Nanophotonics: solar and thermal applications

Size: px
Start display at page:

Download "Nanophotonics: solar and thermal applications"

Transcription

1 Nanophotonics: solar and thermal applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University

2 Nanophotonic Structures Photonic crystals Plasmonic Meta-materials Au SOI 2 m 1 m J. Pan et al, APL 97, (2010). L. Verslegers, Nano Letters 9, 235 (2009).

3 Photon as an important heat carrier From the sun On earth

4 Improving Solar Cell Efficiency P N V Sun Semiconductor PN junction

5 Light management Absorb sunlight using films as thin as possible 1. Reduce cost for expensive materials 2. Facilitate carriers extraction to improve efficiency

6 Challenges of light management for a-si cell Full absorption depth ~ 1000nm Carriers only travel for nm To facilitate carrier extraction, needs to absorb light with a layer thinner than the absorption length

7 Photocurrent Flat a-si cell (~280nm thick) Nanocone TCO a-si Ag 11.4 ma/cm 2 Total available: 20.5 ma/cm ma/cm 2

8 Absorption spectra Nanocone Flat Broadband anti-reflection and effective light trapping

9 Broadband antireflection l = 450nm ITO a-si air a-si ITO Ag

10 Absorption spectra Nanocone Flat Broadband anti-reflection and effective light trapping

11 Light trapping l = 750nm air ITO a-si a-si ITO Ag

12 Combine theory with experiment Flat Nanocone J. Zhu, Z. Yu, G. Burkhard, C. Hsu, S. Connor, Y. Xu, Q. Wang, M. Mcgehee, S. Fan, and Y. Cui Nano Letters 9,279 (2009).

13 500nm

14 Significant efficiency enhancement Flat Nanocone Jsc= 11.4mA/cm 2 Jsc= 17.5mA/cm 2 Efficiency 4.7% Efficiency: 5.9% Most recent result: 9.7%

15 Absorption spectra Nanocone Flat Broadband anti-reflection and effective light trapping

16 An important theoretical question What is the fundamental limit of absorption enhancement using light trapping in solar cells? Classical Light Trapping Theory A. Goetzberger IEEE Photovoltaic Specialists Conference (1981). Optical confinement in thin Si-solar cells by diffuse back reflectors E. Yablonovitch J. Opt. Soc. Am. A (1982). Statistical ray optics P. Campbell & M. Green J. Appl. Phys. (1986). Light trapping properties of pyramidally textured surface

17 Absorption Weak absorption at semiconductor band edge Si Mirror m c-si Perfect AR Perfect back mirror Wavelength (nm)

18 The Conventional Limit Si Mirror sin 1 1 n Maximum absorption enhancement factor Derived with a ray tracing argument 4n 2 E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982); Goetzberger, IEEE Photovoltaic Specialists Conference, p. 867 (1981); Campbell and Green, IEEE Trans. Electron. Devices 33, 234 (1986).

19 Absorption Maximum absorption enhancement occurs in the weak absorption limit 4n 2 with light trapping w/o light trapping Wavelength (nm)

20 From conventional to nanoscale light trapping M. Green (2001) J. Zhu, Z. Yu, et al, Nano Letters 9, 279 (2009). ~ 50 m Nanocone 500 nm Ray tracing Wave effect is important

21 Light Trapping With Grating Active layer mirror 500nm

22 Absorption enhanced by guided resonance Guided resonance peak. Narrow spectral width for each peak. Requires aggregate contribution of large number of resonances.

23 Statistical Temporal Coupled Mode Theory Instead of thinking about rays Think about many resonances Zongfu Yu, Aaswath Raman, and Shanhui Fan Proceedings of the National Academy of Sciences 107,17491 (2010).

24 absorption A single resonance Resonant frequency

25 A simple model of a single resonance Assume no diffraction in free space Incident plane wave External leakage rate e Resonator Intrinsic loss rate i i c n

26 Under, critical, and over coupling 100% 100% 100% under-coupling e i critical-coupling e i over-coupling e i Traditional use of resonance for absorption enhancement, such as resonance enhanced photodetectors, uses critical coupling

27 Spectral cross-section Incident spectral bandwidth Spectral cross-section A( )d Contribution of a single resonance to the average absorption over the bandwidth

28 Maximum spectral cross-section A( )d 100% 100% 100% under-coupling e i critical-coupling e i over-coupling e i MAX =2 i at the strong over-coupling limit, where the out-of-plane scattering dominates over the intrinsic absorption

29 Covering the broad solar spectrum with multiple resonances 88.5 MHz 97 MHz 106 MHz Radio a Radio b Radio c

30 Sum over multiple resonances M resonances m m

31 Multiple plane channels in free space Take into account diffraction in free space N channels M resonances max M N 2 i

32 Theory for nanophotonic light trapping Number of plane wave channels in free space: N Number of resonances in the structure: M = M N 2 i Maximum absorption over a particular bandwidth = M N 2 i Zongfu Yu, Aaswath Raman, and Shanhui Fan Proceedings of the National Academy of Sciences 107,17491 (2010).

33 Reproducing the conventional limit (the math) d L Random texture can be understood in terms of grating with large periodicity Conventional limit Large Periodicity L >> l Large Thickness d >> l Maximum absorption = M N 2 i Maximum enhancement factor F / d =4n 2

34 The intuition about the conventional limit from the wave picture Number of resonance in the film F M Nd Thickness of the film When the thickness d l Double the thickness doubles the number of the resonances

35 The key in overcoming the conventional limit Number of resonance in the film F M Nd Thickness of the film Nanoscale modal confinement over broad-bandwidth

36 Light confinement in nanoscale layers Light Scattering Layer e = 12.5, t = 80nm Light Confining Layer e = 12.5, t = 60nm Light Absorption Layer e = 2.5, = 400 cm -1, t = 5nm Mirror

37 Enhancement: 15 times the conventional limit Light intensity distribution 5nm thick 60n 2 15 times of the classical limit

38 Simulated Absorption Spectrum Enhancement Factor Angular Response 4n 2 Red: 4n 2 limit Zongfu Yu, Aaswath Raman, and Shanhui Fan Proceedings of the National Academy of Sciences 107,17491 (2010).

39 Statistical Temporal Coupled Mode Theory Instead of thinking about rays Think about many resonances Zongfu Yu, Aaswath Raman, and Shanhui Fan Proceedings of the National Academy of Sciences 107,17491 (2010).

40 Guidance for grating design Assuming isotropic emission (obtained when the grating period is much larger than the wavelength) 2D 1D ~ l/2n Maximum enhancement factor F 4n 2 n Zongfu Yu, Aaswath Raman, and Shanhui Fan, Optics Express 18, A366 (2010).

41 z Grating with periodicity on the wavelength scale y x L Enhancement factor over 4n 2 with grating Counting number of channels in free space k y 2 /l 2 /L k x Zongfu Yu, Aaswath Raman, and Shanhui Fan, Optics Express 18, A366 (2010).

42 Angular sum rule of the enhancement factor Conventional case Arbitrary spatial emission pattern Uniform emissivity with the cone Zero emissivity outside the cone F max 4n2 sin 2 d d F, cos sin 4 n 2 P. Campbell and M. A. Green, IEEE Transactions on Electron Devices 33, 234 (1986). Zongfu Yu, Shanhui Fan, Applied Physics Letters 98, (2011).

43 Nanophotonics for solar cells With Y. Cui s group at Stanford Dr. Zongfu Yu, Aaswath Raman J. Zhu et al, Nano Letters 9, 279 (2009). J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Letters 10, 1979 (2010). Z. Yu, A. Raman and S. Fan, Proceedings of the National Academy of Sciences 107,17491 (2010). Z. Yu, A. Raman and S. Fan, Optics Express 18, A366 (2010). Z. Yu and S. Fan, Applied Physics Letters 98, (2011). A. Raman, Z. Yu, and S. Fan, Optics Express 19, (2011).

44 Photon as an important heat carrier From the sun On earth

45 Improving Solar Cell Efficiency P N V Sun Semiconductor PN junction

46 Photon Energy Electron Energy Basic Semiconductor Physics Conductance band Power Valence band k Solar Spectrum Semiconductor Bandstructure

47 Photon Energy Electron Energy Photons with energy below the band gap Conductance band E g Power E g Valence band k Solar Spectrum Semiconductor Bandstructure They do not contribute.

48 Photon Energy Electron Energy Photons with energy above the band gap Conductance band E g Power E g Valence band k Solar Spectrum Semiconductor Bandstructure They do contribute, but only partially. After absorption, each photon contributes to approximately E g worth of the energy, the rest is lost due to thermalization.

49 Photon Energy Electron Energy Shockley-Queisser Limit Conductance band E g Power E g Valence band k Solar Spectrum Semiconductor Bandstructure A single-junction cell: maximal efficiency 41%. n Junction Solar Cells - Detailed Balance Limit of Efficiency of p 1961)( 32, 510.Phys.Appl.Queisser, J. William Shockley and Hans J

50 Photon Energy Electron Energy What if the sun was a narrow-band emitter? Conductance band E g +de E g Power E g Valence band k Solar Spectrum (T s =6000K) Semiconductor Bandstructure (T e =300K) Approach Thermodynamic Limit

51 Solar Thermo-Photovoltaics (STPV) P N Sun (T s = 6000K) Intermediate Absorber and Emitter (T i = 2544K) Solar Cell (T e = 300K) The sun to the intermediate The intermediate to the cell R. Swasnson, Proc. IEEE 67, 446 (1979); P. Harder and P. Wurfel, Semicond. Sci. Technol. 18, S151 (2003).

52 6000K STPV: The Challenge 2544K 300K P N Design requirement for the intermediate Broad-band wide-angle absorber Narrow-band emitter Material requirement for the intermediate Need to have large optical loss. Need to withstand high temperature. Tungsten is a natural choice of material.

53 Dielectric Function of Tungsten Tungsten is a very lossy material in the solar wavelength range.

54 Absorptivity of a semi-infinite slab of Tungsten W Neither a good absorber or a good emitter.

55 Nanostructured Tungsten Photonic Crystals Broad-band absorber Narrow-band Emitter 250nm

56 Tungsten Broad-Band Wide-Angle Absorber E. Rephaeli and S. Fan, Applied Physics Letters 92, (2008).

57 Towards ideal solar thermal absorber An ideal solar thermal absorber a near-unity absorption in the optical wavelength a near-zero absorption in the thermal wavelength range

58 Thermal Emitter Vacuum Lamp: K Gas Filled Lamp: Up to 3200K

59 Emissivity Narrow-band Tungsten emitter tuned to band gap of 0.7eV Blackbody 2100K W Si SiO2 Energy (ev) E. Rephaeli and S. Fan, Optics Express 17, (2009).

60 Schematic Incorporating both Absorber and Emitter

61 System Efficiency Beating Shockley-Queisser Limit 6000K ~2000K 0.7eV cell P N Solar TPV (0.7eV cell) Direct PV (1.1eV cell) Direct PV (0.7eV cell) # of Suns E. Rephaeli and S. Fan, Optics Express 17, (2009).

62 Photon as an important heat carrier From the sun On earth

63 Active control of thermal transport Electronic integrated circuit Can we provide more active control of thermal transport?

64 Thermal Rectification (Thermal Diode) Body 1 Body 2 Forward Bias T H S 12 T L T H >T L Backward Bias T L S 21 T H Rectification occurs when S 12 S 21 Previous experiments on phonon and electrons. Relies upon phonon-phonon or electron-electron interactions. Novel capability for thermal management Here, we aim to create thermal rectification for photons

65 Our construction Photon mediated Heat conducting channel is linear (vacuum) The nonlinearity is in the dependency of the refractive index with respect to temperature d=100nm SiC (3C) SiC (6H) C. Otey, W. Lau, and S. Fan, Physical Review Letters 104, (2010).

66 Sharp thermal features in the near field d = 1000 m d d = 2 m SiC (300K) d = 0.1 m Narrow-band resonance Greffet et al, PRL 85, 1548 (2000).

67 Mechanism for thermal rectification Body 1 Body 2 1 T 2 T 1 T 2 T Two different objects, both support narrowband resonances The resonant frequencies have different temperature dependence.

68 Forward bias Body 1 Body 2 Body 1 500K 300K Body 2 1 T 2 T Resonances overlap, large thermal transfer

69 Backward bias Body 1 Body 2 Body 1 300K 500K Body 2 1 T 2 T Resonances do not overlap, small thermal transfer

70 Our scheme Narrow-band electromagnetic resonances with temperature dependent resonant frequency. orward everse C. Otey, W. Lau, and S. Fan, Physical Review Letters 104, (2010).

71 A simple rectifier design Use surface phonon polaritons as our temperature dependent resonances SiC has TO phonons that give clean dielectric resonances in infrared that dominates the near field SiC-3C and SiC-6H have different TO phonon frequency temperature dependence d=100nm SiC (3C) SiC (6H) 3C 6H

72 Spectral heat flux SiC 3C SiC 6H SiC 3C SiC 6H Forward Reverse

73 Overall heat flux T l 300K Rectification S 12 S 21 S 21 C. Otey, W. Lau, and S. Fan, Physical Review Letters 104, (2010).

74 Summary Nanophotonic light trapping Solar Thermophotovoltaic Thermal Diode SiC (3C) SiC (6H) Dr. Zongfu Yu Aaswath Raman Eden Rephaeli Clayton Otey Dr. Wah Tung Lau Acknowledging support from GCEP, DOE, AFOSR

Control of thermal radiation for energy applications. Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University

Control of thermal radiation for energy applications. Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University Control of thermal radiation for energy applications Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University Thermal radiation: an ubiquitous aspect of nature Sun (6000K)

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter A. Investigators Shanhui Fan, Associate Professor, Electrical Engineering, Stanford

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Tuesday, September 23, 2014 Lecture 07 1 Introduction to Solar Cells Topics to be covered: Solar cells and sun light Review on semiconductor

More information

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter

Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter Ultra High Efficiency Thermo-Photovoltaic Solar Cells Using Metallic Photonic Crystals As Intermediate Absorber and Emitter A. Investigators Shanhui Fan, Associate Professor, Electrical Engineering, Stanford

More information

Fundamentals of Light Trapping

Fundamentals of Light Trapping Fundamentals of Light Trapping James R. Nagel, PhD November 16, 2017 Salt Lake City, Utah About Me PhD, Electrical Engineering, University of Utah (2011) Research Associate for Dept. of Metallurgical Engineering

More information

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources

High temperature plasmonics: Narrowband, tunable, nearfield. thermal sources High temperature plasmonics: Narrowband, tunable, nearfield thermal sources Yu Guo, S. Molesky, C. Cortes and Zubin Jacob * Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

More information

Night-time radiative cooling: harvesting the darkness of the universe

Night-time radiative cooling: harvesting the darkness of the universe Night-time radiative cooling: harvesting the darkness of the universe Shanhui Fan Ginzton Laboratory and Department of Electrical Engineering Stanford University Thermodynamic resources in the sky Sun

More information

Photovoltaic Energy Conversion. Frank Zimmermann

Photovoltaic Energy Conversion. Frank Zimmermann Photovoltaic Energy Conversion Frank Zimmermann Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful & inexhaustible

More information

Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law

Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law Mater. Res. Soc. Symp. Proc. Vol. 1728 2015 Materials Research Society DOI: 10.1557/opl.2015. 357 Enhanced selective thermal emission with a meta-mirror following Generalized Snell s Law M. Ryyan Khan

More information

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect

More information

Bulk crystalline silicon (c-si) solar cells dominate the

Bulk crystalline silicon (c-si) solar cells dominate the pubs.acs.org/nanolett Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications Anastassios Mavrokefalos, Sang Eon Han, Selcuk Yerci, Matthew S. Branham,

More information

Photon Extraction: the key physics for approaching solar cell efficiency limits

Photon Extraction: the key physics for approaching solar cell efficiency limits Photon Extraction: the key physics for approaching solar cell efficiency limits Owen Miller*: Post-doc, MIT Math Eli Yablonovitch: UC Berkeley, LBNL Slides/Codes/Relevant Papers: math.mit.edu/~odmiller/publications

More information

Limiting acceptance angle to maximize efficiency in solar cells

Limiting acceptance angle to maximize efficiency in solar cells Limiting acceptance angle to maximize efficiency in solar cells Emily D. Kosten a and Harry A. Atwater a,b a Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena,

More information

Nanophotonic light-trapping theory for solar cells

Nanophotonic light-trapping theory for solar cells Appl Phys A (2011) 105:329 339 DOI 10.1007/s00339-011-6617-4 INVITED PAPER Nanophotonic light-trapping theory for solar cells Zongfu Yu Aaswath Raman Shanhui Fan Received: 1 March 2011 / Accepted: 15 September

More information

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells

The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells The Opto-Electronic Physics That Just Broke the Efficiency Record in Solar Cells Solar Energy Mini-Series Jen-Hsun Huang Engineering Center Stanford, California Sept. 26, 2011 Owen D. Miller & Eli Yablonovitch

More information

Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications

Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications The MIT Faculty has made this article openly available. Please share how this access benefits

More information

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.

PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. SOLAR CELL AND ITS APPLICATION PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA. OUTLINE OF THE PRESENTATION Objective of the work. A brief introduction to Solar Cell

More information

Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers

Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers Dennis M. Callahan, 1,* Kelsey A. W. Horowitz, 1 and Harry A. Atwater 1 1 Thomas J. Watson

More information

LEC E T C U T R U E R E 17 -Photodetectors

LEC E T C U T R U E R E 17 -Photodetectors LECTURE 17 -Photodetectors Topics to be covered Photodetectors PIN photodiode Avalanche Photodiode Photodetectors Principle of the p-n junction Photodiode A generic photodiode. Photodetectors Principle

More information

Light trapping in thin-film solar cells: the role of guided modes

Light trapping in thin-film solar cells: the role of guided modes Light trapping in thin-film solar cells: the role of guided modes T. Søndergaard *, Y.-C. Tsao, T. G. Pedersen, and K. Pedersen Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A,

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

Supplementary Information Supplementary Figures

Supplementary Information Supplementary Figures Supplementary Information Supplementary Figures Supplementary Figure S1. Schematic defining the relevant physical parameters in our grating coupler model. The schematic shows a normally-incident light

More information

Fundamental Limitations of Solar Cells

Fundamental Limitations of Solar Cells 2018 Lecture 2 Fundamental Limitations of Solar Cells Dr Kieran Cheetham MPhys (hons) CPhys MInstP MIET L3 Key Question Why can't a solar cell have a 100% efficiency? (Or even close to 100%?) Can you answer

More information

Computer simulation and modeling of solar energy based on photonic band gap materials

Computer simulation and modeling of solar energy based on photonic band gap materials Optica Applicata, Vol. XLVIII, No. 1, 2018 DOI: 10.5277/oa180111 Computer simulation and modeling of solar energy based on photonic band gap materials ARAFA H. ALY*, HASSAN SAYED Physics Department, Faculty

More information

Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime

Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect Absorption in Visible Regime Nanomaterials, Article ID 893202, 5 pages http://dx.doi.org/0.55/204/893202 Research Article Si Substrate-Based Metamaterials for Ultrabroadband Perfect in Visible Regime Qi Han, Lei Jin, Yongqi Fu, and

More information

Photovoltaic Cell: Optimum Photon Utilisation

Photovoltaic Cell: Optimum Photon Utilisation PAM Review Subject 68412 www.uts.edu.au Photovoltaic Cell: Optimum Photon Utilisation Thomas Nommensen 1,*, Toan Dinh 2, Liam Caruana 3, Dennis Tran 4, Robert McCormick 5 1 E-Mail: Thomas.Nommensen@student.uts.edu.au

More information

Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids

Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids The MIT Faculty has made this article openly available. Please share how this access benefits

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Detailed balance analysis of nanophotonic solar cells

Detailed balance analysis of nanophotonic solar cells Detailed balance analysis of nanophotonic solar cells Sunil Sandhu, Zongfu Yu, and Shanhui Fan Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA shanhui@stanford.edu

More information

arxiv: v1 [physics.optics] 12 Jun 2014

arxiv: v1 [physics.optics] 12 Jun 2014 Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells arxiv:1406.3126v1 [physics.optics] 12 Jun 2014 Abstract Vidya Ganapati, Chi-Sing Ho, Eli Yablonovitch University

More information

Molecular Solar Cells Progress Report

Molecular Solar Cells Progress Report MolecularSolarCellsProgressReport Investigators Faculty:Prof.PeterPeumans(ElectricalEngineering,Stanford) Graduateresearchers:MukulAgrawal,ShanbinZhao,AlbertLiu,SeungRim,Jung YongLee,JunboWu Summary We

More information

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array Green Photonics Award Paper Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array Jonathan Grandidier* a, Michael G. Deceglie a, Dennis M. Callahan a, Harry A. Atwater

More information

Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum

Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum Zongfu Yu 1, Nicholas Sergeant 1, Torbjorn Skauli 1,2, Gang Zhang 3, Hailiang Wang 4, and Shanhui

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces

More information

Arbitrary and reconfigurable optics - new opportunities for integrated photonics

Arbitrary and reconfigurable optics - new opportunities for integrated photonics Arbitrary and reconfigurable optics - new opportunities for integrated photonics David Miller, Stanford University For a copy of these slides, please e-mail dabm@ee.stanford.edu How to design any linear

More information

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC. 1 Outline Introduction Lumerical s simulation products Simulation of periodic structures The new Broadband Fixed-Angle Source

More information

3.003 Principles of Engineering Practice

3.003 Principles of Engineering Practice 3.003 Principles of Engineering Practice One Month Review Solar Cells The Sun Semiconductors pn junctions Electricity 1 Engineering Practice 1. Problem Definition 2. Constraints 3. Options 4. Analysis

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Energy & Environmental Science

Energy & Environmental Science Energy & Environmental Science PAPER Light trapping in photonic crystals Cite this: Energy Environ. Sci., 2014,7, 2725 Received 14th March 2014 Accepted 30th May 2014 DOI: 10.1039/c4ee00839a www.rsc.org/ees

More information

Energy & Environmental Science

Energy & Environmental Science Energy & Environmental Science PAPER View Article Online View Journal View Issue Cite this: Energy Environ. Sci., 2014,7, 2725 Received 14th March 2014 Accepted 30th May 2014 DOI: 10.1039/c4ee00839a www.rsc.org/ees

More information

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency R.J. Ellingson and M.J. Heben November 4, 2014 PHYS 4580, 6280, and 7280 Simple solar cell structure The Diode Equation Ideal

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Light and electromagnetic radiation Energy Harvesting

Light and electromagnetic radiation Energy Harvesting Light and electromagnetic radiation Energy Harvesting Maurizio Mattarelli NiPS Laboratory, Dipartimento di Fisica e Geologia Università di Perugia NiPS Summer School 2017 Energy Harvesting: models and

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film B. J. Lee, L. P. Wang, and Z. M. Zhang George W. Woodruff School of Mechanical Engineering Georgia

More information

Ultra-narrow-band tunable laserline notch filter

Ultra-narrow-band tunable laserline notch filter Appl Phys B (2009) 95: 597 601 DOI 10.1007/s00340-009-3447-6 Ultra-narrow-band tunable laserline notch filter C. Moser F. Havermeyer Received: 5 December 2008 / Revised version: 2 February 2009 / Published

More information

Comparison of Ge, InGaAs p-n junction solar cell

Comparison of Ge, InGaAs p-n junction solar cell ournal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Ge, InGaAs p-n junction solar cell To cite this article: M. Korun and T. S. Navruz 16. Phys.: Conf. Ser. 77 135 View the article online

More information

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer SUHAILA SEPEAI, A.W.AZHARI, SALEEM H.ZAIDI, K.SOPIAN Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600

More information

2. The electrochemical potential and Schottky barrier height should be quantified in the schematic of Figure 1.

2. The electrochemical potential and Schottky barrier height should be quantified in the schematic of Figure 1. Reviewers' comments: Reviewer #1 (Remarks to the Author): The paper reports a photon enhanced thermionic effect (termed the photo thermionic effect) in graphene WSe2 graphene heterostructures. The work

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

Absorption enhancement in double-sided nanocone hole arrays for solar cells

Absorption enhancement in double-sided nanocone hole arrays for solar cells University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Absorption enhancement in double-sided nanocone

More information

Lecture 2. Photon in, Electron out: Basic Principle of PV

Lecture 2. Photon in, Electron out: Basic Principle of PV Lecture 2 Photon in, Electron out: Basic Principle of PV References: 1. Physics of Solar Cells. Jenny Nelson. Imperial College Press, 2003. 2. Third Generation Photovoltaics: Advanced Solar Energy Conversion.

More information

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch

IEEE JOURNAL OF PHOTOVOLTAICS 1. Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch IEEE JOURNAL OF PHOTOVOLTAICS 1 Air Gaps as Intermediate Selective Reflectors to Reach Theoretical Efficiency Limits of Multibandgap Solar Cells Vidya Ganapati, Chi-Sing Ho, and Eli Yablonovitch Abstract

More information

PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS

PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS VIVIAN E. FERRY 1,2, MARC A. VERSCHUUREN 3, HONGBO B. T. LI 4, EWOLD VERHAGEN 1, ROBERT J. WALTERS 1, RUUD E. I. SCHROPP 4, HARRY A. ATWATER 2,

More information

Given any heat flow across a temperature difference, it is

Given any heat flow across a temperature difference, it is Thermodynamic limits of energy harvesting from outgoing thermal radiation Siddharth uddhiraju a,1, Parthiban Santhanam a, and Shanhui Fan a,1 a Ginzton Laboratory, Department of Electrical Engineering,

More information

Exact microscopic theory of electromagnetic heat transfer

Exact microscopic theory of electromagnetic heat transfer Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate Clayton Otey 1 and Shanhui Fan 2 1 Department of Applied Physics and 2 Department of Electrical Engineering,

More information

Third generation solar cells - How to use all the pretty colours?

Third generation solar cells - How to use all the pretty colours? Third generation solar cells - How to use all the pretty colours? Erik Stensrud Marstein Department for Solar Energy Overview The trouble with conventional solar cells Third generation solar cell concepts

More information

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition

Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Study of Propagating Modes and Reflectivity in Bragg Filters with AlxGa1-xN/GaN Material Composition Sourangsu Banerji Department of Electronics & Communication Engineering, RCC Institute of Information

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters

Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Thin film interference in ultra-thin layers: color coatings, tunable absorbers, and thermal emitters Mikhail A. Kats Harvard University School of Engineering and Applied Sciences NanoLight [Benasque] March

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Effective Light Absorption Using the Double-sided Pyramid Gratings for Thin- Film Silicon Solar Cell

Effective Light Absorption Using the Double-sided Pyramid Gratings for Thin- Film Silicon Solar Cell Zhiqiang et al. Nanoscale Research Letters (2018) 13:192 https://doi.org/10.1186/s11671-018-2607-1 NANO EXPRESS Effective Light Absorption Using the Double-sided Pyramid Gratings for Thin- Film Silicon

More information

TUNABLE MULTI-CHANNEL FILTERING USING 1-D PHOTONIC QUANTUM WELL STRUCTURES

TUNABLE MULTI-CHANNEL FILTERING USING 1-D PHOTONIC QUANTUM WELL STRUCTURES Progress In Electromagnetics Research Letters, Vol. 27, 43 51, 2011 TUNABLE MULTI-CHANNEL FILTERING USING 1-D PHOTONIC QUANTUM WELL STRUCTURES B. Suthar * and A. Bhargava Nanophysics Laboratory, Department

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Solar cells operation

Solar cells operation Solar cells operation photovoltaic effect light and dark V characteristics effect of intensity effect of temperature efficiency efficency losses reflection recombination carrier collection and quantum

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Angular and polarization properties of a photonic crystal slab mirror

Angular and polarization properties of a photonic crystal slab mirror Angular and polarization properties of a photonic crystal slab mirror Virginie Lousse 1,2, Wonjoo Suh 1, Onur Kilic 1, Sora Kim 1, Olav Solgaard 1, and Shanhui Fan 1 1 Department of Electrical Engineering,

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V.

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V. Fundamentals of Photovoltaics: C1 Problems R.Treharne, K. Durose, J. Major, T. Veal, V. Dhanak @cdtpv November 3, 2015 These problems will be highly relevant to the exam that you will sit very shortly.

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures M.Y. Chiu, C.-H. Chang, F.-Y. Chang, and Peichen Yu, Green Photonics Laboratory Department of Photonics National

More information

6 Correlation between the surface morphology and the current enhancement in n-i-p silicon solar cells

6 Correlation between the surface morphology and the current enhancement in n-i-p silicon solar cells 6 Correlation between the surface morphology and the current enhancement in n-i-p silicon solar cells 6.1 Introduction In order to enhance the generated photocurrent in thin microcrystalline silicon solar

More information

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS Ա.Մ.Կեչիյանց Ara Kechiantz Institute of Radiophysics and Electronics (IRPhE), National Academy of Sciences (Yerevan, Armenia) Marseille

More information

Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics

Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics Thin film Thermal Well Emitters and Absorbers for High Efficiency Thermophotovoltaics Jonathan K. Tong 1, Wei Chun Hsu 1, Yi Huang 1, Svetlana V. Boriskina 1,*, and Gang Chen 1,* 1 Department of Mechanical

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Control of hot carrier thermalization in type-ii quantum wells: a route to practical hot carrier solar cells

Control of hot carrier thermalization in type-ii quantum wells: a route to practical hot carrier solar cells Control of hot carrier thermalization in type-ii quantum wells: a route to practical hot carrier solar cells H. Esmaielpour 1, V. R. Whiteside 1, H. P. Piyathilaka 2, S. Vijeyaragunathan 1, B. Wang 3,

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells. Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014

The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells. Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014 The Opto-Electronic Physics Which Just Broke the Efficiency Record in Solar Cells Green Photonics Symposium at Technion Haifa, Israel, April 23, 2014 Eli Yablonovitch UC Berkeley Electrical Engineering

More information

Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays

Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays Letter Subscriber access provided by STANFORD UNIV GREEN LIBR Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays Jia Zhu, Zongfu Yu, George F. Burkhard, Ching-Mei Hsu, Stephen

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries Faculty of Science and Technology Exam in: FYS 3028/8028 Solar Energy and Energy Storage Date: 11.05.2016 Time: 9-13 Place: Åsgårdvegen 9 Approved aids: Type of sheets (sqares/lines): Number of pages incl.

More information

Supplementary Information for Semiconductor Solar Superabsorbers

Supplementary Information for Semiconductor Solar Superabsorbers Supplementary Information for Semiconductor Solar Superabsorbers Yiling Yu, Lujun Huang, Linyou Cao, * Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 7695;

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Materials Science and Engineering R

Materials Science and Engineering R Materials Science and Engineering R 70 (2010) 330 340 Contents lists available at ScienceDirect Materials Science and Engineering R journal homepage: www.elsevier.com/locate/mser Nanostructured photon

More information

arxiv: v1 [physics.optics] 20 Jan 2012

arxiv: v1 [physics.optics] 20 Jan 2012 Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption arxiv:1201.4325v1 [physics.optics] 20 Jan 2012 Cheng-Chia Tsai 1, Richard R. Grote 1, Ashish Banerjee

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Graded S i N x /S i O x N y Layers as Antireflective Coatings for Solar Cells Based on GaAs and Silicon Crystalline

Graded S i N x /S i O x N y Layers as Antireflective Coatings for Solar Cells Based on GaAs and Silicon Crystalline Science Research 2016; 4(1): 21-25 Published online February 25, 2016 (http://www.sciencepublishinggroup.com/j/sr) doi: 10.11648/j.sr.20160401.14 ISSN: 2329-0935 (Print); ISSN: 2329-0927 (Online) Graded

More information

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array Jonathan Grandidier Michael G. Deceglie Dennis M. Callahan Harry A. Atwater Simulations of solar cell absorption

More information

Other Devices from p-n junctions

Other Devices from p-n junctions Memory (5/7 -- Glenn Alers) Other Devices from p-n junctions Electron to Photon conversion devices LEDs and SSL (5/5) Lasers (5/5) Solid State Lighting (5/5) Photon to electron conversion devices Photodectors

More information