Fragment Screening in Drug Discovery

Size: px
Start display at page:

Download "Fragment Screening in Drug Discovery"

Transcription

1 Fragment Screening in Drug Discovery Marc Martinell SEQT, Sitges, 19th-20th October 2006 Crystax Pharmaceuticals SL Barcelona Science Park Josep Samitier 1-5, E Barcelona Tel: Fax : Overview The Company Fragment Screening Fragment Library Detection of Fragment Binding Structures of fragment-protein complexes Hit Selection and optimization Summary

2 The Company CrystaX is a Structure-based Drug Discovery company. Founded in 2002 by recognised scientists J. Aymamí and M. Coll. Current team of 22, among them 12 PhD with international experience, additional technical staff. Advisory agreements with experts in complementary areas (Computational Chemistry, Organic Synthesis, etc.) Our main strength is the combination of structural biology and chemistry into a team that can address any issue in the leadfinding process. Barcelona Science Park Access to top technology equipment and labs X-ray Crystallography NMR for Biomolecules Fine Chemistry Combinatorial Chemistry Microcalorimetry Surface Plasmon Resonance Genomics and Transcriptomics Proteomics Business Model Fee for Service Co-Development of new drugs with pharma partners using our platform technology Development of own pipeline Crystax s approach to business Fee-for-service business and R&D collaborations Deliver value to clients Develop relationships for licensing opportunities Product pipeline from own drug discovery Short term: in collaboration with other companies Mid term: own licensing opportunities B2D2 Common technology platform

3 Collaborations Fragment Screening

4 Fragment Screening There is a massive amount of drug like molecules with a suitable molecular weight for drug discovery HTS and traditional discovery techniques often start with relatively large and complex molecules. The main disadvantage of traditional approaches is that finding one right molecule amongst such a vast number is quite difficult and, moreover, it is indeed hard to, once found, jump from one chemical branch to another Drug like molecules with Mw < 800 Fragment Screening Fragment screening allows to start with a smaller molecule and then add as much complexity as needed. The difficulty is that you start at a pre-hit stage, where functional activity is difficult/impossible to measure.

5 Fragment Screening Drug-like mm µm nm pm K D Probability Ligand complexity Probability of detection Probability of binding Adapted from: M.H. Hann et al, J. Chem. Inf. Comput. Sci. 2001, 41, Fragment Screening Fragmentlike Fragmentlike Drug-like mm µm nm pm K D Techniques able to detect and develop low affinity binders are needed Probability Ligand complexity NMR X-Ray Crystallography Biophysical techniques Probability of detection Probability of binding Adapted from: M.H. Hann et al, J. Chem. Inf. Comput. Sci. 2001, 41,

6 Fragment Screening SAR-by-NMR (S.B. Shuker et al. Science 1996, 274, ) R. Carr and H. Jhoti, DDT, 2002, 7, Fragment Screening - Examples Hit Lead N p38 kinase N O OH IC 50 = 1.1mM F N N O OH IC 50 = 200nM J. Fejzo et al, Chem.Biol, 1999, 6, N Urokinase N OH Ki = 56µM N N NH Ki = 370nM V.L. Nienaber et al, Nat. Biotech., 2000, 18, NH 2 NH2 CO 2 H Thymidylate Synthase O O S N CO 2 H Ki = 1000µM O O S N O HN O CO 2 H Ki = 33nM D. A. Erlanson et al, PNAS, 2000, 97, CO 2 H

7 Fragment Library Fragments are organic molecules with a low degree of complexity and non-reactive CrystaX s Fragment Library commercial compounds Selection process based on the newest criteria for fragment libraries. The balance between chemical space exploration and efficiency of the hit to lead process is optimized. CrystaX s Fragment Library ,

8 CrystaX s Fragment Library commercial compounds Molecular properties (fragment-like) Unwanted reactivity Clustering and selection CrystaX s Fragment Library , CrystaX s Fragment Library Quality Control Quality Control of individual compounds Solubility, identity, purity and stability Quality Control of mixtures of 7-9 compounds Designed to obtain the minimum signal overlap among compounds Solubility, identity, purity and stability 615 compounds ready for Fragment Screening in 71 mixtures Constant monitoring of false positive and/or promiscuous binders

9 Detection of fragment binding Due to their low degree of complexity, fragments are low affinity binders Fragment Screening by NMR Target protein NMR screening STD Relaxation edited spectra WaterLOGSY TrNOE 19 F-NMR Chemical Shift Mapping (CSM) Continuous development Positive Fragments

10 Fragment Screening by NMR - STD I 0 Each molecule has characteristic signals on a 1D 1 H spectra B. Meyer and T. Peters, Angew. Chem. Int. Ed., 2003, 42, Fragment Screening by NMR - STD I 0 In a solution of a protein with a large excess of these molecules, their spectra is almost not affected B. Meyer and T. Peters, Angew. Chem. Int. Ed., 2003, 42,

11 Fragment Screening by NMR - STD I 0 I SAT When the protein is saturated with a selective irradiation, this saturation is transferred to the binding molecules. This saturation produces an attenuation of its NMR signal. B. Meyer and T. Peters, Angew. Chem. Int. Ed., 2003, 42, Fragment Screening by NMR - STD I 0 I SAT By subtracting both spectra, an NMR difference spectrum is obtained in where ligand molecules that bind to the target can be identified I STD = I 0 -I SAT δ (ppm) B. Meyer and T. Peters, Angew. Chem. Int. Ed., 2003, 42,

12 Fragment Screening by NMR The complete library is screened by NMR 1D 1 H mixture Relaxation Edited Experiment The signals of fragment binders disappear Saturation Transfer Difference (STD) The signals of fragment binders appear Direct deconvolution from mixtures of fragments Fragment Screening by NMR Examples 1D 1 H spectrum STD spectrum

13 Fragment Screening by NMR Examples Direct Deconvolution CXL-8 CXL-7 CXL-9 CXL-11 CXL-12 CXL-18 CXL-20 CXL-23 CXL-24 CXL-28 STD Fragment Screening by NMR Examples Direct Deconvolution Positives fragments: CXL-20 and CXL-23 CXL-20 CXL-23 STD 13

14 Fragment Screening by NMR Examples STD STD upon addition of known active-site ligand Fragment Screening by NMR Examples CXL-23 CXL-23 Only compound CXL-23 interacts with the active site STD STD upon addition of known active-site ligand

15 Fragment Screening by NMR Examples 1D 1H mixture Relaxation Edited Experiment STD The signals of fragment binders disappear The signals of fragment binders appear 1D 1H compound CXL-212 Compound CXL-212 interacts with the protein Fragment Screening by NMR Examples 1D 1H mixture + Competitor Relaxation Edited Experiment addition of known active-site ligand STD 1D 1H compound CXL

16 Fragment Screening by NMR Examples Using competition studies by NMR ligands for specific binding sites can be identified 1D 1 H mixture Relaxation Edited Experiment STD Compound CXL-212 interacts with the active site of the protein target 1D 1 H compound CXL-212 Projects at CrystaX Project Field Inflammation Oncology Oncology Auto-immune Oncology - Hit rate 10% 5% 5% 4% 3% 1%

17 Structures of fragment-protein complexes Due to their low affinity and small size fragments are more difficult to study by Xray crystallography Fragment Screening by Xray Positive Fragments Crystallization (co-crystallization or soaking) Structure determination Fragment Hits

18 High-Throughput Crystallography Sparse matrix screening for initial crystallization conditions > 1000 conditions Optimization of conditions for crystal growth Reproduction of known crystallization conditions Characterization of crystals Collection of apo -datasets Ab-initio screening for crystallization conditions in the presence of inhibitors Large scale production of crystals Soaking of crystals with ligands Co-crystallization under analogous conditions Collection of diffraction data in the presence of inhibitor Automatic Data Processing & Analysis of Results Data are processed automatically using commercial software and a modular suite of proprietary scripts. Resulting electron densities are inspected individually, analyzed and classified. Models of the protein-ligand complex are partially or completely refined, depending on the needs of the individual project.

19 Structures of fragment-protein complexes Fragment Screening renders a high amount of structural data, thus increasing the efficiency of the hit to lead process Projects at CrystaX Project Field Hit rate (NMR) Hit confirmation (Xray) 1 Inflammation 10% 40% 2 Oncology 5% 45% 3 Oncology 5% ongoing

20 Alternative approaches Primary screening method NMR (ligand-based detection) NMR (protein-based detection) SPR Biochemical assays Virtual Screening Xray Hit confirmation Xray Xray Xray Xray Xray - The combination of ligand-based NMR methods and Xray crystallography renders the most general approach with the minimum consumption of protein sample Hit Selection and Optimization Several prioritization criteria are needed in order to select the most interesting hits

21 Hit selection Fragment Hits Preliminar SAR Selected HITS Hit validation and selection Validation of Binding-mode New chemical structures Evaluation of other molecules within its cluster and/or molecules that contain the same binding motif Hit Optimization Fragment Hits Biophysical methods (B2D2 TM ) SPR K on and K off Microcalorimetry Hº, Sº Selected HITS Synthesis Activity Assays Optimization Molecular Modeling LEADS Fragment Screening!!

22 Biophysics-Based Drug Discovery (B2D2 TM ) pm Activity Assays Lead nm? µm Fragment Screening Hit mm Biophysics-Based Drug Discovery (B2D2 TM ) pm Activity Assays Lead Fragment Screening nm µm mm Hit ADME Toxicity Selectivity Patentability B2D2 TM Biophysical characterization renders high quality data and increases the efficiency of Hit2Lead process

23 Biophysics-Based Drug Discovery (B2D2 TM ) Biophysics-Based Drug Discovery B2D2 TM NMR X-Ray crystallography Biophysics-Based Drug Discovery (B2D2 TM ) Biophysics-Based Drug Discovery B2D2 TM NMR X-Ray crystallography Calorimetry Unique technique for thermodynamic data (K D, Hº, Sº) Low throughput Label free High protein consumption G H -T S G H -T S Same K D but different thermodynamics

24 Use of ITC in Fragment Evolution ITC requirements 10 < nk A [M] T < 100 Fragment Hits: mm - µm K A ~ K D ~ 100µM 10nM Soluble compounds Lead compounds: nm - pm High amounts of sample Use of ITC in Fragment Evolution

25 Biophysics-Based Drug Discovery (B2D2 TM ) Biophysics-Based Drug Discovery B2D2 TM NMR X-Ray crystallography RU 500 Calorimetry Biacore (SPR) Kinetic data (K A, k on, k off ) Medium-high throughput Immobilization needed Low protein consumption Time (seconds) Same K D but different kinetics Biophysics-Based Drug Discovery (B2D2 TM ) Biophysics-Based Drug Discovery B2D2 TM NMR X-Ray crystallography Calorimetry Biacore (SPR) Fluorescence spectroscopy Affinity constant (K A ) Medium-high throughput Fluorescent-label needed Low protein consumption

26 Summary Renders. Novel Structures Fragment Screening B2D2 but also. Summary New binding modes Novel Structures New binding sites Fragment Screening B2D2 Lead Optimization Structural waters Protein Hot-spots Biophysical characterization Protein flexibility

27 Acknowledgements Joan Aymamí Miquel Coll Maria Kontoyianni Ingo Korndoerfer Montse Soler Xavier Barril Isabel Navarro Franck Chevalier Teresa Luque Irena Bonin Unitat RMN (SCT-UB) Unitat Químic Fina (SCT-UB) Unitat Citometria (SCT-UB) Unitat Química Combinatòria (PCB) Plataforma Raigs-X (PCB) A. Llebaria (RUBAM, IIQAB-CSIC) R. Gutierrez (IMIM-UPF) F. J. Luque (UB) Carolina Moral Marta Masip Sarah Sotil Verónica Toledo Laura Quintana Sonia Soriano Anja Leimpek Marian Domínguez Marta Martín Thank you for your attention

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

Introduction to FBDD Fragment screening methods and library design

Introduction to FBDD Fragment screening methods and library design Introduction to FBDD Fragment screening methods and library design Samantha Hughes, PhD Fragments 2013 RSC BMCS Workshop 3 rd March 2013 Copyright 2013 Galapagos NV Why fragment screening methods? Guess

More information

Implementation of novel tools to facilitate fragment-based drug discovery by NMR:

Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Implementation of novel tools to facilitate fragment-based drug discovery by NMR: Automated analysis of large sets of ligand-observed NMR binding data and 19 F methods Andreas Lingel Global Discovery Chemistry

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

Using AutoDock for Virtual Screening

Using AutoDock for Virtual Screening Using AutoDock for Virtual Screening CUHK Croucher ASI Workshop 2011 Stefano Forli, PhD Prof. Arthur J. Olson, Ph.D Molecular Graphics Lab Screening and Virtual Screening The ultimate tool for identifying

More information

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies

Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies APPLICATION NOTE 21 Fragment-Based Drug Discovery (FBDD) Using the dispr Technique on Pioneer Systems with OneStep and NeXtStep Injection Methodologies Eric L. Reese, Ph.D, SensiQ Technologies, Aaron Martin

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

Unlocking the potential of your drug discovery programme

Unlocking the potential of your drug discovery programme Unlocking the potential of your drug discovery programme Innovative screening The leading fragment screening platform with MicroScale Thermophoresis at its core Domainex expertise High quality results

More information

Mnova Software Tools for Fragment-Based Drug Discovery

Mnova Software Tools for Fragment-Based Drug Discovery Mnova Software Tools for Fragment-Based Drug Discovery Chen Peng, PhD, VP of Business Development, US & China Mestrelab Research SL San Diego, CA chen.peng@mestrelab.com 858.736.4563 Agenda Brief intro

More information

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Cheminformatics Role in Pharmaceutical Industry Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS Agenda The big picture for pharmaceutical industry Current technological/scientific issues Types

More information

Important Aspects of Fragment Screening Collection Design

Important Aspects of Fragment Screening Collection Design Important Aspects of Fragment Screening Collection Design Phil Cox, Ph. D., Discovery Chemistry and Technology, AbbVie, USA Cresset User Group Meeting, Cambridge UK. Thursday, June 29 th 2017 Disclosure-

More information

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE AMRI COMPOUD LIBRARY COSORTIUM: A OVEL WAY TO FILL YOUR DRUG PIPELIE Muralikrishna Valluri, PhD & Douglas B. Kitchen, PhD Summary The creation of high-quality, innovative small molecule leads is a continual

More information

Structure-Based Drug Discovery An Overview

Structure-Based Drug Discovery An Overview Structure-Based Drug Discovery An Overview Edited by Roderick E. Hubbard University of York, Heslington, York, UK and Vernalis (R&D) Ltd, Abington, Cambridge, UK RSC Publishing Contents Chapter 1 3D Structure

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

NMR methods in fragment screening: theory and a comparison with other biophysical techniques

NMR methods in fragment screening: theory and a comparison with other biophysical techniques NMR methods in fragment screening: theory and a comparison with other biophysical techniques Claudio Dalvit 1,2 1 Novartis Institute for Biomedical Research, CH 4002 Basel, Switzerland 2 Department of

More information

Fragment-based drug discovery

Fragment-based drug discovery Fragment-based drug discovery Dr. Till Kühn VP Applications Development MRS, Bruker BioSpion User s meeting, Brussels, November 2016 Innovation with Integrity The principle of Fragment Based Screening

More information

Enamine Golden Fragment Library

Enamine Golden Fragment Library Enamine Golden Fragment Library 14 March 216 1794 compounds deliverable as entire set or as selected items. Fragment Based Drug Discovery (FBDD) [1,2] demonstrates remarkable results: more than 3 compounds

More information

Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny , Russia 2

Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny , Russia 2 Graphene oxide linking layers: a versatile platform for biosensing Yu.V. Stebunov 1, O.A. Aftenieva 1, A.V. Arsenin 1, and V.S. Volkov 1,2 1 Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny

More information

NMR Solutions for drug discovery

NMR Solutions for drug discovery NMR Solutions for drug discovery Dr. Matteo Pennestri London, UK Bruker Users Meeting Innovation with Integrity The principle of Fragment Based Screening from efficient fragments to Drug candidates Fragment

More information

Applications of Fragment Based Approaches

Applications of Fragment Based Approaches Applications of Fragment Based Approaches Ben Davis Vernalis R&D, Cambridge UK b.davis@vernalis.com 1 Applications of Fragment Based Approaches creening fragment libraries Techniques Vernalis eeds approach

More information

Early Stages of Drug Discovery in the Pharmaceutical Industry

Early Stages of Drug Discovery in the Pharmaceutical Industry Early Stages of Drug Discovery in the Pharmaceutical Industry Daniel Seeliger / Jan Kriegl, Discovery Research, Boehringer Ingelheim September 29, 2016 Historical Drug Discovery From Accidential Discovery

More information

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015 Ignasi Belda, PhD CEO HPC Advisory Council Spain Conference 2015 Business lines Molecular Modeling Services We carry out computational chemistry projects using our selfdeveloped and third party technologies

More information

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE NUE FEATURE T R A N S F O R M I N G C H A L L E N G E S I N T O M E D I C I N E Nuevolution Feature no. 1 October 2015 Technical Information COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE A PROMISING

More information

Design and Synthesis of the Comprehensive Fragment Library

Design and Synthesis of the Comprehensive Fragment Library YOUR INNOVATIVE CHEMISTRY PARTNER IN DRUG DISCOVERY Design and Synthesis of the Comprehensive Fragment Library A 3D Enabled Library for Medicinal Chemistry Discovery Warren S Wade 1, Kuei-Lin Chang 1,

More information

HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY

HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY 137 Molecular Informatics: Confronting Complexity, May 13 th - 16 th 2002, Bozen, Italy HIGH-THROUGHPUT X-RAY TECHNIQUES AND DRUG DISCOVERY HARREN JHOTI Astex Technology Ltd, 250 Cambridge Science Park,

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

17. Biomolecular Interaction

17. Biomolecular Interaction 17. Biomolecular Interaction Methods for characterizing biomolecular interactions Sequence-specific DNA binding ligands Molecular mechanisms of drug action and drug resistance In silico compound design

More information

Biologically Relevant Molecular Comparisons. Mark Mackey

Biologically Relevant Molecular Comparisons. Mark Mackey Biologically Relevant Molecular Comparisons Mark Mackey Agenda > Cresset Technology > Cresset Products > FieldStere > FieldScreen > FieldAlign > FieldTemplater > Cresset and Knime About Cresset > Specialist

More information

Problem Set 5 Question 1

Problem Set 5 Question 1 2.32 Problem Set 5 Question As discussed in class, drug discovery often involves screening large libraries of small molecules to identify those that have favorable interactions with a certain druggable

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

The Comprehensive Report

The Comprehensive Report High-Throughput Screening 2002: New Strategies and Technologies The Comprehensive Report Presented by HighTech Business Decisions 346 Rheem Blvd., Suite 208, Moraga, CA 94556 Tel: (925) 631-0920 Fax: (925)

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination. Module Structure: (15 credits each) Lectures and Assessment: 50% coursework, 50% unseen examination. Module Title Module 1: Bioinformatics and structural biology as applied to drug design MEDC0075 In the

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

Presentation Microcalorimetry for Life Science Research

Presentation Microcalorimetry for Life Science Research Presentation Microcalorimetry for Life Science Research MicroCalorimetry The Universal Detector Heat is either generated or absorbed in every chemical process Capable of thermal measurements over a wide

More information

SARA Pharm Solutions

SARA Pharm Solutions SARA Pharm Solutions Who we are? Sara Pharm Solutions European Innovative R&D-based Solid state pharmaceutical CRO 2 Company Background Incorporated in Bucharest, Romania Contract Research Organization

More information

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007 Computational Chemistry in Drug Design Xavier Fradera Barcelona, 17/4/2007 verview Introduction and background Drug Design Cycle Computational methods Chemoinformatics Ligand Based Methods Structure Based

More information

Biophysics Service at the MPIB Biochemistry Core Facility Stephan Uebel, Biochemistry Core Facility

Biophysics Service at the MPIB Biochemistry Core Facility Stephan Uebel, Biochemistry Core Facility Biophysics Service at the MPIB Biochemistry Core Facility 30.11.2015 Stephan Uebel, Biochemistry Core Facility uebel@biochem.mpg.de Overview Peptide Chemistry - Peptide synthesis -Amino acid analysis -

More information

Molecularly imprinted polymers

Molecularly imprinted polymers Molecularly imprinted polymers Presentation in Sensors, Arrays, Screening Lennart Niehues, Jan Philip Meyer 1 Overview Introduction Advantages Disadvantages Theory of MIP Requirements for the optimal MIP

More information

Reaxys Medicinal Chemistry Fact Sheet

Reaxys Medicinal Chemistry Fact Sheet R&D SOLUTIONS FOR PHARMA & LIFE SCIENCES Reaxys Medicinal Chemistry Fact Sheet Essential data for lead identification and optimization Reaxys Medicinal Chemistry empowers early discovery in drug development

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Designed polymers for purification of flavor oils

Designed polymers for purification of flavor oils Designed polymers for purification of flavor oils IFEAT Conference 2014 Rome, September 23, 2014 Ecevit Yilmaz, PhD Global Product Manager Industrial Resins MIP Technologies AB a subsidiary of Biotage

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

FRAUNHOFER IME SCREENINGPORT

FRAUNHOFER IME SCREENINGPORT FRAUNHOFER IME SCREENINGPORT Design of screening projects General remarks Introduction Screening is done to identify new chemical substances against molecular mechanisms of a disease It is a question of

More information

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery 21 th /June/2018@CUGM Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery Kaz Ikeda, Ph.D. Keio University Self Introduction Keio University, Tokyo, Japan (Established

More information

Kinetic & Affinity Analysis

Kinetic & Affinity Analysis Kinetic & Affinity Analysis An introduction What are kinetics and affinity? Kinetics How fast do things happen? Time-dependent Association how fast molecules bind Dissociation how fast complexes fall apart

More information

Hit Finding and Optimization Using BLAZE & FORGE

Hit Finding and Optimization Using BLAZE & FORGE Hit Finding and Optimization Using BLAZE & FORGE Kevin Cusack,* Maria Argiriadi, Eric Breinlinger, Jeremy Edmunds, Michael Hoemann, Michael Friedman, Sami Osman, Raymond Huntley, Thomas Vargo AbbVie, Immunology

More information

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS PETER GUND Pharmacopeia Inc., CN 5350 Princeton, NJ 08543, USA pgund@pharmacop.com Empirical and theoretical approaches to drug discovery have often

More information

Using MnovaScreen to Process, Analyze and Report Ligand-Protein Binding Spectra for Fragment-based Lead Design

Using MnovaScreen to Process, Analyze and Report Ligand-Protein Binding Spectra for Fragment-based Lead Design September 2014 Using MnovaScreen to Process, Analyze and Report Ligand-Protein Binding Spectra for Fragment-based Lead Design Dr Manuel Perez Senior VP - Mestrelab 1996: A research project in University

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract research

More information

Chemical library design

Chemical library design Chemical library design Pavel Polishchuk Institute of Molecular and Translational Medicine Palacky University pavlo.polishchuk@upol.cz Drug development workflow Vistoli G., et al., Drug Discovery Today,

More information

For Excellence in Organic Chemistry

For Excellence in Organic Chemistry Organix Inc. Your Contract Research and Custom Synthesis Company www.organixinc.com For Excellence in Organic Chemistry Organix Inc. A Contract Research and Custom Synthesis Company At the discovery end

More information

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software CSD CSD-Enterprise Access the CSD and ALL CCDC application software CSD-Enterprise brings it all: access to the Cambridge Structural Database (CSD), the world s comprehensive and up-to-date database of

More information

Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study

Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study Johannes Schiebel 1, Nedyalka Radeva 1, Stefan G. Krimmer 1, Xiaojie Wang 1, Martin

More information

Since 1988 High Force Research has worked with organizations operating in practically all end use sectors requiring chemical synthesis input, and

Since 1988 High Force Research has worked with organizations operating in practically all end use sectors requiring chemical synthesis input, and Since 1988 High Force Research has worked with organizations operating in practically all end use sectors requiring chemical synthesis input, and offers a range of services allied to new product development

More information

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL

The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL The Institute of Cancer Research PHD STUDENTSHIP PROJECT PROPOSAL PROJECT DETAILS Project Title: Design and synthesis of libraries of bifunctional degraders for the discovery of new cancer targets SUPERVISORY

More information

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses

Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses Sean Ekins 1, Joe Olechno 2 Antony J. Williams 3 1 Collaborations in Chemistry, Fuquay Varina, NC. 2 Labcyte Inc,

More information

Capturing Chemistry. What you see is what you get In the world of mechanism and chemical transformations

Capturing Chemistry. What you see is what you get In the world of mechanism and chemical transformations Capturing Chemistry What you see is what you get In the world of mechanism and chemical transformations Dr. Stephan Schürer ead of Intl. Sci. Content Libraria, Inc. sschurer@libraria.com Distribution of

More information

Microcalorimetry for the Life Sciences

Microcalorimetry for the Life Sciences Microcalorimetry for the Life Sciences Why Microcalorimetry? Microcalorimetry is universal detector Heat is generated or absorbed in every chemical process In-solution No molecular weight limitations Label-free

More information

Macromolecular X-ray Crystallography

Macromolecular X-ray Crystallography Protein Structural Models for CHEM 641 Fall 07 Brian Bahnson Department of Chemistry & Biochemistry University of Delaware Macromolecular X-ray Crystallography Purified Protein X-ray Diffraction Data collection

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

Small-Molecule Kinetics

Small-Molecule Kinetics Application Note No. 1 / September 1, 2014 Small-Molecule Kinetics Creoptix WAVE Small-Molecule Kinetics: Binding of Sulfonamides to Carbonic Anhydrase II Summary Label-free interaction analysis of biomolecules

More information

How IJC is Adding Value to a Molecular Design Business

How IJC is Adding Value to a Molecular Design Business How IJC is Adding Value to a Molecular Design Business James Mills Sexis LLP ChemAxon TechTalk Stevenage, ov 2012 james.mills@sexis.co.uk Overview Introduction to Sexis Sexis IJC use cases Data visualisation

More information

Practical QSAR and Library Design: Advanced tools for research teams

Practical QSAR and Library Design: Advanced tools for research teams DS QSAR and Library Design Webinar Practical QSAR and Library Design: Advanced tools for research teams Reservationless-Plus Dial-In Number (US): (866) 519-8942 Reservationless-Plus International Dial-In

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Intelligent NMR productivity tools

Intelligent NMR productivity tools Intelligent NMR productivity tools Till Kühn VP Applications Development Pittsburgh April 2016 Innovation with Integrity A week in the life of Brian Brian Works in a hypothetical pharma company / university

More information

Discriminating between polymorphs of acetaminophen using Morphologically-Directed Raman Spectroscopy (MDRS)

Discriminating between polymorphs of acetaminophen using Morphologically-Directed Raman Spectroscopy (MDRS) Discriminating between polymorphs of acetaminophen using Morphologically-Directed Raman Spectroscopy (MDRS) CHEMICAL IDENTIFICATION PARTICLE SIZE PARTICLE SHAPE Introduction Interest in studying mixed

More information

Small-Molecule Kinetics

Small-Molecule Kinetics Application Note No. 1 / February 4, 2015 Small-Molecule Kinetics Creoptix WAVE Small-Molecule Kinetics: Binding of Sulfonamides to Carbonic Anhydrase II Summary Label-free interaction analysis of biomolecules

More information

Data Quality Issues That Can Impact Drug Discovery

Data Quality Issues That Can Impact Drug Discovery Data Quality Issues That Can Impact Drug Discovery Sean Ekins 1, Joe Olechno 2 Antony J. Williams 3 1 Collaborations in Chemistry, Fuquay Varina, NC. 2 Labcyte Inc, Sunnyvale, CA. 3 Royal Society of Chemistry,

More information

Medicinal Chemistry and Chemical Biology

Medicinal Chemistry and Chemical Biology Medicinal Chemistry and Chemical Biology Activities Drug Discovery Imaging Chemical Biology Computational Chemistry Natural Product Synthesis Current Staff Mike Waring Professor of Medicinal Chemistry

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company. Sally Rose BioFocus plc

The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company. Sally Rose BioFocus plc The Changing Requirements for Informatics Systems During the Growth of a Collaborative Drug Discovery Service Company Sally Rose BioFocus plc Overview History of BioFocus and acquisition of CDD Biological

More information

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK

Molecular Modelling. Computational Chemistry Demystified. RSC Publishing. Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK Molecular Modelling Computational Chemistry Demystified Peter Bladon Interprobe Chemical Services, Lenzie, Kirkintilloch, Glasgow, UK John E. Gorton Gorton Systems, Glasgow, UK Robert B. Hammond Institute

More information

This is a repository copy of Biophysics in drug discovery : impact, challenges and opportunities.

This is a repository copy of Biophysics in drug discovery : impact, challenges and opportunities. This is a repository copy of Biophysics in drug discovery : impact, challenges and opportunities. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/105185/ Version: Accepted

More information

TRAINING REAXYS MEDICINAL CHEMISTRY

TRAINING REAXYS MEDICINAL CHEMISTRY TRAINING REAXYS MEDICINAL CHEMISTRY 1 SITUATION: DRUG DISCOVERY Knowledge survey Therapeutic target Known ligands Generate chemistry ideas Chemistry Check chemical feasibility ELN DBs In-house Analyze

More information

Roadblocks in HTS Assay Development

Roadblocks in HTS Assay Development Roadblocks in HTS Assay Development Average HTS biochemical assay development time = 4.1 months One off assay development is typically required for each enzyme class Novel or complex targets can be difficult

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

De Novo molecular design with Deep Reinforcement Learning

De Novo molecular design with Deep Reinforcement Learning De Novo molecular design with Deep Reinforcement Learning @olexandr Olexandr Isayev, Ph.D. University of North Carolina at Chapel Hill olexandr@unc.edu http://olexandrisayev.com About me Ph.D. in Chemistry

More information

ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD)

ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD) ChemDiv Beyond the Flatland 3D-Fragment Library for Fragment-Based Drug Discovery (FBDD) CEMDIV BEYD TE FLATLAD 3D-FRAGMET LIBRARY BACKGRUD Fragment-based drug discovery (FBDD) has become an efficient

More information

Integrated Cheminformatics to Guide Drug Discovery

Integrated Cheminformatics to Guide Drug Discovery Integrated Cheminformatics to Guide Drug Discovery Matthew Segall, Ed Champness, Peter Hunt, Tamsin Mansley CINF Drug Discovery Cheminformatics Approaches August 23 rd 2017 Optibrium, StarDrop, Auto-Modeller,

More information

DivCalc: A Utility for Diversity Analysis and Compound Sampling

DivCalc: A Utility for Diversity Analysis and Compound Sampling Molecules 2002, 7, 657-661 molecules ISSN 1420-3049 http://www.mdpi.org DivCalc: A Utility for Diversity Analysis and Compound Sampling Rajeev Gangal* SciNova Informatics, 161 Madhumanjiri Apartments,

More information

Part I: Concept and Theory

Part I: Concept and Theory Part I: Concept and Theory Fragment-based Approaches in Drug Discovery. Edited by W. Jahnke and D. A. Erlanson Copyright # 2006 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim ISBN: 3-527-31291-9 3 1 The Concept

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

Monolith NT.Automated Product Information

Monolith NT.Automated Product Information Monolith NT.Automated Product Information Monolith Instruments for MicroScale Thermophoresis www.nanotemper-technologies.com Monolith NT.Automated Product Information 2 www.nanotemper-technologies.com

More information

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations:

The Chemistry department approved by the American Chemical Society offers a Chemistry degree in the following concentrations: Chemistry 1 Chemistry 203-C Materials Science Building Telephone: 256.824.6153 Email: chem.admin@uah.edu (chem@uah.edu) The Chemistry department approved by the American Chemical Society offers a Chemistry

More information

Introduction to Bruker s Products and Solutions

Introduction to Bruker s Products and Solutions Introduction to Bruker s Products and Solutions Jason S. Wood, Ph.D. Regional Manager Bio/Pharma Bruker BioSpin Corp Bruker Scientific Divisions Bruker BioSpin Bruker Daltonics Bruker AXS Technology Platforms

More information

Chapter 6. The interaction of Src SH2 with the focal adhesion kinase catalytic domain studied by NMR

Chapter 6. The interaction of Src SH2 with the focal adhesion kinase catalytic domain studied by NMR The interaction of Src SH2 with the focal adhesion kinase catalytic domain studied by NMR 103 Abstract The interaction of the Src SH2 domain with the catalytic domain of FAK, including the Y397 SH2 domain

More information

Biophysical Techniques in Drug Discovery

Biophysical Techniques in Drug Discovery Biophysical Techniques in Drug Discovery Angeles Canales Universidad Complutense de Madrid, Spain Drug Discovery Biophysical Techniques in Drug Discovery Edited by Angeles Canales Biophysical techniques

More information

Synthetic organic compounds

Synthetic organic compounds Synthetic organic compounds for research and drug discovery chemicals Compounds for TS Fragment libraries Target-focused libraries Chemical building blocks Custom synthesis Drug discovery services Contract

More information

Return on Investment in Discovery Chiral Separations

Return on Investment in Discovery Chiral Separations Return on Investment in Discovery Chiral Separations Averica Discovery Services 260 Cedar Hill Street Marlborough MA 01752 www.avericadiscovery.com @averica_feed What Should I Spend? Understanding ROI

More information

Differential Scanning Fluorimetry: Detection of ligands and conditions that promote protein stability and crystallization

Differential Scanning Fluorimetry: Detection of ligands and conditions that promote protein stability and crystallization Differential Scanning Fluorimetry: Detection of ligands and conditions that promote protein stability and crystallization Frank Niesen PX school 2008, Como, Italy Method introduction Topics Applications

More information

Handling Human Interpreted Analytical Data. Workflows for Pharmaceutical R&D. Presented by Peter Russell

Handling Human Interpreted Analytical Data. Workflows for Pharmaceutical R&D. Presented by Peter Russell Handling Human Interpreted Analytical Data Workflows for Pharmaceutical R&D Presented by Peter Russell 2011 Survey 88% of R&D organizations lack adequate systems to automatically collect data for reporting,

More information

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space

Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space Design and Synthesis of 3-Dimensional Fragments to Explore Pharmaceutical Space Mary Christine Wheldon Doctor of Philosophy University of York Chemistry September 2016 Abstract This thesis describes an

More information

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR Everyday NMR Why infer when you can be sure? Innovation with Integrity NMR Only NMR gives you definitive answers, on your terms. Over the past half-century, scientists have used nuclear magnetic resonance

More information