Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems. See solutions beginning on the next page.

Size: px
Start display at page:

Download "Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems. See solutions beginning on the next page."

Transcription

1 Chemistry 210, March 2012 ANSWERS Extra acid/base/salt equilibrium problems See solutions beginning on the next page. Determine the ph of a M solution of the following substances. CHCl 2 COONa KHS HClO 4 H 2 CO 3 BaCl 2 NH 3 NaF Steps for solving acid/base equilibria: 1. Write a chemical equation of what is or could be happening * For ionic compounds, consider each ion separately first. * For ionic compounds, leave spectator ions out of the equation. 2. If needed (and it probably is needed), fill in an ICE table (initial, change, equilibrium) with given and deduced information. 3. Write the appropriate equilibrium constant expression, or. Make sure to get the correct value of or if needed. 4. Determine what needs to be solved for and solve making simplifying assumptions as appropriate. 5. Check your answer to see if it makes sense. Solutions to practice problems begin on the next page.

2 Solutions: a. Determine the ph of a M solution of CHCl 2 COONa The Na + ion will not react with water. The CHCl 2 COO ion is the conjugate base of a weak acid (similar to acetic acid) so it will be basic and will react with water to form the conjugate weak acid and OH. CHCl 2 COO (aq) + H 2 O(l) CHCl 2 COOH(aq) + OH (aq) The anion is acting as a base so we need to find the for this base. The for the conjugate acid is found in ChemActivity 46 I think (or online where I found it) as 5.5 x K w 1.00x10"14 5.5x10 "2 1.8x10 "13 [ [ CHCl 2 COO [ OH 1.8x10 "13 CHCl 2 COOH x 1.8x10"13 Solve the above system for x. However, since the dichloroacetate ion is a fairly weak base, as evidenced by the very small value, x is probably small compared to M and may be able to be ignored. So, let s check by ignoring x on the bottom of the expression. Yes! 1.9 x rounds off to poh log[oh log(1.9 x 10 7 ) 6.72 ph poh x10"13 ()(1.8x10 "13 ) 3.6x10 "14 x 3.6x10 "14 1.9x10 "7 M [OH Finally, does the answer make sense? Yes, a ph of 7.28 is only slightly basic as would be expected for a very weak base such as the one in this problem.

3 b. Determine the ph of a M solution of KHS. The K + ion will not react with water. The HS ion is the conjugate base of a weak acid, H 2 S, so it will be basic and will react with water to form the conjugate weak acid and OH. HS (aq) + H 2 O(l) H 2 S(aq) + OH (aq) The anion is acting as a base so we need to find the for this base. The for the conjugate acid is found in ChemActivity 46 as 1.0 x K w 1.00x10"14 1.0x10 "7 1.0x10 "7 1.0x10 "7 H 2 S [ [ HS [ OH x 1.0x10"7 Solve the above system for x. However, since the hydrogen sulfide ion is a fairly weak base, as evidenced by the small value, x is probably small compared to M and may be able to be ignored. So, let s check by ignoring x on the bottom of the expression. 1.0x10"7 ()(1.0x10 "7 ) 2.0x10 "8 x 2.0x10 "8 1.4x10 "4 M [OH Yes! 1.4 x rounds off to poh log[oh log(1.4 x 10 4 ) 3.85 ph poh Finally, does the answer make sense? Yes, a ph of is basic as would be expected for a weak base such as the one in this problem.

4 c. Determine the ph of a M solution of HClO 4. Note: This acid is a STRONG acid so an equilibrium calculation is not appropriate. It will essentially fully dissociate producing an [H 3 O + of M. The ph can be calculated directly from this value of [H 3 O +. ph log[h 3 O + log() 0.70 Does the answer make sense? Yes, this is a very acidic solution as would be expected for a M solution of a strong acid. d. Determine the ph of a M solution of H 2 CO 3. H 2 CO 3 is a weak acid. We simply need to write the dissociation for this acid, look up its, and solve for the H 3 O + concentration. H 2 CO 3 (aq) + H 2 O(l) HCO 3 (aq + H 3 O + (aq) The for carbonic acid, H 2 CO 3, I found online as 4.4 x Solve the above system for x. However, since the carbonic acid is a fairly weak acid, as evidenced by the small value, x is probably small compared to M and may be able to be ignored. So, let s check by ignoring x on the bottom of the expression. 4.4x10"7 ()(4.4x10 "7 ) 8.8x10 "8 [ [ H 3 O + 4.4x10 "7 HCO 3 H 2 CO 3 [ x 8.8x10 "8 3.0x10 "4 M [H 3 O + x 4.4x10"7 Yes! 3.0 x rounds off to ph log[h 3 O + log(3.0 x 10 4 ) 3.53 Finally, does the answer make sense? Yes, a ph of 3.53 is acidic as would be expected for a weak acid such as carbonic acid.

5 e. Determine the ph of a M solution of BaCl 2. Ba 2+ is a group 2 cation and these do not react appreciably with water so it will not change the ph of the solution. Cl is the conjugate base of the STRONG acid, HCl. As such, the base Cl is essentially nonbasic ( is less than ). Since neither ion reacts with water a solution of this salt will have a ph of 7. f. Determine the ph of a M solution of NH 3. NH 3 is a weak base. We simply need to write the dissociation for this base, look up its value, and solve for the OH concentration. The last step is either solving for the poh and then the ph or solving for the [H 3 O + and then the ph. NH 3 (aq) + H 2 O(l) NH + 4 (aq) + OH (aq) The for NH 3 is found in the workbook or other source is 1.8 x x10 "5 NH + 4 [ [ OH [ NH 3 Solve the above system for x. However, since ammonia is a weak base, as evidenced by the small value, x is probably small compared to M and may be able to be ignored. So, let s check by ignoring x on the bottom of the expression. Yes! 1.9 x rounds off to 1.8x10"5 ()(1.8x10 "5 ) 3.6x10 "6 x 1.8x10"5 x 3.6x10 "6 1.9x10 "3 M [OH Note that out of is about 1% but 1% of a number with only two sig figs like is not enough to change it. poh log[oh log(1.9 x 10 3 ) 2.72 ph poh Finally, does the answer make sense? Yes, a ph of is basic as would be expected for a weak base such as ammonia.

6 g. Determine the ph of a M solution of NaF. The Na + ion will not react with water. The F ion is the conjugate base of a weak acid, HF, so it will be basic and will react with water to form the conjugate weak acid and OH. F (aq) + H 2 O(l) HF(aq) + OH (aq) The anion is acting as a base so we need to find the for this base. The for the conjugate acid is found in your workbook, textbook or online as 6.6 x K w 1.00x10"14 6.6x10 "4 1.5x10 "11 1.5x10 "11 HF [ [ F [ OH Solve the above system for x. However, since the fluoride ion is a fairly weak base, as evidenced by the small value, x is probably small compared to M and may be able to be ignored. So, let s check by ignoring x on the bottom of the expression. Yes! 1.7 x rounds off to 1.5x10"11 ()(1.5x10 "11 ) 3.0x10 "12 x 1.5x10"11 x 3.0x10 "12 1.7x10 "6 M [OH poh log[oh log(1.7 x 10 6 ) 5.76 ph poh Finally, does the answer make sense? Yes, a ph of 8.24 is slightly basic as would be expected for a weak base such as the fluoride ion.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Finding ph 1. Question: Determine the ph for each of the given solutions. a. 0.150 M HNO3 b. 0.150 M CH3COOH, a = 1.8 10-5 c. 0.150 M CHOOH, a = 3.5 10-4 Answer: The method to determine the ph of a solution

More information

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases Chem 105 Tuesday March 8, 2011 Chapter 17. Acids and Bases 1) Define Brønsted Acid and Brønsted Base 2) Proton (H + ) transfer reactions: conjugate acid-base pairs 3) Water and other amphiprotic substances

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model:

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model: Last week, we discussed the Brønsted Lowry concept of acids and bases This model is not limited to aqueous solutions; it can be extended to reactions in the gas phase! According to this model: Acids are

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases

Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases Chapter 15 - Acids and Bases Behavior of Weak Acids and Bases 6) Calculate [H+] and ph for 1.0 10 8 M HCl. HCl H + + Cl - For a strong acid, [H+] = 1.0 10 8 M, ph = 8.0, BUT THIS DOES NOT MAKE SENSE!!!

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

[H ] [OH ] 5.6 " 10

[H ] [OH ] 5.6  10 Howemork set solutions 10: 11.1 Table 11.5 of the tet contains a list of important Brønsted acids and bases. (a) both, base, (c) acid, (d) base, (e) acid, (f) base, (g) base, (h) base, (i) acid, (j) acid.

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

CHAPTER 14 ACIDS AND BASES

CHAPTER 14 ACIDS AND BASES CHAPTER 14 ACIDS AND BASES Topics Definition of acids and bases Bronsted-Lowry Concept Dissociation constant of weak acids Acid strength Calculating ph for strong and weak acids and bases Polyprotic acids

More information

capable of neutralizing both acids and bases

capable of neutralizing both acids and bases Buffers Buffer n any substance or mixture of compounds that, added to a solution, is capable of neutralizing both acids and bases without appreciably changing the original acidity or alkalinity of the

More information

Chapter 16 Acid Base Equilibria

Chapter 16 Acid Base Equilibria Chapter 16 Acid Base Equilibria 2015 Pearson Education, Inc. Acid Base Equilibria 16.1 : A Brief Review 16.2 Brønsted Lowry 16.3 The Autoionization of Water 16.4 The ph Scale 16.5 Strong Balsamic Vinegar

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases Chapter 15 Acid and Bases Properties of Acids! Sour taste! React with active metals! React with carbonates, producing CO 2! Change color of vegetable dyes!blue litmus turns red! React with bases to form

More information

K A K B = K W pk A + pk B = 14

K A K B = K W pk A + pk B = 14 Relationship between the ionization constants of an acid and its conjugate base HCN (aq) H 2 O(l) CN (aq) H O (aq) Conjugate couple The product between of an acid and of its conjugate base is : p p 14

More information

Ch 15, Applications of Aq Equilibria

Ch 15, Applications of Aq Equilibria Ch 15, Applications of Aq Equilibria We will focus on 3 areas: 1) buffers (incl. Henderson-Hasselbalch Transformation) 2) titrations 3) solubility equilibria 1 I. Neutralization Reactions A. Strong acid-strong

More information

Chapter 14. Acids and Bases

Chapter 14. Acids and Bases Chapter 14 Acids and Bases Section 14.1 The Nature of Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH - ions. Brønsted Lowry: Acids are proton

More information

Acids and Bases. Reading Assignments: Acids. Bases. Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005

Acids and Bases. Reading Assignments: Acids. Bases. Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Reading Assignments: Chapter 15 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Or Related topics in other textbooks. Acids and Bases Consultation outside lecture room: Office Hours: Tuesday & Thursday

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Unit 4: Acid/Base I. abinotes. I) Introduction to Acids and Bases What is an acid?

Unit 4: Acid/Base I. abinotes. I) Introduction to Acids and Bases What is an acid? Unit 4: Acid/Base I I) Introduction to Acids and Bases What is an acid? http://www.kidsknowit.com/flash/animations/acidsbases.swf What are properties of acids? 1) Acids react with. 2) Acids create when

More information

Chapter 14 Acids and Bases

Chapter 14 Acids and Bases Properties of Acids and Bases Chapter 14 Acids and Bases Svante Arrhenius (1859-1927) First to develop a theory for acids and bases in aqueous solution Arrhenius Acids Compounds which dissolve (dissociate)

More information

Arrhenius, Bronstead-Lowry, Intro to ph scale

Arrhenius, Bronstead-Lowry, Intro to ph scale Unit 9 Acid/Base Equilibrium In Class Problems and Notes Arrhenius, Bronstead-Lowry, Intro to ph scale Arrhenius acid and Arrhenius base. An acid is a substance which, when dissolved in water, increases

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

Chem12 Acids : Exam Questions M.C.-100

Chem12 Acids : Exam Questions M.C.-100 Chem12 Acids : Exam Questions M.C.-100 1) Given : HPO 4 2- (aq) + NH 4 + (aq) H 2 PO 4 - (aq) + NH 3 (aq), the strongest acid in the above equation is : a) NH 4 + b) HPO 4 2- c) NH 3 d) H 2 PO 4-2)

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

Chemistry 12 Unit 4 Topic A Hand-in Assignment

Chemistry 12 Unit 4 Topic A Hand-in Assignment 1 Chemistry 12 Unit 4 Topic A Handin Assignment Answer the following multiplechoice and written response problems on your own paper. Submit your answers for marking. You do not need to show your work for

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Follow- up Wkst Acid and Base ph Calculations

Follow- up Wkst Acid and Base ph Calculations CH302 LaBrake and Vanden Bout 2-23- 12 Follow- up Wkst Acid and Base ph Calculations For each of the following solutions: Write a chemical equation, identify the limiting reactant (if there is one), and

More information

Chap 16 Chemical Equilibrium HSU FUYIN

Chap 16 Chemical Equilibrium HSU FUYIN Chap 16 Chemical Equilibrium HSU FUYIN 1 Definitions: Arrhenius & Brønsted Lowry acid and base Arrhenius theory: An acid is a substance that, when dissolved in water, increases the concentration of hydrogen

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

+(aq) + Cl - (aq) HA(aq) A - (aq) + H + (aq) CH 3COO - (aq) + H + (aq)

+(aq) + Cl - (aq) HA(aq) A - (aq) + H + (aq) CH 3COO - (aq) + H + (aq) 1 A2 Chemistry: F325 Equilibria, Energetics and Elements 5.1.3 Acids, Bases and Buffers. Lesson 6 Buffer Solutions. Learning Outcomes: All Describe what is meant by the term buffer solution (5.1.3 k) Explain

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

CHEM 1B General Chemistry

CHEM 1B General Chemistry CHEM 1B General Chemistry Ch. 18 Acid-Base Equilibria 18-1 Instructor: Dr. Orlando E. Raola Santa Rosa Junior College Chapter 18 Acid-Base Equilibria 18-2 Acid-Base Equilibria 18.1 Acids and Bases in Water

More information

Acid-Base Chemistry. Key Considerations

Acid-Base Chemistry. Key Considerations Acid-Base Chemistry Varying Definitions, depends on context/application Arrhenius Acid Base Brönsted/Lowry Lewis 1 Key Considerations Autoprotolysis of Water Water is an amphiprotic substance: can behave

More information

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water 19.1 Acids & Bases 1. Compare and contrast the properties of acids & bases. 2. Describe the self-ionization of water & the concept of K w. 3. Differentiate between the Arhennius & Bronsted-Lowry models

More information

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized Chemistry 12 Acid- Base Equilibrium V Name: Date: Block: 1. Buffers 2. Hydrolysis Buffers An acid- base buffer is a solution that resists changes in ph following the addition of relatively small amounts

More information

Worksheet 4.1 Conjugate Acid-Base Pairs

Worksheet 4.1 Conjugate Acid-Base Pairs Worksheet 4.1 Conjugate AcidBase Pairs 1. List five properties of acids that are in your textbook. Acids conduct electricity, taste sour, neutralize bases, change the color of indicators, and react with

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

Chapter 16: Acids and Bases

Chapter 16: Acids and Bases 1. Which is not a characteristic property of acids? A) neutralizes bases B) turns litmus from blue to red C) reacts with active metals to produce H 2 (g) D) reacts with CO 2 (g) to form carbonates E) All

More information

CHEMISTRY. Chapter 16 Acid-Base Equilibria

CHEMISTRY. Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 8 th Edition Chapter 16 Acid-Base Equilibria Kozet YAPSAKLI Why study acids bases? bases are common in the everyday world as well as in the lab. Some common acidic products

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change UNIT 18 Table Of Contents Section 18.1 Introduction to Acids and Bases Unit 18: Acids and Bases Section 18.2 Section 18.3 Section 18.4 Strengths of Acids and Bases Hydrogen

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville, MO The Common-Ion Effect Consider a solution of acetic acid: CH 3 COOH(aq) + H 2 O(l)

More information

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems sparingly soluble ionic solids acidic and basic solutions concentrations of dissolved species K s calculations

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph.

Acid-Base Character of Salt Solutions. Cations. Cations are potentially acidic, but some have no effect on ph. Acid-Base Character of Salt Solutions The ph of a salt solution will depend on the acidbase nature of both the cation and anion. Cations Cations are potentially acidic, but some have no effect on ph. M(H

More information

Chapter 15, Applications of Aqueous Equilibria

Chapter 15, Applications of Aqueous Equilibria Chapter 15, Applications of Aqueous Equilibria We will focus on 3 areas: 1) titrations 2) buffers (incl. the Henderson- Hasselbalch Transformation), 3) solubility equilibria. 1 I. Neutralization Reactions

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Buffer solutions Definition Solutions which resist changes in ph when small quantities of acid or alkali are added. a solution that

More information

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases. Conjugate Acids & Bases. Conjugate Acids & Bases 7/6/12 AcidBase Chemistry BrønstedLowry Acids & Bases n There are a couple of ways to define acids and bases n BrønstedLowry acids and bases n Acid: H + ion donor n Base: H + ion acceptor n Lewis acids and bases

More information

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases

Acid-Base Chemistry. There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases. Lewis acids and bases Acid-Base Chemistry There are a couple of ways to define acids and bases Brønsted-Lowry acids and bases Acid: H + ion donor Base: H + ion acceptor Lewis acids and bases Acid: electron pair acceptor Base:

More information

Chapter 17 Acids and Bases

Chapter 17 Acids and Bases Chapter 17 Acids and Bases - we are all familiar with 'acids' - depicted on television as burning liquids - from foods (i.e. vinegar) - taste "sour" or "tart' - less familiar with 'bases' - taste "bitter"

More information

Chapter 6 Acids and Bases

Chapter 6 Acids and Bases Chapter 6 Acids and Bases Introduction Brønsted acid-base reactions are proton transfer reactions. Acids donate protons to bases. In the process, the acid is converted into its conjugate base and the base

More information

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014 ph, DDS, PhD Dr.abuhassand@gmail.com Lecture 3 MD summer 2014 www.chem4kids.com 1 Outline ph Henderson-Hasselbalch Equation Monoprotic and polyprotic acids Titration 2 Measuring the acidity of solutions,

More information

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville,

More information

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius

Principles of Reactivity: The Chemistry of Acids and Bases. Acids, Bases and Arrhenius Principles of Reactivity: The Chemistry of Acids and Bases **a lot of calculations in this chapter will be done on the chalkboard Do not rely on these notes for all the material** Acids, Bases and Arrhenius

More information

Chem 30A. Ch 14. Acids and Bases

Chem 30A. Ch 14. Acids and Bases Chem 30A Ch 14. Acids and Bases Acids and Bases Acids and Bases Acids Sour taste Dissolve many metals Turn litmus paper red. Egs. Ace9c acid (vinegar), citric acid (lemons) Bases Bi>er taste, slippery

More information

School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171)

School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171) School of Chemistry, Howard College Campus University of KwaZulu-Natal CHEMICAL ENGINEERING CHEMISTRY 2 (CHEM171) Lecture Notes 1 st Series: Solution Chemistry of Salts SALTS Preparation Note, an acid

More information

Reactions with water do NOT go to completion, so to find ion concentrations, need to know K eq and solve an equilibrium problem!

Reactions with water do NOT go to completion, so to find ion concentrations, need to know K eq and solve an equilibrium problem! Strong Acid and Base Solutions Easy to find ion concentrations! 0.1 M HCl = [H 3 O + ] = 0.1 M [OH ] = 1 x 10 13 M 0.1 M NaOH = [OH ] = 0.1 M [H 3 O + ] = 1 x 10 13 M Weak Acid and Base Solutions Reactions

More information

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l)

Do Now May 1, Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. KCl(aq) + H 2 O(l) Do Now May 1, 2017 Obj: Observe and describe neutralization reactions. Copy: Balance the neutralization reaction. HCl + KOH KCl(aq) + H 2 O(l) If I had 100 ml of a 0.01 M HCl solution, what is the ph of

More information

CHM112 Lab Hydrolysis and Buffers Grading Rubric

CHM112 Lab Hydrolysis and Buffers Grading Rubric Name Team Name CHM112 Lab Hydrolysis and Buffers Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial calculations completed

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold.

CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold. CHEM 1412 Zumdahl & Zumdahl Practice Exam II (Ch. 14, 15 & 16) Multiple Choices: Please select one best answer. Answer shown in bold. 1. Consider the equilibrium: PO -3 4 (aq) + H 2 O (l) HPO 2-4 (aq)

More information

Chemistry 192 Problem Set 3 Spring, 2018 Solutions

Chemistry 192 Problem Set 3 Spring, 2018 Solutions Chemistry 19 Problem Set 3 Spring, 018 Solutions 1. Problem 3, page 78, textbook Answer (a) (b) (c) (d) HOBr (acid 1) + HSO 4 (acid 1) + HS (base 1) + C 6 H 5 NH + 3 (acid 1) + H O (base ) H 3O + (acid

More information

Advanced Placement Chemistry Chapters Syllabus

Advanced Placement Chemistry Chapters Syllabus As you work through the chapter, you should be able to: Advanced Placement Chemistry Chapters 14 16 Syllabus Chapter 14 Acids and Bases 1. Describe acid and bases using the Bronsted-Lowry, Arrhenius, and

More information

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Chemistry 12 Acid-Base Equilibrium II Name: Date: Block: 1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Strengths of Acids and

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

Solubility Equilibria

Solubility Equilibria Solubility Equilibria Heretofore, we have investigated gas pressure, solution, acidbase equilibriums. Another important equilibrium that is used in the chemistry lab is that of solubility equilibrium.

More information

Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2017 page 1 of 6 Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

Acids - Bases in Water

Acids - Bases in Water more equilibrium Dr. Fred Omega Garces Chemistry, Miramar College 1 Acids-Bases Characteristics Acids (Properties) Taste Sour Dehydrate Substances Neutralizes bases Dissolves metals Examples: Juices: TJ,

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases 14.1 The Nature of Acids and Bases Bronsted-Lowry Acid-Base Systems Bronsted acid: proton donor Bronsted base: proton acceptor Bronsted acid base reaction: proton transfer from

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Buffer Solutions. Remember that p means - log of. When doing these problems you are looking to see

Buffer Solutions. Remember that p means - log of. When doing these problems you are looking to see Buffer Solutions 1. What is a buffer solution? A buffer solution is one that is able to resist (or minimize) changes in ph. In order to identify if you have a buffer solution you are looking for a solution

More information

AP Chemistry: Acid-Base Chemistry Practice Problems

AP Chemistry: Acid-Base Chemistry Practice Problems Name AP Chemistry: Acid-Base Chemistry Practice Problems Date Due Directions: Write your answers to the following questions in the space provided. For problem solving, show all of your work. Make sure

More information

Chpt 16: Acids and Bases

Chpt 16: Acids and Bases Chpt 16 Acids and Bases Defining Acids Arrhenius: Acid: Substances when dissolved in water increase the concentration of H+. Base: Substances when dissolved in water increase the concentration of OH- Brønsted-Lowry:

More information

Equilibrium constant

Equilibrium constant Equilibrium constant Equilibrium constant Many reactions that occur in nature are reversible and do not proceed to completion. They come to an equilibrium where the net velocity = 0 The velocity of forward

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

I. Acids & Bases. A. General ideas:

I. Acids & Bases. A. General ideas: Acid-Base Equilibria 1. Application of equilibrium concepts. 2. Not much else new in the way of theory is presented. 3. Specific focus on aqueous (H O is 2 solvent) systems. 4. Assume we are at equilibrium

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

SCHOOL YEAR CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A

SCHOOL YEAR CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A SCHOOL YEAR 2017-18 NAME: CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A Choose the best answer from the options that follow each question. 1. A solute

More information

Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 16 Acid Base Equilibria John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions Arrhenius An acid is a substance that, when dissolved in water, increases

More information

= ) = )

= ) = ) Basics of calculating ph 1. Find the ph of 0.07 M HCl. 2. Find the ph of 0.2 M propanoic acid (K a = 10-4.87 ) 3. Find the ph of 0.4 M (CH 3 ) 3 N (K b = 10-4.20 ) 4. Find the ph of 0.3 M CH 3 COO - Na

More information

Chapter Test B. Chapter: Acids and Bases

Chapter Test B. Chapter: Acids and Bases Assessment Chapter Test B Chapter: Acids and Bases PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Which of the

More information

Contents and Concepts

Contents and Concepts Chapter 16 1 Learning Objectives Acid Base Concepts Arrhenius Concept of Acids and Base a. Define acid and base according to the Arrhenius concept. Brønsted Lowry Concept of Acids and Bases a. Define acid

More information