Advanced Chemistry Practice Problems

Size: px
Start display at page:

Download "Advanced Chemistry Practice Problems"

Transcription

1 Finding ph 1. Question: Determine the ph for each of the given solutions. a M HNO3 b M CH3COOH, a = c M CHOOH, a = Answer: The method to determine the ph of a solution will depend on whether the acid is strong or weak. a M HNO3 Nitric acid is a strong, monoprotic acid. Therefore, [HNO3 = [H + = M ph log[h ph log[0.150 ph b M CH3COOH, a = For a weak acid, such as acetic acid, an equilibrium equation and ICE table must be used to determine the ph. Weak acids do not completely dissociate so we cannot assume that [H + = [CH3COOH. The a value (given in the problem) is CH3COOH(aq) CH3COO - (aq) + H + (aq) INITIAL: The initial concentration of CH3COOH is known to be M. Since the problem concerns the ionization of acetic acid into its ions, the initial concentrations of the ions are zero. CHANGE: The change is represented by x and follows the stoichiometry of the balanced chemical reaction. EQUILIBRIUM: The equilibrium row is the sum of the initial and change rows for each column.

2 CH3COOH (M) CH3COO - (M) H + (M) I M 0 0 C -x +x +x E x x x The law of mass action is given and the equilibrium values may be substituted into the equation to solve for x and thus the value of [H a -5 CH COO H 3 CH 3 x x x COOH The value of a is small, so the assumption that x << (much less) can be made. -5 x x Now, the value of x can be determined. x x The value of x is less than 5% of the value from which it was subtracted (0.150) so the assumption is valid. The equilibrium value of [H + = x, therefore [H + = The ph of the solution can now be calculated. ph log[h ph ph log( The answer is reasonable because the ph of the M HNO3 solution is lower (more acidic) than the ph of the M CH3COOH solution. This is expected because HNO3 is a strong acid and CH3COOH is a weak acid. c M CHOOH, a = Formic acid, similar to acetic acid, is a weak acid. Therefore, an equilibrium equation and ICE table must be used to determine the ph of the solution. Weak acids do not completely ionize so we cannot assume that [H + = [CHOOH. The a value (given in the problem) is )

3 CHOOH(aq) CHOO - (aq) + H + (aq) INITIAL: The initial concentration of CHOOH is known to be M. Since the problem concerns the dissociation of formic acid into its ions, the initial concentrations of the ions are zero. CHANGE: The change is represented by x and follows the stoichiometry of the balanced chemical reaction. EQUILIBRIUM: The equilibrium row is the sum of the initial and change rows for each column. CHOOH (M) CHOO - (M) H + (M) I M 0 0 C -x +x +x E x x x The law of mass action is given and the equilibrium values may be substituted into the equation to solve for x and thus the value of [H a -4 CHOO H x x x CHOOH The value of a is small, so the assumption that x << can be made. -4 x x Now, the value of x can be determined. x x The value of x is 4.8% of the value from which it was subtracted (0.150) so the assumption is valid. The equilibrium value of [H + = x, therefore [H + = The ph of the solution can now be calculated. 5

4 ph log[h ph log( ph 2.14 The answer is reasonable because the ph of the M HNO3 solution is lower (more acidic) than the ph of the M CHOOH solution. This is expected because HNO3 is a strong acid and CHOOH is a weak acid. The ph of CHOOH is also less than CH3COOH because it is a strong acid which is evidence by the greater a value for CHOOH. 2. Question: A solution of M hypochlorous acid (HOCl) has a a = , what is the percent ionization of this solution? 3 ) Answer: Solving for the percent ionization of a weak acid begins by solving for the [H +. Once [H + is known, the percent ionization can be calculated. HOCl is a weak acid so we cannot assume that [H + = [HOCl. The a value (given in the problem) is HOCl(aq) OCl - (aq) + H + (aq) INITIAL: The initial concentration of HOCl is given as M. The initial concentrations of the ions are zero. CHANGE: The change is represented by x and follows the stoichiometry of the balanced chemical reaction. EQUILIBRIUM: The equilibrium row is the sum of the initial and change rows for each column. HOCl (M) OCl - (M) H + (M) I M 0 0 C -x +x +x E x x x The law of mass action is given and the equilibrium values may be substituted into the equation to solve for x and thus the value of [H +.

5 a -8 OCl H HOCl x x x The value of a is small, so the assumption that x << can be made. -8 x x Now, the value of x can be determined. x x The value of x is less than 5% of the value from which it was subtracted (0.100) so the assumption is valid. The goal of calculating percent ionization is to determine what fraction of the acid ionized (dissociated into ions). The formula for percent ionization is % ionization 9 H HOCl With the initial concentration of HOCl and the calculated concentration of H +, the percent ionization can be calculated. % ionization % ionization % The percent ionization can serve as another way to compare the strength of acids. The higher the percent ionization, the strong the acid. HOCl is a weak acid with a very low a value has a very low percent ionization.

6 Strong and Weak Bases 1. Question: Identify each of the following as a strong or weak base. a. OH b. NH3 c. CH3NH2 d. Ba(OH)2 Answer: Strong bases contain the hydroxide anion while most weak bases will be an ammine compound (contain an N as a central atom). a. OH strong b. NH3 weak c. CH3NH2 weak d. Ba(OH)2 strong 2. Question: Complete the table. Assume all solutions are at 25 C. Solution [H + ph [OH - poh HBr HF HClO CH2O NaOH NH OH Answer: If one of the four values ([H +, [OH -, ph or poh) is known, then the other three values can be calculated. The value of w at the given temperature must be known. In these examples, the temperature is 25 C and the value of w is Solution [H + (M) ph [OH - (M) poh HBr HF HClO CH2O NaOH NH OH

7 To convert ph to [H + [H + = 10 -ph To convert [H + to ph ph = -log[h + To convert ph to poh To convert poh to ph To convert poh to [OH - poh = 14 - ph ph = 14 - poh [OH = 10 -poh To convert [OH - to poh poh = -log[oh - To convert between [H + and [OH - w = [H + [OH - at 25 C = [H + [OH - 1. Question: Determine the ph for each of the given solutions. a M OH b M Ba(OH)2 c M NH3, b = Answer: To find the ph of these basic solutions, the poh needs to be calculated first. The approach will be different for strong and weak bases. a. OH is a strong base. For M OH, the [OH - = [OH therefore [OH - = M poh log[oh poh log[0.250 poh With the value of the poh, the ph can be determined by subtracting from 14. ph poh 14 ph ph 14 poh ph Given that OH is a strong base, a high ph value (close to 14) is expected.

8 b. For M Ba(OH)2, the approach will be similar except for the fact that there are two hydroxide groups for every unit of Ba(OH)2 so the hydroxide concentration is twice that of the base. Therefore [OH - = M poh log[oh poh log[0.500 poh With the value of the poh, the ph can be determined by subtracting from 14. ph poh 14 ph ph 14 poh ph Given that the hydroxide concentration is higher for Ba(OH)2 than for OH, the ph will be higher (more basic). c M NH3, b = Ammonia is a weak base. Therefore, an equilibrium equation and ICE table must be used to determine the poh, and then the ph of the solution. The b value (givn in the problem) is NH3(aq) + H2O(l) NH4 + (aq) + OH - (aq) INITIAL: The initial concentration of NH3 is given as M. The initial concentrations of NH4 + and OH - are zero and the concentration of water is omitted. CHANGE: The change is represented by x and follows the stoichiometry of the balanced chemical reaction. EQUILIBRIUM: The equilibrium row is the sum of the initial and change rows for each column.

9 NH3 (M) H2O (M) NH4 + (M) OH - (M) I M 0 0 C -x +x +x E x x x The law of mass action is given and the equilibrium values may be substituted into the equation to solve for x and thus the value of [OH b -5 - NH OH 4 NH3 x x x The value of b is small, so the assumption that x << can be made. -5 x x Now, the value of x can be determined. x x The value of x is less than 5% of the value from which it was subtracted (0.250) so the assumption is valid. The equilibrium value of [OH - = x, therefore [OH - = The poh of the solution can now be calculated and from that, the ph of the solution since ph + poh = 14 (at 25 C). poh log[oh poh poh log( ) ph poh ph ph Given that NH3 is a weak base, a ph value greater than 7 is expected so the answer is reasonable.

10 Ions as Acids and Bases 1. Question: Label each of the following ions as acidic, basic, or neutral. a. Cl - d. SO4 2- b. NO2 - e. + c. NH4 + f. NO3 - Answer: a. Cl - : The anion is neutral because it does not react with water to any significant amount. Neutral anions can be recognized because there parent acids are strong acids. If Cl - reacted with water, the only product could be HCl which completely ionizes in water, therefore no H + or OH - ions are generated. b. NO2 - : The anion is basic and it will react with water to produce hydroxide ions. Anions whose parent acid is a weak acid will be basic because they can react with water to produce the acid (which as a weak acid does not completely ionize). The formation of some of the weak acid results in the formation of hydroxide ions. NO2 - (aq) + H2O(l) HNO2(aq) + OH - (aq) c. NH4 + : The cation is an acid and reacts with water to produce hydronium ions. The reaction with water will also produce NH3, which is a weak base. NH4 + (aq) + H2O(l) NH3(aq) + H3O + (aq) d. SO4 2- : The anion is basic because it will react with water to produce HSO4 2-. The parent acid is HSO4 - which is a weak acid. The formation of the weak acid upon reaction of SO4 2- and H2O also results in the formation of hydroxide ions. SO4 2- (aq) + H2O(l) HSO4 - (aq) + OH - (aq) e. + : The cation is neutral because it will not react with water to produce either H + or OH - ions. f. NO3 - : The anion is neutral because will not react with water to produce either H + or OH - ions. The parent acid of NO3 - is HNO3 which is a strong acid. If the nitrate ion reacted with water, the possible product is a strong acid which completely dissociates in water.

11 2. Question: Determine whether solutions of the following salts are acidic, basic, or neutral. a. NaCl b. NO3 c. NO2 d. NH4Cl e. NH4F Answer: a. NaCl: Neutral; Na + is a neutral cation and Cl - is a neutral anion so the resulting salt is neutral. b. NO3: Neutral; + is a neutral cation and NO3 - is a neutral anion so the resulting salt is neutral. c. NO2: Basic; + is a neutral cation and NO2 - is a basic anion so the resulting salt is basic. d. NH4Cl: Acidic; NH4 + is an acidic cation and Cl - is a neutral anion so the resulting salt is acidic. e. NH4F: Acidic; NH4 + is an acidic cation and F - is a basic anion. The acidbase nature of the salt will be determined by the relative strengths of the acidic cation and basic anion. The a of HF is and the b of NH3 is HF is the stronger of the two so it will dominate and the resulting solution is acidic. 3. Question: Calculate the ph of a M solution of NO2. The a of HNO2 is Answer: The ph of a M NO2 solution can be calculated. Given that it is an ionic compound, two reactions have to be considered; the reaction of + or NO2 - with water. + (aq) + H2O(l) No Reaction If + reacts with water, the only possible product is OH, a strong base that completely dissociates. Therefore, the presence of + will not affect the ph of the solution. NO2 - (aq) + H2O(l) HNO2(aq) + OH - (aq)

12 The nitrite ion (NO2 - ) reacts with water to produce HNO2, a weak acid. Since HNO2 is a weak acid, it does not completely dissociate upon formation which will result in an increase in the [OH - and therefore change the ph of the solution. This is the only reaction that needs to be considered to determine the ph of the NO2 solution. In the reaction, NO2 - behaves as a base (proton acceptor) but the the a value of HNO2 ( ) can be obtained from tables. Therefore, w = a b must be used to determine the value of b w b a b b Now that the reaction and the equilibrium constant are known, an ICE table can be constructed to find the ph of the solution. INITIAL: The initial concentration of NO2 - is given as M. The initial concentrations of HNO2 and OH - are zero and the concentration of water is omitted. CHANGE: The change is represented by x and follows the stoichiometry of the balanced chemical reaction. EQUILIBRIUM: The equilibrium row is the sum of the initial and change rows for each column. NO2 - (M) H2O (M) HNO2 (M) OH - (M) I M 0 0 C -x +x +x E x x x The law of mass action is given and the equilibrium values may be substituted into the equation to solve for x and thus the value of [OH.

13 2.310 b HNO2 OH NO 2 x x x The value of b is small, so the assumption that x << can be made. -11 x x Now, the value of x can be determined. x 2-6 x The value of x is less than 5% of the value from which it was subtracted (0.500) so the assumption is valid. The equilibrium value of [OH - = x, therefore [OH - = The poh of the solution can now be calculated and from that, the ph of the solution since ph + poh = 14 (at 25 C) poh log[oh poh poh log( ) ph poh ph ph 8.53 Given that NO2 - is acting as a weak base, a ph value greater than 7 is expected so the answer is reasonable.

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Page 1 of 20 Chapter 16 Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids: taste sour and cause certain dyes to change color. Bases: taste bitter and feel soapy. Arrhenius concept o acids

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Chapters 15 & 16 ACIDS & BASES ph & Titrations PROPERTIES OF ACIDS Chapters 15 & 16 ACIDS & BASES ph & Titrations There are 5 main properties of acids: 1. sour taste 2. change the color of acidbase indicators 3. react with metals to produce H2 gas

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

1) What is the Arrhenius definition of an acid? Of a base? 2) What is the Bronsted-Lowry definition of an acid? Of a base?

1) What is the Arrhenius definition of an acid? Of a base? 2) What is the Bronsted-Lowry definition of an acid? Of a base? Problems, Chapter 16 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) What is the Arrhenius definition of an acid? Of a base? An Arrhenius acid is a substance that produces

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3 Honors Chemistry Study Guide for Acids and Bases 1. Calculate the ph, poh, and [H3O + ] for a solution that has a [OH - ] = 4.5 x 10-5? 2. An aqueous solution has a ph of 8.85. What are the [H + ], [OH

More information

Chem12 Acids : Exam Questions M.C.-100

Chem12 Acids : Exam Questions M.C.-100 Chem12 Acids : Exam Questions M.C.-100 1) Given : HPO 4 2- (aq) + NH 4 + (aq) H 2 PO 4 - (aq) + NH 3 (aq), the strongest acid in the above equation is : a) NH 4 + b) HPO 4 2- c) NH 3 d) H 2 PO 4-2)

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Chem 1046 Lecture Notes Chapter 17

Chem 1046 Lecture Notes Chapter 17 Chem 1046 Lecture Notes Chapter 17 Updated 01-Oct-2012 The Chemistry of Acids and Bases These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that

More information

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus Unit 9: Acids and Bases Notes Introduction and Review 1. Define Acid: 2. Name the following acids: HCl H2SO4 H2SO3 H2S 3. Bases usually contain 4. Name the following bases: NaOH Ca(OH)2 Cu(OH)2 NH4OH Properties

More information

Chem 30A. Ch 14. Acids and Bases

Chem 30A. Ch 14. Acids and Bases Chem 30A Ch 14. Acids and Bases Acids and Bases Acids and Bases Acids Sour taste Dissolve many metals Turn litmus paper red. Egs. Ace9c acid (vinegar), citric acid (lemons) Bases Bi>er taste, slippery

More information

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 Lesson 1: Defining Acids and Bases Goals: Outline the historical development of acid base theories.

More information

Acids and Bases. Reading Assignments: Acids. Bases. Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005

Acids and Bases. Reading Assignments: Acids. Bases. Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Reading Assignments: Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Or Related topics in other textbooks. Acids and Bases Consultation outside lecture room: Office Hours: Tuesday & Thursday

More information

CALCULATING THE ph OF WEAK ACID SOLUTIONS

CALCULATING THE ph OF WEAK ACID SOLUTIONS TUTORIAL 10 Calculating ph of Weak Acid Solutions Percent Ionization Solutions of Bases Acid-Base Properties of Ions and Salts CALCULATING THE ph OF WEAK ACID SOLUTIONS Tro - Sections 15.6 to 15.8 FORMAL

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

CHAPTER 11 ACIDS AND BASES

CHAPTER 11 ACIDS AND BASES CHAPTER 11 ACIDS AND BASES 11.1 Table 11.5 of the text contains a list of important Brønsted acids and bases. (a) both (why?), (b) base, (c) acid, (d) base, (e) acid, (f) base, (g) base, (h) base, (i)

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

Chapter 10. Acids and Bases

Chapter 10. Acids and Bases Chapter 10 Acids and Bases 1 Properties of Aqueous Solutions of Acids and Bases Aqueous acidic solutions have the following properties: 1. They have a sour taste.. They change the colors of many indicators.

More information

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria I. Multiple Choice (for those with an asterisk, you must show work) These multiple choice (MC) are not "Google-proof", but they were so good

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius Principles of Reactivity: The Chemistry of Acids and Bases **a lot of calculations in this chapter will be done on the chalkboard Do not rely on these notes for all the material** Acids, Bases and Arrhenius

More information

Contents and Concepts

Contents and Concepts Chapter 16 1 Learning Objectives Acid Base Concepts Arrhenius Concept of Acids and Base a. Define acid and base according to the Arrhenius concept. Brønsted Lowry Concept of Acids and Bases a. Define acid

More information

ACID-BASE EQUILIBRIA. Chapter 16

ACID-BASE EQUILIBRIA. Chapter 16 P a g e 1 Chapter 16 ACID-BASE EQUILIBRIA Nature of Acids and Bases Before we formally define acids and bases, let s examine their properties. Properties of Acids Sour taste Ability to dissolve many metals

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

Unit 6: ACIDS AND BASES

Unit 6: ACIDS AND BASES Unit 6: Acids and Bases Honour Chemistry Unit 6: ACIDS AND BASES Chapter 16: Acids and Bases 16.1: Brønsted Acids and Bases Physical and Chemical Properties of Acid and Base Acids Bases Taste Sour (Citric

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1 Chapter 16 Acids and Bases Copyright Cengage Learning. All rights reserved 1 Section 16.1 Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH ions.

More information

Acids - Bases in Water

Acids - Bases in Water more equilibrium Dr. Fred Omega Garces Chemistry, Miramar College 1 Acids-Bases Characteristics Acids (Properties) Taste Sour Dehydrate Substances Neutralizes bases Dissolves metals Examples: Juices: TJ,

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Part 01 - Assignment: Introduction to Acids &Bases

Part 01 - Assignment: Introduction to Acids &Bases Part 01 - Assignment: Introduction to Acids &Bases Classify the following acids are monoprotic, diprotic, or triprotic by writing M, D, or T, respectively. 1. HCl 2. HClO4 3. H3As 4. H2SO4 5. H2S 6. H3PO4

More information

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion. Acid-Base Theories Arrhenius Acids and Bases (1884) Acids and Bases An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when

More information

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12 AcidBase Chemistry BrønstedLowry Acids & Bases n There are a couple of ways to define acids and bases n BrønstedLowry acids and bases n Acid: H + ion donor n Base: H + ion acceptor n Lewis acids and bases

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases 14.1 The Nature of Acids and Bases Bronsted-Lowry Acid-Base Systems Bronsted acid: proton donor Bronsted base: proton acceptor Bronsted acid base reaction: proton transfer from

More information

CHAPTER 15 ACIDS AND BASES

CHAPTER 15 ACIDS AND BASES CHAPTER 15 ACIDS AND BASES 15.3 Table 15. of the text contains a list of important Brønsted acids and bases. (a) both (why?), base, (c) acid, (d) base, (e) acid, (f) base, (g) base, (h) base, (i) acid,

More information

Calorimetry, Heat and ΔH Problems

Calorimetry, Heat and ΔH Problems Calorimetry, Heat and ΔH Problems 1. Calculate the quantity of heat involved when a 70.0g sample of calcium is heated from 22.98 C to 86.72 C. c Ca= 0.653 J/g C q = 2.91 kj 2. Determine the temperature

More information

Unit 10: Acids and Bases

Unit 10: Acids and Bases Unit 10: Acids and Bases PROPERTIES OF ACIDS & BASES Properties of an Acid: a Tastes sour substance which dissociates (ionizes, breaks apart in solution) in water to form hydrogen ions Turns blue litmus

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16. Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept of acids and bases: An

More information

ACIDS AND BASES CONTINUED

ACIDS AND BASES CONTINUED ACIDS AND BASES CONTINUED WHAT HAPPENS WHEN AN ACID DISSOLVED IN WATER? Water acts as a Brønsted Lowry base and abstracts a proton (H+) from the acid. As a result, the conjugate base of the acid and a

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of

More information

Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems. See solutions beginning on the next page.

Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems. See solutions beginning on the next page. Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems See solutions beginning on the next page. Determine the ph of a M solution of the following substances. CHCl 2 COONa KHS HClO

More information

Acids and Bases. Unit 10

Acids and Bases. Unit 10 Acids and Bases Unit 10 1 Properties of Acids and Bases Acids Bases Taste Sour Turns Litmus Dye Red Reacts with Metals to give H 2 (g) Taste Bitter Turns Litmus Dye Blue Do Not React with Metals Reacts

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 14 Acids and Bases Section 14.1 The Nature of Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH - ions. Brønsted Lowry: Acids are proton

More information

Chapter 6 Acids and Bases

Chapter 6 Acids and Bases Chapter 6 Acids and Bases Introduction Brønsted acid-base reactions are proton transfer reactions. Acids donate protons to bases. In the process, the acid is converted into its conjugate base and the base

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Lecture 20 Chapter 17, Sections 4-5 More weak acids and bases. Identifying acids and bases Conjugate acids and bases Salts of weak acids and bases

Lecture 20 Chapter 17, Sections 4-5 More weak acids and bases. Identifying acids and bases Conjugate acids and bases Salts of weak acids and bases Lecture 20 Chapter 17, Sections 4-5 More weak acids and bases Identifying acids and bases Conjugate acids and bases Salts of weak acids and bases Acids and Bases Strong vs. Weak K a vs. K b ph = -log([h])

More information

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water.

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water. Guide to Chapter 15. Aqueous Equilibria: Acids and Bases We will spend five lecture days on this chapter. During the first two class meetings we will introduce acids and bases and some of the theories

More information

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases Acids and Bases 1 UNIT 4: ACIDS & BASES OUTCOMES All important vocabulary is in Italics and bold. Outline the historical development of acid base theories. Include: Arrhenius, BronstedLowry, Lewis. Write

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

Acids and Bases Unit 11

Acids and Bases Unit 11 Mr. B s Chemistry Acids and Bases Unit 11 Name Block Let s start our discussion of acids and bases by defining some terms that are essential to the topics that follow. Arrhenius acids and bases are: acid

More information

ACIDS, BASES, AND SALTS

ACIDS, BASES, AND SALTS ACIDS, BASES, AND SALTS Chapter Quiz Choose the best answer and write its letter on the line. 1. A solution in which the hydroxide-ion concentration is 1 10 2 is a. acidic. c. neutral. b. basic. d. none

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

All Your Acids and Bases are Belong to us...acid-base Equilibria: Ch Acid-Base Def ns. I. Properties

All Your Acids and Bases are Belong to us...acid-base Equilibria: Ch Acid-Base Def ns. I. Properties Acid-Base Def ns. I. Properties Acids Taste sour Feel like water Corrosive ph

More information

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is 1. An equation representing the reaction of a weak acid with water is A. HCl + H 2 O H 3 O + + Cl B. NH 3 + H 2 O NH 4 + + OH C. HCO 3 H 2 O H 2 CO 3 + OH D. HCOOH + H 2 O H 3 O + + HCOO 2. The equilibrium

More information

COMPARISON OF STRONG AND WEAK ACIDS (of the same concentration, eg mol/l) Characteristic Strong Acid Weak Acid. Equal to Solution Concentration

COMPARISON OF STRONG AND WEAK ACIDS (of the same concentration, eg mol/l) Characteristic Strong Acid Weak Acid. Equal to Solution Concentration 1 COMPARISON OF STRONG AND WEAK ACIDS (of the same concentration, eg. 0.10 mol/l) Characteristic Strong Acid Weak Acid % reaction with water (%dissociation/ionization) 100% Less than 50% for most Hydronium

More information

Week 6 AB Strength, ph, Kw, Acids

Week 6 AB Strength, ph, Kw, Acids Week 6 AB Strength, ph, Kw, Acids Q UEST IO N 1 A 0.1 M solution of an electrolyte has a ph of 4.0. What is the electrolyte? A. a strong acid B. a strong base C. a weak acid D. a weak base E. a salt of

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

CHEMISTRY. Chapter 16 Acid-Base Equilibria

CHEMISTRY. Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 8 th Edition Chapter 16 Acid-Base Equilibria Kozet YAPSAKLI Why study acids bases? bases are common in the everyday world as well as in the lab. Some common acidic products

More information

Practice test Chapters 15 and 16: Acids and Bases

Practice test Chapters 15 and 16: Acids and Bases Name: Class: Date: Practice test Chapters 15 and 16: Acids and Bases 1. Which of the following pairs of species is not a conjugate acid base pair? A) HOCl, OCl B) HNO 2, NO + 2 C) O 2, OH D) HSO 4, SO

More information

Unit Nine Notes N C U9

Unit Nine Notes N C U9 Unit Nine Notes N C U9 I. AcidBase Theories A. Arrhenius Acids and Bases 1. Acids contain hydronium ions (H O ) commonly referred to as hydrogen ions (H ) that dissociate in water a. Different acids release

More information

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium Unit 9 Acids, Bases, & Salts Acid/Base Equilibrium Properties of Acids sour or tart taste strong acids burn; weak acids feel similar to H 2 O acid solutions are electrolytes acids react with most metals

More information

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter Acid and Bases Exam Review Honors Chemistry 3 April 2012 Chapter 14- Acids and Bases Section 14.1- Acid and Base Properties List five general properties of aqueous acids and bases Properties of Acids Properties

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Chapter 16. Dr Ayman Nafady

Chapter 16. Dr Ayman Nafady Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten Chapter 16 Dr Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions

More information

ACIDS, BASES & SALTS DR. RUCHIKA YADU

ACIDS, BASES & SALTS DR. RUCHIKA YADU ACIDS, BASES & SALTS DR. RUCHIKA YADU Properties of Acids Acid is a compound which yields hydrogen ion (H+), when dissolved in water. Acid is sour to the taste and corrosive in nature. The ph value of

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Section 32 Acids and Bases 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Acid-Base Concepts Acids and bases are among the most familiar and important of all chemical compounds. You

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Chapter 7 Acids and Bases

Chapter 7 Acids and Bases Chapter 7 Acids and Bases 7.1 The Nature of Acids and Bases 7.2 Acid Strength 7.3 The ph Scale 7.4 Calculating the ph of Strong Acid Solutions 7.5 Calculating the ph of Weak Acid Solutions 7.6 Bases 7.7

More information

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions Acids and Bases Arrhenius- Definitions Acids give off Hydrogen ions (protons) Bases give off hydroxide ions This definition did not include enough acids but does explain many. Brønsted-Lowry Acids are

More information

Chemistry 192 Problem Set 4 Spring, 2018 Solutions

Chemistry 192 Problem Set 4 Spring, 2018 Solutions Chemistry 192 Problem Set 4 Spring, 2018 Solutions 1. The ionization constant of benzoic acid in water associated with the reaction C 6 H 5 COOH (aq) + H 2 O (l) C 6 H 5 COO (aq) + H 3O + (aq) is K a =

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases Acid-Base Chemistry There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases Acid: H + ion donor Base: H + ion acceptor Lewis acids and bases Acid: electron pair acceptor Base:

More information

AP Study Questions

AP Study Questions ID: A AP 16.4-16.7 Study Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1 What is the ph of an aqueous solution at 25.0 C in which [H + ] is 0.0025

More information

Ch 7 Practice Problems

Ch 7 Practice Problems Ch 7 Practice Problems 1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a eak acid), the equilibrium constant expression is [H ] [NO 2 ] = [HNO ] 2 [H ][N][O] [HNO 2] =

More information

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium AP Chemistry CHAPTER 16 STUDY GUIDE AcidBase Equilibrium 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Unit 12: Acids & Bases. Aim: What are the definitions and properties of an acid and a base? Properties of an Acid. Taste Sour.

Unit 12: Acids & Bases. Aim: What are the definitions and properties of an acid and a base? Properties of an Acid. Taste Sour. Unit 12: Acids & Bases Aim: What are the definitions and properties of an acid and a base? Mar 23 12:08 PM Properties of an Acid 3. Are electrolytes. (Dissociate and conduct electricity when aq) 2. Turns

More information

K A K B = K W pk A + pk B = 14

K A K B = K W pk A + pk B = 14 Relationship between the ionization constants of an acid and its conjugate base HCN (aq) H 2 O(l) CN (aq) H O (aq) Conjugate couple The product between of an acid and of its conjugate base is : p p 14

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

What is an acid? What is a base?

What is an acid? What is a base? What is an acid? What is a base? Properties of an acid Sour taste Turns litmus paper red Conducts electric current Some acids are strong and some are weak Properties of a base Bitter taste Slippery to

More information

CH 101 Fall 2018 Discussion #8 Chapter 6 Your name: TF s name: Discussion Day/Time: Things you should know when you leave Discussion today:

CH 101 Fall 2018 Discussion #8 Chapter 6 Your name: TF s name: Discussion Day/Time: Things you should know when you leave Discussion today: CH 101 Fall 2018 Discussion #8 Chapter 6 Your name: TF s name: Discussion Day/Time: Things you should know when you leave Discussion today: Precipitation Reaction & Solubility Solubility of Ionic compounds

More information

Aqueous Reactions and Solution Stoichiometry (continuation)

Aqueous Reactions and Solution Stoichiometry (continuation) Aqueous Reactions and Solution Stoichiometry (continuation) 1. Electrolytes and non-electrolytes 2. Determining Moles of Ions in Aqueous Solutions of Ionic Compounds 3. Acids and Bases 4. Acid Strength

More information

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM.

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases. Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H ], (also thought of as hydronium ion, H O ) when dissolved in water. Acids

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

Arrhenius, Bronstead-Lowry, Intro to ph scale

Arrhenius, Bronstead-Lowry, Intro to ph scale Unit 9 Acid/Base Equilibrium In Class Problems and Notes Arrhenius, Bronstead-Lowry, Intro to ph scale Arrhenius acid and Arrhenius base. An acid is a substance which, when dissolved in water, increases

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information