Fragment-based Approaches in Drug Discovery

Size: px
Start display at page:

Download "Fragment-based Approaches in Drug Discovery"

Transcription

1 Fragment-based Approaches in Drug Discovery Edited by Wolfgang Jahnke and Daniel A. Erianson WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA

2 Contents Preface XV A Personal Foreword List of Contributors XVII XIX Part I: Concept and Theory 1 The Concept of Fragment-based Drug Discovery 3 Daniel A. Erianson and Wolfgangjahnke 1.1 Introduction Starting Small: Key Features of Fragment-based Ligand Design FBS Samples Higher Chemical Diversity FBS Leads to Higher Hit Rates FBS Leads to Higher Ligand Efficiency Historical Development Scope and Overview of this Book 7 References 9 2 Multivalency in Ligand Design 11 Vijay M. Krishnamurthy, Lara A. Estroff, and Ceorge M. Whitesides 2.1 Introduction and Overview Definitions of Terms Selection of Key Experimental Studies Trivalency in a Structurally Simple System Cooperativity (and the Role of Enthalpy) in the "Chelate Effect" Oligovalency in the Design of Inhibitors to Toxins Bivalency at Well Defined Surfaces (Self-assembled Monolayers, SAMs) Polyvalency at Surfaces of Viruses, Bacteria, and SAMs Theoretical Considerations in Multivalency Survey of Thermodynamics Additivity and Multivalency 19 Fragment-based Approaches in Drug Discovery. Edited by W. Jahnke and D. A. Erianson Copyright 2006 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim ISBN:

3 VI Contents Avidity and Effective Concentration (C e ff) Cooperativity is Distinct from Multivalency Conformational Entropy of the Linker between Ligands Enthalpy/Entropy Compensation Reduces the Benefit of Multivalency Representative Experimental Studies Experimental Techniques Used to Examine Multivalent Systems Isothermal Titration Calorimetry Surface Plasmon Resonance Spectroscopy Surface Assays Using Purified Components (Cell-free Assays) Cell-based Surface Assays Examination of Experimental Studies in the Context of Theory Trivalency in Structurally Simple Systems Cooperativity (and the Role of Enthalpy) in the "Chelate Effect" Oligovalency in the Design of Inhibitors of Toxins Bivalency in Solution and at Well Denned Surfaces (SAMs) Polyvalency at Surfaces (Viruses, Bacteria, and SAMs) Design Rules for Multivalent Ligands When Will Multivalency Be a Successful Strategy to Design Tight-binding Ligands? Choice of Scaffold for Multivalent Ligands Scaffolds for Oligovalent Ligands Scaffolds for Polyvalent Ligands Choice of Linker for Multivalent Ligands Rigid Linkers Represent a Simple Approach to Optimize Affinity Flexible Linkers Represent an Alternative Approach to Rigid Linkers to Optimize Affinity Strategy for the Synthesis of Multivalent Ligands Polyvalent Ligands: Polymerization of Ligand Monomers Polyvalent Ligands: Functionalization with Ligands after Polymerization Extensions of Multivalency to Lead Discovery Hetero-oligovalency Is a Broadly Applicable Concept in Ligand Design Dendrimers Present Opportunities for Multivalent Presentation of Ligands Bivalency in the Immune System A Polymers Could Be the Most Broadly Applicable Multivalent Ligands Challenges and Unsolved Problems in Multivalency Conclusions 44 Acknowledgments 45 References 45

4 Contents VII 3 Entropic Consequences of Linking Ligands 55 Christopher W. Murray and Marcel L Verdonk 3.1 Introduction Rigid Body Barrier to Binding Decomposition of Free Energy of Binding Theoretical Treatment of the Rigid Body Barrier to Binding Theoretical Treatment of Fragment Linking Experimental Examples of Fragment Linking Suitable for Analysis Estimate of Rigid Body Barrier to Binding Discussion Conclusions 64 References 65 4 Location of Binding Sites on Proteins by the Multiple Solvent Crystal Structure Method 67 Dagmar Ringe and Carlo Mattos 4.1 Introduction Solvent Mapping Characterization of Protein-Ligand Binding Sites Functional Characterization of Proteins Experimental Methods for Locating the Binding Sites of Organic Probe Molecules Structures of Elastase in Nonaqueous Solvents Organic Solvent Binding Sites Other Solvent Mapping Experiments Binding of Water Molecules to the Surface of a Protein Internal Waters Surface Waters Conservation of Water Binding Sites General Properties of Solvent and Water Molecules on the Protein Computational Methods Conclusion 85 Acknowledgments 85 References 85 Part 2: Fragment Library Design and Computional Approaches 5 Cheminformatics Approaches to Fragment-based Lead Discovery 91 Tudor I. Oprea and Jeffrey M. Blaney 5.1 Introduction The Chemical Space of Small Molecules (Under 300 a.m.u.) The Concept of Lead-likeness The Fragment-based Approach in Lead Discovery Literature-based Identification of Fragments: A Practical Example 99

5 VIII Contents 5.6 Conclusions 107 Acknowledgments 209 References Structural Fragments in Marketed Oral Drugs 113 Michal Vieth and Miles Siegel 6.1 Introduction Historical Look at the Analysis of Structural Fragments of Drugs Methodology Used in this Analysis Analysis of Similarities of Different Drug Data Sets Based on the Fragment Frequencies Conclusions 123 Acknowledgments 124 References Fragment Docking to Proteins with the Multi-copy Simultaneous Search Methodology 125 Collin M. Stultz and Martin Karplus 7.1 Introduction The MCSS Method MCSS Minimizations Choice of Functional Groups Evaluating MCSS Minima MCSS in Practice: Functionality Maps of Endothiapepsin Comparison with GRID Comparison with Experiment Ligand Design with MCSS Designing Peptide-based Ligands to Ras Designing Non-peptide Based Ligands to Cytochrome P Designing Targeted Libraries with MCSS Protein Flexibility and MCSS Conclusion 243 Acknowledgments 244 References 144 Part 3: Experimental Techniques and Applications 8 NMR-guided Fragment Assembly 249 Daniel S. Sem 8.1 Historical Developments Leading to NMR-based Fragment Assembly Theoretical Foundation for the Linking Effect NMR-based Identification of Fragments that Bind Proteins Fragment Library Design Considerations 252

6 Contents \ IX The "SHAPES" NMR Fragment Library The "SAR by NMR" Fragment Library Fragment-based Classification of protein Targets NMR-based Screening for Fragment Binding Ligand-based Methods Protein-based Methods High-throughput Screening: Traditional and TINS NMR-guided Fragment Assembly SAR by NMR SHAPES Second-site Binding Using Paramagnetic Probes NMR-based Docking Combinatorial NMR-based Fragment Assembly NMR SOLVE NMR ACE Summary and Future Prospects 176 References SAR by NMR: An Analysis of Potency Cains Realized Through Fragmentlinking and Fragment-elaboration Strategies for Lead Generation 282 PhilipJ. Hajduk, Jeffrey R. Huth, and ChaohongSun 9.1 Introduction SAR by NMR Energetic Analysis of Fragment Linking Strategies Fragment Elaboration Energetic Analysis of Fragment Elaboration Strategies Summary 290 References Pyramid: An Integrated Platform for Fragment-based Drug Discovery 193 Thomas C. Davies, Rob L M. van Montfort, Clyn Williams, and Harrenjhoti 10.1 Introduction The Pyramid Process Introduction Fragment Libraries Overview Physico-chemical Properties of Library Members Drug Fragment Library Privileged Fragment Library Targeted Libraries and Virtual Screening Quality Control of Libraries Fragment Screening X-ray Data Collection 202

7 X Contents Automation of Data Processing Hits and Diversity of Interactions Example 1: Compound 1 Binding to CDK Example 2: Compound 2 Binding to p38a Example 3: Compound 3 Binding to Thrombin Pyramid Evolution - Integration of Crystallography and NMR NMR Screening Using Water-LOGSY Complementarity of X-ray and NMR Screening Conclusions 222 Acknowledgments 211 References Fragment-based Lead Discovery and Optimization Using X-Ray Crystallography, Computational Chemistry, and High-throughput Organic Synthesis 215 JeffBlaney,Vicki Nienaber, and Stephen K. Burley 11.1 Introduction Overview of the SGX Structure-driven Fragment-based Lead Discovery Process Fragment Library Design for Crystallographic Screening Considerations for Selecting Fragments SGX Fragment Screening Library Selection Criteria SGX Fragment Screening Library Properties SGX Fragment Screening Library Diversity: Theoretical and Experimental Analyses Crystallographic Screening of the SGX Fragment Library Overview of Crystallographic Screening Obtaining the Initial Target Protein Structure Enabling Targets for Crystallographic Screening Fragment Library Screening at SGX-CAT Analysis of Fragment Screening Results Factor Vila Case Study of SGX Fragment Library Screening Complementary Biochemical Screening of the SGX Fragment Library Importance of Combining Crystallographic and Biochemical Fragment Screening Selecting Fragments Hits for Chemical Elaboration Fragment Optimization Spleen Tyrosine Kinase Case Study Fragment Optimization Overview Linear Library Optimization Combinatorial Library Optimization Discussion and Conclusions Postscript: SGX Oncology Lead Generation Program 245 References 245

8 Contents XI 12 Synergistic Use of Protein Crystallography and Solution-phase NMR Spectroscopy in Structure-based Drug Design: Strategies and Tactics 249 Cele Abad-Zapatero, Geoffrey F. Stamper, and Vincent S. Stoll 12.1 Introduction Case 1: Human Protein Tyrosine Phosphatase Designing and Synthesizing Dual-site Inhibitors The Target Initial Leads Extension of the Initial Fragment Discovery and Incorporation of the Second Fragment The Search for Potency and Selectivity Finding More "Drug-like" Molecules Decreasing Polar Surface Area on Site Monoacid Replacements on Site Core Replacement Case 2: MurF Pre-filtering by Solution-phase NMR for Rapid Co-crystal Structure Determinations The Target Triage of Initial Leads Solution-phase NMR as a Pre-filter for Co-crystallization Trials Conclusion 263 Acknowledgments 264 References Ligand SAR Using Electrospray lonization Mass Spectrometry 267 Richard H. Griffey and Eric E. Swayze 13.1 Introduction ESI-MS of Protein and RNA Targets ESI-MS Data Signal Abundances Ligands Selected Using Affinity Chromatography Antibiotics Binding Bacterial Cell Wall Peptides Kinases and GPCRs Src Homology 2 Domain Screening Other Systems Direct Observation of Ligand-Target Complexes Observation of Enzyme-Ligand Transition State Complexes Ligands Bound to Structured RNA ESI-MS for Linking Low-affinity Ligands Unique Features of ESI-MS Information for Designing Ligands 282 References 282

9 XII Contents 14 Tethering 285 Daniel A. Erianson, Marcus D. Ballinger, and James A. Wells 14.1 Introduction Energetics of Fragment Selection in Tethering Practical Considerations Finding Fragments A.I Thymidylate Synthase: Proof of Principle Protein Tyrosine Phosphatase IB: Finding Fragments in a Fragile, Narrow Site Linking Fragments Interleukin-2: Use of Tethering to Discover Small Molecules that Bind to a Protein-Protein Interface Caspase-3: Finding and Combining Fragments in One Step Caspase Beyond Traditional Fragment Discovery Caspase-3: Use of Tethering to Identify and Probe an Allosteric Site GPCRs: Use of Tethering to Localize Hits and Confirm Proposed Binding Models Related Approaches Disulfide Formation Imine Formation Metal-mediated Conclusions 308 Acknowledgments 308 References 308 Part 4: Emerging Technologies in Chemistry 15 Click Chemistry for Drug Discovery 313 Stefanie Roper and Hartmuth C. Kolb 15.1 Introduction Click Chemistry Reactions Click Chemistry in Drug Discovery Lead Discovery Libraries Natural Products Derivatives and the Search for New Antibiotics Synthesis of Neoglycoconjugates HIV Protease Inhibitors Synthesis of Fucosyltranferase Inhibitor Glycoarrays In Situ Click Chemistry Discovery of Highly Potent AChE by In Situ Click Chemistry Bioconjugation Through Click Chemistry Tagging of Live Organisms and Proteins 328

10 Contents XIII Activity-based Protein Profiling Labeling of DNA Artificial Receptors Conclusion 334 References Dynamic Combinatorial Diversity in Drug Discovery 341 Matthias Hochgiirtel and Jean-Marie Lehn 16.1 Introduction Dynamic Combinatorial Chemistry -The Principle Generation of Diversity: DCC Reactions and Building Blocks DCC Methodologies Application of DCC to Biological Systems Enzymes as Targets Receptor Proteins as Targets Nucleotides as Targets Summary and Outlook 359 References 361 Index 365

Part I: Concept and Theory

Part I: Concept and Theory Part I: Concept and Theory Fragment-based Approaches in Drug Discovery. Edited by W. Jahnke and D. A. Erlanson Copyright # 2006 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim ISBN: 3-527-31291-9 3 1 The Concept

More information

Structure-Based Drug Discovery An Overview

Structure-Based Drug Discovery An Overview Structure-Based Drug Discovery An Overview Edited by Roderick E. Hubbard University of York, Heslington, York, UK and Vernalis (R&D) Ltd, Abington, Cambridge, UK RSC Publishing Contents Chapter 1 3D Structure

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

Bioisosteres in Medicinal Chemistry

Bioisosteres in Medicinal Chemistry Edited by Nathan Brown Bioisosteres in Medicinal Chemistry VCH Verlag GmbH & Co. KGaA Contents List of Contributors Preface XV A Personal Foreword XI XVII Part One Principles 1 Bioisosterism in Medicinal

More information

Molecular Modeling of Inorganic Compounds

Molecular Modeling of Inorganic Compounds Peter Comba, Trevor W. Hambley and Bodo Martin Molecular Modeling of Inorganic Compounds Third Completely Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Contents Preface to

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

Microcalorimetry for the Life Sciences

Microcalorimetry for the Life Sciences Microcalorimetry for the Life Sciences Why Microcalorimetry? Microcalorimetry is universal detector Heat is generated or absorbed in every chemical process In-solution No molecular weight limitations Label-free

More information

Early Stages of Drug Discovery in the Pharmaceutical Industry

Early Stages of Drug Discovery in the Pharmaceutical Industry Early Stages of Drug Discovery in the Pharmaceutical Industry Daniel Seeliger / Jan Kriegl, Discovery Research, Boehringer Ingelheim September 29, 2016 Historical Drug Discovery From Accidential Discovery

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

Principles of Drug Design

Principles of Drug Design (16:663:502) Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu For more current information, please check WebCT at https://webct.rutgers.edu

More information

Supramolecular Catalysis

Supramolecular Catalysis Supramolecular Catalysis Edited by Piet W. N. M. van Leeuwen WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI List of Authors XIII 1 Introduction to Supramolecular Catalysis 1 Pablo Ballester

More information

Principles of Drug Design

Principles of Drug Design Advanced Medicinal Chemistry II Principles of Drug Design Tentative Course Outline Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu I. Introduction

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Author Index Volume

Author Index Volume Perspectives in Drug Discovery and Design, 20: 289, 2000. KLUWER/ESCOM Author Index Volume 20 2000 Bradshaw,J., 1 Knegtel,R.M.A., 191 Rose,P.W., 209 Briem, H., 231 Kostka, T., 245 Kuhn, L.A., 171 Sadowski,

More information

CH MEDICINAL CHEMISTRY

CH MEDICINAL CHEMISTRY CH 458 - MEDICINAL CHEMISTRY SPRING 2011 M: 5:15pm-8 pm Sci-1-089 Prerequisite: Organic Chemistry II (Chem 254 or Chem 252, or equivalent transfer course) Instructor: Dr. Bela Torok Room S-1-132, Science

More information

Molecularly imprinted polymers

Molecularly imprinted polymers Molecularly imprinted polymers Presentation in Sensors, Arrays, Screening Lennart Niehues, Jan Philip Meyer 1 Overview Introduction Advantages Disadvantages Theory of MIP Requirements for the optimal MIP

More information

Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Automated analysis of large sets of ligand-observed NMR binding data and 19 F methods Andreas Lingel Global Discovery Chemistry

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

JOB$ IN THE DRUG INDUSTRY

JOB$ IN THE DRUG INDUSTRY JOB$ IN THE DRUG INDUSTRY A Career Guide for Chemists Richard Friary Schering-Plough Research Institute Kenilworth, New Jersey ACADEMIC PRESS A Harcourt Science and Technology Company San Diego San Francisco

More information

Problem Set 5 Question 1

Problem Set 5 Question 1 2.32 Problem Set 5 Question As discussed in class, drug discovery often involves screening large libraries of small molecules to identify those that have favorable interactions with a certain druggable

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

The PhilOEsophy. There are only two fundamental molecular descriptors

The PhilOEsophy. There are only two fundamental molecular descriptors The PhilOEsophy There are only two fundamental molecular descriptors Where can we use shape? Virtual screening More effective than 2D Lead-hopping Shape analogues are not graph analogues Molecular alignment

More information

Supporting Information

Supporting Information Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model Supporting Information Peter Kolb, Danzhi Huang, Fabian Dey and Amedeo Caflisch

More information

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS PETER GUND Pharmacopeia Inc., CN 5350 Princeton, NJ 08543, USA pgund@pharmacop.com Empirical and theoretical approaches to drug discovery have often

More information

STRUCTURAL BIOINFORMATICS II. Spring 2018

STRUCTURAL BIOINFORMATICS II. Spring 2018 STRUCTURAL BIOINFORMATICS II Spring 2018 Syllabus Course Number - Classification: Chemistry 5412 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Ronald Levy, SERC 718 (ronlevy@temple.edu)

More information

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE NUE FEATURE T R A N S F O R M I N G C H A L L E N G E S I N T O M E D I C I N E Nuevolution Feature no. 1 October 2015 Technical Information COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE A PROMISING

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Structure based drug design and LIE models for GPCRs

Structure based drug design and LIE models for GPCRs Structure based drug design and LIE models for GPCRs Peter Kolb kolb@docking.org Shoichet Lab ACS 237 th National Meeting, March 24, 2009 p.1/26 [Acknowledgements] Brian Shoichet John Irwin Mike Keiser

More information

HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY

HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY 137 Molecular Informatics: Confronting Complexity, May 13 th - 16 th 2002, Bozen, Italy HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY HARREN JHOTI Astex Technology Ltd, 250 Cambridge Science Park,

More information

The Practice of Medicinal Chemistry

The Practice of Medicinal Chemistry A The Practice of Medicinal Chemistry Edited by CAMILLE G. WERMUTH Laboratoire de Pharmacochimie Moleculaire, Faculte de Pharmacie, Universite Louis Pasteur, Illkirch, France ACADEMIC PRESS Harcourt Brace

More information

17. Biomolecular Interaction

17. Biomolecular Interaction 17. Biomolecular Interaction Methods for characterizing biomolecular interactions Sequence-specific DNA binding ligands Molecular mechanisms of drug action and drug resistance In silico compound design

More information

Bioinorganic Chemistry

Bioinorganic Chemistry PRINCIPLES OF Bioinorganic Chemistry Stephen J. Lippard MASSACHUSETTS INSTITUTE OF TECHNOLOGY Jeremy M. Berg JOHNS HOPKINS SCHOOL OF MEDICINE f V University Science Books Mill Valley, California Preface

More information

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation

Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation Charles Blundell charles.blundell@c4xdiscovery.com www.c4xdiscovery.com Rigid: single

More information

Dynamic Combinatorial Chemistry in the identification of new host guest interactions: proof of principle

Dynamic Combinatorial Chemistry in the identification of new host guest interactions: proof of principle Dynamic Combinatorial Chemistry in the identification of new host guest interactions: proof of principle ick Paras MacMillan Group Meeting ctober 17, 2001 Lead References: Lehn, J.-M.; Eliseev, A. V. Science

More information

New Synthetic Technologies in Medicinal Chemistry

New Synthetic Technologies in Medicinal Chemistry New Synthetic Technologies in Medicinal Chemistry Edited by Elizabeth Farrant Worldwide Medicinal Chemistry, Pfizer Ltd., Sandwich, Kent, UK Chapter 1 Chapter 2 Introduction Elizabeth Farrant 1.1 Introduction

More information

Microscopy, Optical Spectroscopy, and Macroscopic Techniques

Microscopy, Optical Spectroscopy, and Macroscopic Techniques Microscopy, Optical Spectroscopy, and Macroscopic Techniques Methods in Molecular Biology John M, Walker, SERIES EDITOR 22. Microscopy, Optical Spectroscopy, and Macroscopic Techniques, edited by Christopher

More information

Fragment Screening in Drug Discovery

Fragment Screening in Drug Discovery Fragment Screening in Drug Discovery Marc Martinell SEQT, Sitges, 19th-20th October 2006 Crystax Pharmaceuticals SL Barcelona Science Park Josep Samitier 1-5, E-08028 Barcelona Tel: +34 93 403 4703 Fax

More information

PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY

PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY Michael Kinter Department of Cell Biology Lerner Research Institute Cleveland Clinic Foundation Nicholas E. Sherman Department of Microbiology

More information

- Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case

- Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case - Introduction of x-ray crystallography: what it s used for, how it works, applications in science - Different methods used to generate data - Case studies emphasizing the importance of the technique -

More information

Introduction to Fragment-based Drug Discovery

Introduction to Fragment-based Drug Discovery 1 Introduction to Fragment-based Drug Discovery 1.1 Introduction Mike Cherry and Tim Mitchell Fragment screening is the process of identifying relatively simple, often weakly potent, bioactive molecules.

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract research

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Multivalent interactions in human biology

Multivalent interactions in human biology Cooperativity Multivalent interactions in human biology Multivalent interactions in supramolecular chemistry Additivity (?) Multivalent interactions in supramolecular chemistry In order to obtain a

More information

Biological Mass Spectrometry

Biological Mass Spectrometry Biochemistry 412 Biological Mass Spectrometry February 13 th, 2007 Proteomics The study of the complete complement of proteins found in an organism Degrees of Freedom for Protein Variability Covalent Modifications

More information

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays

Study of Non-Covalent Complexes by ESI-MS. By Quinn Tays Study of Non-Covalent Complexes by ESI-MS By Quinn Tays History Overview Background Electrospray Ionization How it is used in study of noncovalent interactions Uses of the Technique Types of molecules

More information

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111 Ed: Pls provide art About the Authors Preface xvii xvi 1 Matter: Its Properties and Measurement 1 1-1 The Scientific Method 2 1-2 Properties of Matter 4 1-3 Classification of Matter 5 1-4 Measurement of

More information

Applications of Fragment Based Approaches

Applications of Fragment Based Approaches Applications of Fragment Based Approaches Ben Davis Vernalis R&D, Cambridge UK b.davis@vernalis.com 1 Applications of Fragment Based Approaches creening fragment libraries Techniques Vernalis eeds approach

More information

Physics and Chemistry of Interfaces

Physics and Chemistry of Interfaces Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl Physics and Chemistry of Interfaces Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI 1 Introduction

More information

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B Lecturers: Dr. Yie-Hwa Chang Room M130 Phone: #79263 E-mail:changy@slu.edu Dr. Tomasz Heyduk Room M99 Phone: #79238 E-mail: heydukt@slu.edu

More information

PerspectiVe. Recent Developments in Fragment-Based Drug Discovery. 1. Introduction. 2. Trends and Developments

PerspectiVe. Recent Developments in Fragment-Based Drug Discovery. 1. Introduction. 2. Trends and Developments J. Med. Chem. XXXX, xxx, 000 A PerspectiVe Recent Developments in Fragment-Based Drug Discovery Miles Congreve,* Gianni Chessari, Dominic Tisi, and Andrew J. Woodhead Astex Therapeutics Ltd., 436 Cambridge

More information

New approaches to scoring function design for protein-ligand binding affinities. Richard A. Friesner Columbia University

New approaches to scoring function design for protein-ligand binding affinities. Richard A. Friesner Columbia University New approaches to scoring function design for protein-ligand binding affinities Richard A. Friesner Columbia University Overview Brief discussion of advantages of empirical scoring approaches Analysis

More information

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2: 1 3/1/2005 A Quantitative Cell-Based High-Content Screening Assay for the Epidermal Growth Factor Receptor-Specific Activation of Mitogen-Activated Protein Kinase Richik N. Ghosh, Linnette Grove, and Oleg

More information

Medicinal Chemistry and Chemical Biology

Medicinal Chemistry and Chemical Biology Medicinal Chemistry and Chemical Biology Activities Drug Discovery Imaging Chemical Biology Computational Chemistry Natural Product Synthesis Current Staff Mike Waring Professor of Medicinal Chemistry

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

ISoTherMal TITraTIon Calorimetry

ISoTherMal TITraTIon Calorimetry ISoTherMal TITraTIon Calorimetry With the Nano ITC, heat effects as small as 1 nanojoules are detectable using one nanomole or less of biopolymer. The Nano ITC uses a solid-state thermoelectric heating

More information

Fragment-based drug discovery

Fragment-based drug discovery Fragment-based drug discovery Dr. Till Kühn VP Applications Development MRS, Bruker BioSpion User s meeting, Brussels, November 2016 Innovation with Integrity The principle of Fragment Based Screening

More information

Thermodynamic Integration with Enhanced Sampling (TIES)

Thermodynamic Integration with Enhanced Sampling (TIES) Thermodynamic Integration with Enhanced Sampling (TIES) A. P. Bhati, S. Wan, D. W. Wright and P. V. Coveney agastya.bhati.14@ucl.ac.uk Centre for Computational Science Department of Chemistry University

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

JCICS Major Research Areas

JCICS Major Research Areas JCICS Major Research Areas Chemical Information Text Searching Structure and Substructure Searching Databases Patents George W.A. Milne C571 Lecture Fall 2002 1 JCICS Major Research Areas Chemical Computation

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last?

Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last? Large Scale FEP on Congeneric Ligand Series Have Practical Free Energy Calculations arrived at Last? Thomas Steinbrecher, Teng Lin, Lingle Wang, Goran Krilov, Robert Abel, Woody Sherman, Richard Friesner

More information

Application Note. Authors. Introduction. Lauren E. Frick and William A. LaMarr Agilent Technologies, Inc. Wakefield, MA, USA

Application Note. Authors. Introduction. Lauren E. Frick and William A. LaMarr Agilent Technologies, Inc. Wakefield, MA, USA Fragment-Based Drug Discovery: Comparing Labeled and Label-Free Screening of β-amyloid Secretase (BACE-1) Using Fluorescence Spectroscopy and Ultrafast SPE/MS/MS Application Note Authors Lauren E. Frick

More information

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction Fondamenti di Chimica Farmaceutica Computer Chemistry in Drug Research: Introduction Introduction Introduction Introduction Computer Chemistry in Drug Design Drug Discovery: Target identification Lead

More information

Fragment Based Drug Design: From Experimental to Computational Approaches

Fragment Based Drug Design: From Experimental to Computational Approaches Current Medicinal Chemistry, 2012, 19,????-???? 1 Fragment Based Drug Design: From Experimental to Computational Approaches A. Kumar, A. Voet and K.Y.J. Zhang* Zhang Initiative Research Unit, Advanced

More information

PROPERTIES OF POLYMERS

PROPERTIES OF POLYMERS PROPERTIES OF POLYMERS THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS Third, completely revised edition By D.W. VÄN KREVELEN Professor-Emeritus,

More information

Presentation Microcalorimetry for Life Science Research

Presentation Microcalorimetry for Life Science Research Presentation Microcalorimetry for Life Science Research MicroCalorimetry The Universal Detector Heat is either generated or absorbed in every chemical process Capable of thermal measurements over a wide

More information

For info and ordering all the 4 versions / languages of this book please visit: http://trl.lab.uic.edu/pon Contents Preface vii Chapter 1 Advances in Atomic and Molecular Nanotechnology Introduction 1

More information

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK Molecular Modelling Computational Chemistry Demystified Peter Bladon Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK John E. Gorton Gorton Systems, Glasgow, UK Robert B. Hammond Institute

More information

NMR methods in fragment screening: theory and a comparison with other biophysical techniques

NMR methods in fragment screening: theory and a comparison with other biophysical techniques NMR methods in fragment screening: theory and a comparison with other biophysical techniques Claudio Dalvit 1,2 1 Novartis Institute for Biomedical Research, CH 4002 Basel, Switzerland 2 Department of

More information

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Samer Haidar 1, Zouhair Bouaziz 2, Christelle Marminon 2, Tiomo Laitinen 3, Anti Poso

More information

Introduction to Computational Structural Biology

Introduction to Computational Structural Biology Introduction to Computational Structural Biology Part I 1. Introduction The disciplinary character of Computational Structural Biology The mathematical background required and the topics covered Bibliography

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery chemicals Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract

More information

Comprehensive Handbook of Calorimetry and Thermal Analysis

Comprehensive Handbook of Calorimetry and Thermal Analysis Comprehensive Handbook of Calorimetry and Thermal Analysis Michio Sorai Editor-in-Chief The Japan Society of Calorimetry and Thermal Analysis John Wiley & Sons, Ltd Contents Preface xi Acknowledgements

More information

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

CHEMISTRY (CHEM) CHEM 208. Introduction to Chemical Analysis II - SL

CHEMISTRY (CHEM) CHEM 208. Introduction to Chemical Analysis II - SL Chemistry (CHEM) 1 CHEMISTRY (CHEM) CHEM 100. Elements of General Chemistry Prerequisite(s): Completion of general education requirement in mathematics recommended. Description: The basic concepts of general

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics

Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics Contents 1 Open-Source Tools, Techniques, and Data in Chemoinformatics... 1 1.1 Chemoinformatics... 2 1.1.1 Open-Source Tools... 2 1.1.2 Introduction to Programming Languages... 3 1.2 Chemical Structure

More information

Investigation of physiochemical interactions in

Investigation of physiochemical interactions in Investigation of physiochemical interactions in Bulk and interfacial water Aqueous salt solutions (new endeavor) Polypeptides exhibiting a helix-coil transition Aqueous globular proteins Protein-solvent

More information

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1 Box S1 ITC versus van t Hoff data and determination of heat capacity changes ΔCp As mentioned, ITC experiments have the important advantage that two thermodynamic properties, enthalpy (ΔH) and the Gibbs

More information

PROTEIN-SOLVENT INTERACTIONS. Roger B. Gregory

PROTEIN-SOLVENT INTERACTIONS. Roger B. Gregory PROTEIN-SOLVENT INTERACTIONS Roger B. Gregory Preface Contributors iii xvii 1. The New Paradigm for Protein Research Rufus Lumry 1 I. Introduction 1 A. Purposes 1 B. Confusing Biology with Chemistry 8

More information

FRAUNHOFER IME SCREENINGPORT

FRAUNHOFER IME SCREENINGPORT FRAUNHOFER IME SCREENINGPORT Design of screening projects General remarks Introduction Screening is done to identify new chemical substances against molecular mechanisms of a disease It is a question of

More information

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies APPLICATION NOTE 21 Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies Eric L. Reese, Ph.D, SensiQ Technologies, Aaron Martin

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

MOLECULAR DIVERSITY IN DRUG DESIGN

MOLECULAR DIVERSITY IN DRUG DESIGN MOLECULAR DIVERSITY IN DRUG DESIGN MOLECULAR DIVERSITY IN DRUG DESIGN Edited by PHILIP M. DEAN and RICHARD A. LEWIS KLUWER ACADEMIC PUBLISHERS NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW ebook ISBN:

More information

THERMODYNAMICS IN DRUG DESIGN. HIGH AFFINITY AND SELECTIVITY

THERMODYNAMICS IN DRUG DESIGN. HIGH AFFINITY AND SELECTIVITY 1 The Chemical Theatre of Biological Systems, May 24 th - 28 th, 2004, Bozen, Italy THERMODYNAMICS IN DRUG DESIGN. HIGH AFFINITY AND SELECTIVITY ERNESTO FREIRE Johns Hopkins University, Department of Biology,

More information

From fragment to clinical candidate a historical perspective

From fragment to clinical candidate a historical perspective REVIEWS Drug Discovery Today Volume 14, Numbers 13/14 July 2009 From fragment to clinical candidate a historical perspective Gianni Chessari and Andrew J. Woodhead Astex Therapeutics Ltd., 436 Cambridge

More information

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1.

Protein Structure Analysis and Verification. Course S Basics for Biosystems of the Cell exercise work. Maija Nevala, BIO, 67485U 16.1. Protein Structure Analysis and Verification Course S-114.2500 Basics for Biosystems of the Cell exercise work Maija Nevala, BIO, 67485U 16.1.2008 1. Preface When faced with an unknown protein, scientists

More information

Virtual screening for drug discovery. Markus Lill Purdue University

Virtual screening for drug discovery. Markus Lill Purdue University Virtual screening for drug discovery Markus Lill Purdue University mlill@purdue.edu Lecture material http://people.pharmacy.purdue.edu/~mlill/teaching/eidelberg/ I.1 Drug discovery Cl N Disease I.1 Drug

More information

In Silico Investigation of Off-Target Effects

In Silico Investigation of Off-Target Effects PHARMA & LIFE SCIENCES WHITEPAPER In Silico Investigation of Off-Target Effects STREAMLINING IN SILICO PROFILING In silico techniques require exhaustive data and sophisticated, well-structured informatics

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information