity: a Green-Kubo approach Fabiano Oyafuso, Paul von Allmen, Markus Bühler Jet Propulsion Laboratory Pasadena, CA Funding: DARPA Outline Motivation -- thermoelectrics Theory Implementation

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Transport Properties of Semiconductors

Transport Properties of Semiconductors SVNY85-Sheng S. Li October 2, 25 15:4 7 Transport Properties of Semiconductors 7.1. Introduction In this chapter the carrier transport phenomena in a semiconductor under the influence of applied external

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

Research Projects. Dr Martin Paul Vaughan. Research Background

Research Projects. Dr Martin Paul Vaughan. Research Background Research Projects Dr Martin Paul Vaughan Research Background Research Background Transport theory Scattering in highly mismatched alloys Density functional calculations First principles approach to alloy

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

PH575 Spring 2014 Lecture #10 Electrons, Holes; Effective mass Sutton Ch. 4 pp 80 -> 92; Kittel Ch 8 pp ; AM p. <-225->

PH575 Spring 2014 Lecture #10 Electrons, Holes; Effective mass Sutton Ch. 4 pp 80 -> 92; Kittel Ch 8 pp ; AM p. <-225-> PH575 Spring 2014 Lecture #10 Electrons, Holes; Effective mass Sutton Ch. 4 pp 80 -> 92; Kittel Ch 8 pp 194 197; AM p. Thermal properties of Si (300K) T V s Seebeck#Voltage#(mV)# 3# 2# 1# 0#!1#!2#!3#!4#!5#

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration

Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 3 1 AUGUST 2001 Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration Marc D. Ulrich a) and Peter A. Barnes 206 Allison Laboratory,

More information

Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires

Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 25 Electronic Supplementary Material (ESI) for: Unconventional co-existence of plasmon and thermoelectric

More information

Model of transport properties of thermoelectric nanocomposite materials

Model of transport properties of thermoelectric nanocomposite materials PHYSICAL REVIEW B 79, 205302 2009 Model of transport properties of thermoelectric nanocomposite materials A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas Department of Physics, University of South

More information

Chapter 5. Carrier Transport Phenomena

Chapter 5. Carrier Transport Phenomena Chapter 5 Carrier Transport Phenomena 1 We now study the effect of external fields (electric field, magnetic field) on semiconducting material 2 Objective Discuss drift and diffusion current densities

More information

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN

More information

Electron-phonon scattering (Finish Lundstrom Chapter 2)

Electron-phonon scattering (Finish Lundstrom Chapter 2) Electron-phonon scattering (Finish Lundstrom Chapter ) Deformation potentials The mechanism of electron-phonon coupling is treated as a perturbation of the band energies due to the lattice vibration. Equilibrium

More information

Polaron Transport in Organic Crystals: Theory and Modelling

Polaron Transport in Organic Crystals: Theory and Modelling Polaron Transport in Organic Crystals: Theory and Modelling Karsten Hannewald Institut für Physik & IRIS Adlershof Humboldt-Universität zu Berlin (Germany) Karsten Hannewald (HU Berlin/Germany) www.ifto.uni-jena.de/~hannewald/

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

Nanoscale interfacial heat transfer: insights from molecular dynamics

Nanoscale interfacial heat transfer: insights from molecular dynamics Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France

More information

Thermoelectric effects in wurtzite GaN and Al x Ga 1 x N alloys

Thermoelectric effects in wurtzite GaN and Al x Ga 1 x N alloys JOURNAL OF APPLIED PHYSICS 97, 23705 2005 Thermoelectric effects in wurtzite GaN and Al x Ga x N alloys Weili Liu a and Alexander A. Balandin Nano-Device Laboratory, b Department of Electrical Engineering,

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Dispersion interactions with long-time tails or beyond local equilibrium

Dispersion interactions with long-time tails or beyond local equilibrium Dispersion interactions with long-time tails or beyond local equilibrium Carsten Henkel PIERS session Casimir effect and heat transfer (Praha July 2015) merci à : G. Barton (Sussex, UK), B. Budaev (Berkeley,

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY 006 PHYS3080 Solid State Physics Time Allowed hours Total number of questions - 5 Answer ALL questions All questions are

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

Carriers Concentration and Current in Semiconductors

Carriers Concentration and Current in Semiconductors Carriers Concentration and Current in Semiconductors Carrier Transport Two driving forces for carrier transport: electric field and spatial variation of the carrier concentration. Both driving forces lead

More information

efficiency can be to Carnot primarily through the thermoelectric figure of merit, z, defined by

efficiency can be to Carnot primarily through the thermoelectric figure of merit, z, defined by USING THE COMPATIBILITY FACTOR TO DESIGN HIGH EFFICIENCY SEGMENTED THERMOELECTRIC GENERATORS G. Jeffrey Snyder*, and T. Caillat Jet Propulsion Laboratory/California Institute of Technology 4800, Oak Grove

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Theory of Phonon Hall Effect in Paramagnetic Dielectrics. L. Sheng, D. N. Sheng and C. S. Ting

Theory of Phonon Hall Effect in Paramagnetic Dielectrics. L. Sheng, D. N. Sheng and C. S. Ting Journal Club by Oleg Chalaev Theory of Phonon Hall Effect in Paramagnetic Dielectrics L. Sheng, D. N. Sheng and C. S. Ting 14.03.2006 cond-mat/0601281... will probably be published soon... best viewed

More information

Puckering and spin orbit interaction in nano-slabs

Puckering and spin orbit interaction in nano-slabs Electronic structure of monolayers of group V atoms: Puckering and spin orbit interaction in nano-slabs Dat T. Do* and Subhendra D. Mahanti* Department of Physics and Astronomy, Michigan State University,

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Large Enhancement of Thermoelectric Properties in

More information

Elastic properties of graphene

Elastic properties of graphene Elastic properties of graphene M. I. Katsnelson P. Le Doussal B. Horowitz K. Wiese J. Gonzalez P. San-Jose V. Parente B. Amorim R. Roldan C. Gomez-Navarro J. Gomez G. Lopez-Polin F. Perez-Murano A. Morpurgo

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

3.225 Electrical,Optical, and Magnetic Properties of Materials

3.225 Electrical,Optical, and Magnetic Properties of Materials 3.5 Electrical,Optical, and Magnetic Properties of Materials Professor Eugene Fitzgerald Purpose: connect atoms and structure to properties Semi-historical context What was understood first from the micro

More information

Micron School of Materials Science and Engineering. Problem Set 9 Solutions

Micron School of Materials Science and Engineering. Problem Set 9 Solutions Problem Set 9 Solutions 1. Mobility in extrinsic semiconductors is affected by phonon scattering and impurity scattering. Thoroughly explain the mobility plots for the following figures from your textbook

More information

arxiv: v1 [cond-mat.mtrl-sci] 14 Sep 2012

arxiv: v1 [cond-mat.mtrl-sci] 14 Sep 2012 Electrical Transport Properties of Co-based Skutterudites filled with Ag and Au Maria Stoica and Cynthia S. Lo Department of Energy, Environmental and Chemical Engineering, arxiv:129.3191v1 [cond-mat.mtrl-sci]

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Electrical Resistance

Electrical Resistance Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

Nonlinear Elasticity in Wurtzite GaN/AlN Planar Superlattices and Quantum Dots

Nonlinear Elasticity in Wurtzite GaN/AlN Planar Superlattices and Quantum Dots Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Nonlinear Elasticity in Wurtzite GaN/AlN Planar Superlattices and

More information

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06 Winter 05/06 : Grundlagen und Anwendung spinabhängiger Transportphänomene Chapter 2 : Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Winter 05/06 2.0 Scattering of charges (electrons) In

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea Supporting Information for Coherent Lattice Vibrations in Mono- and Few-Layer WSe 2 Tae Young Jeong, 1,2 Byung Moon Jin, 1 Sonny H. Rhim, 3 Lamjed Debbichi, 4 Jaesung Park, 2 Yu Dong Jang, 1 Hyang Rok

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

Valleytronics, Carrier Filtering and Thermoelectricity in Bismuth: Magnetic Field Polarization Effects

Valleytronics, Carrier Filtering and Thermoelectricity in Bismuth: Magnetic Field Polarization Effects Valleytronics, Carrier Filtering and Thermoelectricity in Bismuth: Magnetic Field Polarization Effects Adrian Popescu and Lilia M. Woods * Valley polarization of multi-valleyed materials is of significant

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal Page 1 Lina Yang 1, Nuo Yang 2a, Baowen Li 1,2b 1 Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore 2

More information

a (Å)

a (Å) Supplementary Figures a Intens ity (a.u.) x=0.09 x=0.07 x=0.06 x=0.05 x=0.04 x=0.03 x=0.02 x=0.01 x=0.00 P 1- x S 2x/3 Se 0 10 20 30 40 50 60 70 80 90 2θ (deg.) a (Å) 6.130 6.125 6.120 6.115 This work

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Chapter 12: Semiconductors

Chapter 12: Semiconductors Chapter 12: Semiconductors Bardeen & Shottky January 30, 2017 Contents 1 Band Structure 4 2 Charge Carrier Density in Intrinsic Semiconductors. 6 3 Doping of Semiconductors 12 4 Carrier Densities in Doped

More information

Low Bias Transport in Graphene: An Introduction

Low Bias Transport in Graphene: An Introduction Lecture Notes on Low Bias Transport in Graphene: An Introduction Dionisis Berdebes, Tony Low, and Mark Lundstrom Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University West

More information

Unified theory of quantum transport and quantum diffusion in semiconductors

Unified theory of quantum transport and quantum diffusion in semiconductors Paul-Drude-Institute for Solid State Electronics p. 1/? Unified theory of quantum transport and quantum diffusion in semiconductors together with Prof. Dr. V.V. Bryksin (1940-2008) A.F. Ioffe Physical

More information

Electronic Properties of Materials An Introduction for Engineers

Electronic Properties of Materials An Introduction for Engineers Rolf E. Hummel Electronic Properties of Materials An Introduction for Engineers With 219 Illustrations Springer-Verlag Berlin Heidelberg New York Tokyo Contents PARTI Fundamentals of Electron Theory CHAPTER

More information

Vibrational modes of silicon metalattices from atomistic and finite-element calculations

Vibrational modes of silicon metalattices from atomistic and finite-element calculations Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan hen, Ismaila Dabo Materials Science and Engineering, Penn State University October 6 th, 216

More information

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires Bull. Mater. Sci., Vol. 4, No. 3, June 217, pp. 599 67 DOI 1.17/s1234-17-1393-1 Indian Academy of Sciences Carrier concentration effect and other structure-related parameters on lattice thermal conductivity

More information

Key Words Student Paper, Electrical Engineering

Key Words Student Paper, Electrical Engineering A GUI Program for the Calculation of Mobility and Carrier Statistics in Semiconductors Daniel Barrett, University of Notre Dame Faculty Advisor: Dr. Debdeep Jena, University of Notre Dame Student Paper

More information

characterization in solids

characterization in solids Electrical methods for the defect characterization in solids 1. Electrical residual resistivity in metals 2. Hall effect in semiconductors 3. Deep Level Transient Spectroscopy - DLTS Electrical conductivity

More information

Theory of Hydrogen-Related Levels in Semiconductors and Oxides

Theory of Hydrogen-Related Levels in Semiconductors and Oxides Theory of Hydrogen-Related Levels in Semiconductors and Oxides Chris G. Van de Walle Materials Department University of California, Santa Barbara Acknowledgments Computations J. Neugebauer (Max-Planck-Institut,

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Perspectives on Thermoelectrics : from fundamentals to device applications

Perspectives on Thermoelectrics : from fundamentals to device applications Perspectives on Thermoelectrics : from fundamentals to device applications M. Zebarjadi, a K. Esfarjani a, M.S. Dresselhaus, b Z.F. Ren* c and G. Chen* a This review is an update of a previous review 1

More information

A Zero Field Monte Carlo Algorithm Accounting for the Pauli Exclusion Principle

A Zero Field Monte Carlo Algorithm Accounting for the Pauli Exclusion Principle A Zero Field Monte Carlo Algorithm Accounting for the Pauli Exclusion Principle Sergey Smirnov, Hans Kosina, Mihail Nedjalkov, and Siegfried Selberherr Institute for Microelectronics, TU-Vienna, Gusshausstrasse

More information

arxiv:cond-mat/ v1 8 Mar 1995

arxiv:cond-mat/ v1 8 Mar 1995 Model of C-Axis Resistivity of High-T c Cuprates Yuyao Zha, S. L. Cooper and David Pines Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801 arxiv:cond-mat/9503044v1

More information

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Z.A. Pyatakova M.V. Lomonosov Moscow State University, Physics Department zoya.pyatakova@gmail.com Abstract. The paper shows that silicon-based

More information