AKIN AKTURK Carlsbad Drive Gaithersburg, MD 20879, USA

Size: px
Start display at page:

Download "AKIN AKTURK Carlsbad Drive Gaithersburg, MD 20879, USA"

Transcription

1 AKIN AKTURK 1335 Carlsbad Drive Gaithersburg, MD 20879, USA Tel: EDUCATION Ph. D., Electrical & Computer Engineering, University of Maryland, College Park, MD, USA 2006 Dissertation: Thermal and Performance Modeling of Nanoscale MOSFETs, Carbon Nanotube Devices and Integrated Circuits M.S., Electrical & Computer Engineering, University of Maryland, College Park, MD, USA 2001 Thesis Title: Investigation of Transient and DC Characteristics of CMOS Inverters B.S., Electrical & Electronics Engineering, Bilkent University, Ankara, Turkey 1999 RESEARCH and TEACHING EXPERIENCE Ph. D. Research Associate, Electrical & Computer Engineering, University of Maryland, Conducting nanotechnology research on modeling, simulation and investigation of integrated circuits and nanoscale electronics, including carbon nanotube devices, sub-micron MOSFETs and silicon-on-insulator MOSFETs. - Investigating operation of devices and integrated circuits at cryogenic, room and high temperatures. - Taught graduate class ENEE611 Integrated Circuit Design and Analysis, as a substitute instructor. Graduate Research Assistant, Electrical & Computer Engineering, University of Maryland, Designed, tested and laid out chips using Cadence Virtuoso, and have them fabricated through fabrication clearing house MOSIS. These chips were used to investigate device and chip thermal performances at colder and hotter temperatures. - Investigated operation of novel devices, and operation of electronics at cryogenic temperatures. - Researched and developed simulators for electron transport in carbon nanotubes. - Designed analog, digital and mixed-signal circuits, including phase locked loops (PLLs), lownoise amplifiers (LNAs), voltage controlled oscillators (VCOs) and frequency-modulation (FM) radio. Graduate Teaching Assistant, Electrical & Computer Engineering, University of Maryland, Assisted and guided students in sophomore class ENEE206 Fundamental Electric and Digital Circuit Laboratory.

2 - Graded student reports for the ENEE Taught, and guided students in, junior class ENEE312 Semiconductor Devices and Analog Electronics, as a substitute. Researcher and Student, Electrical & Electronics Engineering, Bilkent University, Ankara, Turkey, Designed and implemented, in a group, a functional electrocardiogram. - Hired to help model and simulate a ground penetrating radar for military electronics. - Designed various analog and digital circuits, and RF antennas. Internships - Kardiosis Cardiological Diagnostic Systems Ltd. Co., Ankara, Turkey - Worked on biomedical devices. - Gate Elektronik, Ankara / Turkey -Worked on circuit diagnostics PUBLICATIONS IN PROFESSIONAL SCIENCE AND ENGINEERING JOURNALS [1] A. Akturk, N. Goldsman, G. Pennington, A. Wickenden, Terahertz current oscillations in singlewalled zig-zag carbon nanotubes, accepted for publication in Physical Review Letters. [2] A. Akturk, N. Goldsman, G. Pennington, A. Wickenden, Electron transport and velocity oscillations in a carbon nanotube, accepted for publication in IEEE Transactions on Nanotechnology. [3] G. Pennington, N. Goldsman, A. Akturk, A. Wickenden, Deformation potential carrier-phonon scattering in semiconducting carbon nanotube transistors, Applied Physics Letters 90(2), (2007). Virtual Journal of Nanoscale Science and Technology 15(7) (2007). [4] A. Akturk, N. Goldsman, G. Metze, Self-consistent modeling of heating and MOSFET performance in three-dimensional integrated circuits, IEEE Transactions on Electron Devices 52(11), (2005). [5] A. Akturk, N. Goldsman, L. Parker, G. Metze, Mixed-mode temperature modeling of full-chip based on individual non-isothermal device operations, Solid-State Electronics 49(7), (2005). [6] A. Akturk, G. Pennington, N. Goldsman, Quantum modeling and proposed designs of carbon nanotube (CNT) embedded nanoscale MOSFETs, IEEE Transactions on Electron Devices 52(4), (2005). [7] A. Akturk, N. Goldsman, G. Metze, Increased CMOS inverter switching speed with asymmetrical doping, Solid-State Electronics 47(2), (2003).

3 [8] A. Akturk, N. Goldsman, G. Pennington, Self-consistent ensemble Monte Carlo simulations show terahertz oscillations in single-walled carbon nanotubes, submitted to Journal of Applied Physics (2007). [9] A. Varma, Y. Afridi, A. Akturk, P. Klein, A. Hefner, B. Jacob, Modeling heterogeneous SoCs with SystemC: a digital/mems case study, submitted to ACM Transactions on Embedded Computing Systems (2007). [10] A. Akturk, J. Allnutt, Z. Dilli, N. Goldsman, M. Peckerar, Device modeling at cryogenic temperatures: effects of incomplete ionization, submitted to IEEE Transactions on Electron Devices (2007). [11] A. Akturk, N. Goldsman, Single-walled zig-zag carbon nanotube steady-state transport characteristics, submitted to ASP Journal of Computational and Theoretical Nanoscience (2007). [12] Z. Dilli, N. Goldsman, M. Peckerar, A. Akturk, G. Metze, Design and testing of a self-powered 3-D integrated SOI CMOS system, submitted to Microelectronic Engineering (2007). PUBLICATIONS IN PROFESSIONAL SCIENCE AND ENGINEERING CONFERENCE PROCEEDINGS [1] A. Wickenden, B. Nichols, M. Ervin, S. Kilpatrick, A. Akturk, G. Pennington, N. Goldsman, G. Esen, A. Manasson, M. Fuhrer, Carbon nanotube devices for sensing and communications applications, Proc. of 211 th Electrochemical Society (ECS) Meeting H4, 1052 (2007) (Invited). [2] G. Pennington, N. Goldsman, A. Akturk, A. Wickenden, Multisubband Boltzmann carrier transport in carbon nanotube transistors, Proc. of American Physical Society (APS) March Meeting, K (2007). [3] N. Goldsman, A. Akturk, Analysis and design of key phenomena in electronics: nanostructures and devices, Proc. of Int. Society for Optical Eng. (SPIE) Conf., I (2006) (Invited). [4] A. Varma, Y. Afridi, A. Akturk, P. Klein, A. Hefner, B. Jacob, Modeling MEMs microhotplate structures with SystemC, Proc. of Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), (2006). [5] A. Akturk, G. Pennington, N. Goldsman, A. Wickenden, Quantum electron transport in carbon nanotubes: length dependence and velocity oscillations, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2006). [6] A. Akturk, N. Goldsman, Z. Dilli, M. Peckerar, Device performance and package induced selfheating effects at cryogenic temperatures, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2006). [7] Z. Dilli, N. Goldsman, A. Akturk, G. Metze, A 3-d time-dependent Greens function approach to modeling electromagnetic noise in on-chip interconnect networks, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2006).

4 [8] A. Akturk, N. Goldsman, G. Metze, An efficient inclusion of self-heating and quantum effects in SOI device simulations, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2005). [9] A. Akturk, N. Goldsman, N. Dhar, P. S. Wijewarnasuriya, Modeling the temperature dependence and optical response of HgCdTe diodes, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2005). [10] G. Pennington, A. Akturk, J. M. McGarrity, N. Goldsman, Transport properties of wide bandgap nanotubes, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2005). [11] Z. Dilli, N. Goldsman, A. Akturk, An impulse-response based methodology for modeling complex interconnect networks, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2005). [12] A. Akturk, G. Pennington, N. Goldsman, Numerical device analysis of all-around gate carbon nanotube (CNT) embedded field-effect transistors (FETs), 16 th Euro. Conf. on Diamond, Diamond-Like Mat., Carbon Nanotubes and Nitrides, [5.6.11] (2005). [13] G. Pennington, A. Akturk, N. Goldsman, Low-field electronic transport in single-walled semiconducting carbon nanotubes, 16 th Euro. Conf. on Diamond, Diamond-Like Mat., Carbon Nanotubes and Nitrides, [15.5.2] (2005). [14] A. Akturk, N. Goldsman, G. Metze, Coupled simulation of device performance and heating of vertically stacked three-dimensional integrated circuits, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2005). [15] A. Akturk, G. Pennington, N. Goldsman, Device behavior modeling for carbon nanotube silicon-on-insulator MOSFETs, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2005). [16] G. Pennington, A. Akturk, N. Goldsman, Low-field transport model for semiconducting carbon nanotubes, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2005). [17] G. Pennington, A. Akturk, N. Goldsman, Phonon-limited transport in carbon nanotubes using the Monte Carlo method, Proc. of Int. Workshop on Computational Electronics (IWCE), (2004). [18] A. Akturk, G. Pennington, N. Goldsman, Numerical performance analysis of carbon nanotube (CNT) embedded MOSFETs, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2004).

5 [19] A. Akturk, G. Pennington, N. Goldsman, Temperature dependent mobility model for singlewalled zig-zag carbon nanotubes (CNTs), Proc. of 8 th Int. Conf. on Nanometer-Scale Science and Tech. (NANO-8), [1846] (2004). [20] A. Akturk, G. Pennington, N. Goldsman, Characterisation of nanoscale carbon nanotube (CNT) embedded CMOS inverters, Proc. of 8 th Int. Conf. on Nanometer-Scale Science and Tech. (NANO-8), [413] (2004). [21] A. Akturk, L. Parker, N. Goldsman, G. Metze, Mixed-mode simulation of non-isothermal quantum device operation and full-chip heating, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2003). [22] G. Pennington, A. Akturk, N. Goldsman, Electron mobility of a semiconducting carbon nanotube, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2003). [23] A. Akturk, N. Goldsman, G. Metze, Coupled modeling of time-dependent full-chip heating and quantum non-isothermal device operation, Proc. of Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), (2003). [24] A. Akturk, G. Pennington, N. Goldsman, Modeling the enhancement of nanoscale MOSFETs by embedding carbon nanotubes in the channel, Proc. of 3 rd IEEE Conf. on Nanotechnology (IEEE-NANO) 1, (2003). [25] A. Akturk, N. Goldsman, G. Metze, Faster CMOS inverter switching obtained with channel engineered asymmetrical halo implanted MOSFETs, Proc. of Int. Semiconductor Device Research Symposium (ISDRS), (2001). INVITED TALKS [1] A. Wickenden, B. Nichols, M. Ervin, S. Kilpatrick, A. Akturk, G. Pennington, N. Goldsman, G. Esen, A. Manasson, M. Fuhrer, Carbon nanotube devices for sensing and communications applications, Proc. of 211 th Electrochemical Society (ECS) Meeting H4, 1052 (2007). [2] N. Goldsman, A. Akturk, Analysis and design of key phenomena in electronics: nanostructures and devices, Proc. of Int. Society for Optical Eng. (SPIE) Conf., I (2006). HONORS & AWARDS - Full teaching and research assistantships (tuition and stipend) during the M.S. and the Ph. D., Electrical & Computer Engineering, University of Maryland, College Park Graduated 6 th of the undergraduate class at Bilkent University, Ankara, Turkey Merit-based scholarship, Netas-Northern Electric Telecommunication Co., Istanbul, Turkey. 1998

6 - Fellowship (tuition and stipend) during the B.S., Electrical & Electronics Engineering, Bilkent University, Ankara, Turkey Ranked 30 th among approximately a million in the national university entrance exams of Turkey CHIPS DESIGNED TO BE FABRICATED BY MOSIS T47FCD, T47FCA, T47FBH, T3CUCF, T3AJCD, T3AJBV PATENTS United States Patent Application: Inventors: Michael Khbeis, George Metze, Neil Goldsman, Akin Akturk Use of thermally conductive vias to extract heat from microelectronic chips and method of manufacturing Abstract: A cooling device for a microcircuit provides a direct path of thermal extraction from a high heat producing area to a cooler area. A thermal insulation layer is formed on a body having at least one component thereon that generates the high heat producing area. At least one via is formed through an entire thickness of the insulation layer and is in direct communication with the high heat producing area. Heat from the high heat producing area is channeled through each via to the cooler area, which may be ambient atmosphere or a good thermal conductor, such as a heat sink. A thermal conductive material may be deposited within the via and increase the rate of thermal extraction. ACTIVITIES - Member of the Institute of Electrical and Electronics Engineers (IEEE). - Reviewer for o Microelectronic Engineering Journal o IEEE Transactions on Electron Devices o Journal of Vacuum Science and Technology o International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) o International Semiconductor Device Research Symposium (ISDRS) - Active member and treasurer of the Washington DC Turkish Folk Dance Troupe. SOFTWARE C, Matlab, Pspice, Cadence, Magic, Unix, Windows

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University

Vulnerabilities in Analog and Digital Electronics. Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Microelectronics and Computer Group University of Maryland & Boise State University Vulnerabilities in Analog and Digital Electronics Overview The Fundamental

More information

FORMATION of impurity bands and conduction in impurity

FORMATION of impurity bands and conduction in impurity 2984 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 11, NOVEMBER 2007 Device Modeling at Cryogenic Temperatures: Effects of Incomplete Ionization Akin Akturk, Jeffrey Allnutt, Zeynep Dilli, Neil Goldsman,

More information

I-V characteristics model for Carbon Nanotube Field Effect Transistors

I-V characteristics model for Carbon Nanotube Field Effect Transistors International Journal of Engineering & Technology IJET-IJENS Vol:14 No:04 33 I-V characteristics model for Carbon Nanotube Field Effect Transistors Rebiha Marki, Chérifa Azizi and Mourad Zaabat. Abstract--

More information

IEEE TRANSACTIONS ON ELECTRON DEVICES 1. Quantum Modeling and Proposed Designs of CNT-Embedded Nanoscale MOSFETs

IEEE TRANSACTIONS ON ELECTRON DEVICES 1. Quantum Modeling and Proposed Designs of CNT-Embedded Nanoscale MOSFETs TRANSACTIONS ON ELECTRON DEVICES 1 Quantum Modeling and Proposed Designs of CNT-Embedded Nanoscale MOSFETs Akin Akturk, Gary Pennington, and Neil Goldsman Abstract We propose a novel MOSFET design that

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

Design Of Ternary Logic Gates Using CNTFET

Design Of Ternary Logic Gates Using CNTFET International Journal of Research in Computer and Communication Technology, Vol 4, Issue 3, March -2015 ISSN (Online) 2278-5841 ISSN (Print) 2320-5156 Design Of Ternary Logic Gates Using CNTFET Aashish

More information

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials

More information

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Author Haasmann, Daniel, Dimitrijev, Sima Published 2013 Journal Title Applied Physics

More information

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M.

Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Diameter Optimization for Highest Degree of Ballisticity of Carbon Nanotube Field Effect Transistors I. Khan, O. Morshed and S. M. Mominuzzaman Department of Electrical and Electronic Engineering, Bangladesh

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

RAJASTHAN TECHNICAL UNIVERSITY, KOTA RAJASTHAN TECHNICAL UNIVERSITY, KOTA (Electronics & Communication) Submitted By: LAKSHIKA SOMANI E&C II yr, IV sem. Session: 2007-08 Department of Electronics & Communication Geetanjali Institute of Technical

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014 EE236 Electronics Computer and Systems Engineering Department Faculty of Engineering Alexandria University Fall 2014 Lecturer: Bassem Mokhtar, Ph.D. Assistant Professor Department of Electrical Engineering

More information

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application

Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband Application Engineering, 2017, 9, 22-35 http://www.scirp.org/journal/eng ISSN Online: 1947-394X ISSN Print: 1947-3931 Designing a Carbon Nanotube Field-Effect Transistor with High Transition Frequency for Ultra-Wideband

More information

Carbon Nanotube Ring Oscillator for Detecting Ionized Radiation

Carbon Nanotube Ring Oscillator for Detecting Ionized Radiation Journal of Materials Science and Engineering A 6 (7-8) (2016) 205-212 doi: 10.17265/2161-6213/2016.7-8.003 D DAVID PUBLISHING Carbon Nanotube Ring Oscillator for Detecting Ionized Radiation Yaser Mohammadi

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar 1 GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure Application of Graphene

More information

Device and Monte Carlo Simulation of GaN material and devices. Presenter: Ziyang Xiao Advisor: Prof. Neil Goldsman University of Maryland

Device and Monte Carlo Simulation of GaN material and devices. Presenter: Ziyang Xiao Advisor: Prof. Neil Goldsman University of Maryland Device and Monte Carlo Simulation of GaN material and devices Presenter: Ziyang Xiao Advisor: Prof. Neil Goldsman University of Maryland 2/23 OUTLINE - GaN Introduction and Background Device Simulation

More information

Fundamentals of Nanoelectronics: Basic Concepts

Fundamentals of Nanoelectronics: Basic Concepts Fundamentals of Nanoelectronics: Basic Concepts Sławomir Prucnal FWIM Page 1 Introduction Outline Electronics in nanoscale Transport Ohms law Optoelectronic properties of semiconductors Optics in nanoscale

More information

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions?

Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? Electronics with 2D Crystals: Scaling extender, or harbinger of new functions? 1 st Workshop on Data Abundant Systems Technology Stanford, April 2014 Debdeep Jena (djena@nd.edu) Electrical Engineering,

More information

Reduction of Self-heating effect in LDMOS devices

Reduction of Self-heating effect in LDMOS devices Reduction of Self-heating effect in LDMOS devices T.K.Maiti * and C. K. Maiti ** Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur-721302, India

More information

NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS

NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS International Journal of Modern Physics B Vol. 23, No. 19 (2009) 3871 3880 c World Scientific Publishing Company NOVEL STRUCTURES FOR CARBON NANOTUBE FIELD EFFECT TRANSISTORS RAHIM FAEZ Electrical Engineering

More information

BSEE REQUIREMENTS

BSEE REQUIREMENTS College of Engineering The Klipsch School of Electrical and Computer Engineering BSEE REQUIREMENTS 2014-2015 This document presents a summary of the requirements for earning a Bachelor of Science degree

More information

BSEE REQUIREMENTS

BSEE REQUIREMENTS College of Engineering The Klipsch School of Electrical and Computer Engineering BSEE REQUIREMENTS 201-201 This document presents a summary of the requirements for earning a Bachelor of Science degree

More information

Graphene Field Effect Devices Operating in Differential Circuit Configuration

Graphene Field Effect Devices Operating in Differential Circuit Configuration Graphene Field Effect Devices Operating in Differential Circuit Configuration C. Nyffeler a,*, M.S. Hanay b,c, D. Sacchetto a, Y. Leblebici a a Institute of Electrical Engineering, EPFL, Lausanne, Switzerland

More information

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost!

CMOS Scaling. Two motivations to scale down. Faster transistors, both digital and analog. To pack more functionality per area. Lower the cost! Two motivations to scale down CMOS Scaling Faster transistors, both digital and analog To pack more functionality per area. Lower the cost! (which makes (some) physical sense) Scale all dimensions and

More information

Nanotechnology in Consumer Products

Nanotechnology in Consumer Products Nanotechnology in Consumer Products June 17, 2015 October 31, 2014 The webinar will begin at 1pm Eastern Time Perform an audio check by going to Tools > Audio > Audio Setup Wizard Chat Box Chat Box Send

More information

Heat/phonons Transport in Nanostructures and Phononics

Heat/phonons Transport in Nanostructures and Phononics ELTE, Budapest 14 May, 2009 Heat/phonons Transport in Nanostructures and Phononics LI Baowen ( 李保文 ) Centre for Computational Science and Engineering, FOS, & Department of Physics NUS Graduate School for

More information

Low-Field Mobility and Quantum Effects in Asymmetric Silicon-Based Field-Effect Devices

Low-Field Mobility and Quantum Effects in Asymmetric Silicon-Based Field-Effect Devices Journal of Computational Electronics 1: 273 277, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Low-Field Mobility and Quantum Effects in Asymmetric Silicon-Based Field-Effect

More information

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012 EE 5211 Analog Integrated Circuit Design Hua Tang Fall 2012 Today s topic: 1. Introduction to Analog IC 2. IC Manufacturing (Chapter 2) Introduction What is Integrated Circuit (IC) vs discrete circuits?

More information

Network Methods for Electromagnetic Field. Multiphysics Modeling

Network Methods for Electromagnetic Field. Multiphysics Modeling Network Methods for Electromagnetic Field and Multiphysics Modeling Peter Russer and Johannes Russer Institute for Nanoelectronics Technical University Munich, Germany Email: russer@tum.de #1 Introduction

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT

SEU RADIATION EFFECTS ON GAA-CNTFET BASED DIGITAL LOGIC CIRCUIT International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp. 345 353, Article ID: IJMET_09_07_039 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=7

More information

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry

From Last Time. Several important conceptual aspects of quantum mechanics Indistinguishability. Symmetry From Last Time Several important conceptual aspects of quantum mechanics Indistinguishability particles are absolutely identical Leads to Pauli exclusion principle (one Fermion / quantum state). Symmetry

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors

Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Extremely small differential non-linearity in a DMOS capacitor based cyclic ADC for CMOS image sensors Zhiheng Wei 1a), Keita Yasutomi ) and Shoji Kawahito b) 1 Graduate School of Science and Technology,

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Exam 1 ` March 22, 2018

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Exam 1 ` March 22, 2018 Department of Electrical and Computer Engineering, Cornell University ECE 3150: Microelectronics Spring 2018 Exam 1 ` March 22, 2018 INSTRUCTIONS: Every problem must be done in the separate booklet Only

More information

A Novel LUT Using Quaternary Logic

A Novel LUT Using Quaternary Logic A Novel LUT Using Quaternary Logic 1*GEETHA N S 2SATHYAVATHI, N S 1Department of ECE, Applied Electronics, Sri Balaji Chockalingam Engineering College, Arani,TN, India. 2Assistant Professor, Department

More information

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs NANO: Brief Reports and Reviews Vol. 2, No. 4 (27) 233 237 c World Scientific Publishing Company ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs MICHAEL L. P. TAN, ISMAIL

More information

EE410 vs. Advanced CMOS Structures

EE410 vs. Advanced CMOS Structures EE410 vs. Advanced CMOS Structures Prof. Krishna S Department of Electrical Engineering S 1 EE410 CMOS Structure P + poly-si N + poly-si Al/Si alloy LPCVD PSG P + P + N + N + PMOS N-substrate NMOS P-well

More information

Lecture 0. EE206 Electronics I

Lecture 0. EE206 Electronics I Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:30-12:20 (Lectures)

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Introduction to Power Semiconductor Devices

Introduction to Power Semiconductor Devices ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings

More information

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN 1, HAROON LAIS 1, ZHEN YU 1, SHENGDONG LI 1, WILLIAM C. TANG 1,2, AND PETER J. BURKE 1,2 1 Electrical Engineering

More information

eterostrueture Integrated Thermionic Refrigeration

eterostrueture Integrated Thermionic Refrigeration eterostrueture Integrated Thermionic Refrigeration Ali Shakouri, and John E. Bowers Department of Electrical and Computer Engineering University of California, Santa Barbara, CA USA 936 ABSTRACT Thermionic

More information

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4

DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 DELAY EFFICIENT BINARY ADDERS IN QCA K. Ayyanna 1, Syed Younus Basha 2, P. Vasanthi 3, A. Sreenivasulu 4 1 Assistant Professor, Department of ECE, Brindavan Institute of Technology & Science, A.P, India

More information

Student Projects for

Student Projects for MINERALS RESOURCES Student Projects for 2016-17 The CSIRO On-line Analysis (OLA) Group offers opportunities for students to undertake applied physics research projects at our Lucas Heights laboratories.

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December 2016

CARLETON UNIVERSITY. FINAL EXAMINATION December 2016 CARLETON UNIVERSITY FINAL EXAMINATION December 2016 DURATION: 3 HOURS Department Name & Course Number: Electronics 4705 Course Instructor(s): Tom Smy AUTHORIZED MEMORANDA CALCULATOR (Not Programmable)

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena

High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena High-temperature characteristics of SiC Schottky barrier diodes related to physical phenomena Tsuyoshi Funaki 1a), Tsunenobu Kimoto 2, and Takashi Hikihara 1 1 Kyoto University, Dept. of Electrical Eng.

More information

Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium

Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium Manufacturable AlGaAs/GaAs HBT Implant Isolation Process Using Doubly Charged Helium ABSTRACT Rainier Lee, Shiban Tiku, and Wanming Sun Conexant Systems 2427 W. Hillcrest Drive Newbury Park, CA 91320 (805)

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies

EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies EN2912C: Future Directions in Computing Lecture 08: Overview of Near-Term Emerging Computing Technologies Prof. Sherief Reda Division of Engineering Brown University Fall 2008 1 Near-term emerging computing

More information

Call for Papers. 3 Steps to Contribute a Presentation. Submit. Submission Deadline: June 26 (Tue.), 2018 (17:00, JST)

Call for Papers. 3 Steps to Contribute a Presentation. Submit. Submission Deadline: June 26 (Tue.), 2018 (17:00, JST) Call for Papers 3 Steps to Contribute a Presentation Join JSAP Submit Register Regular Membership Admission Fee: 10,000 JPY Annual Due*: 10,000 JPY *Annual due will be waived for the first year. Graduate

More information

1. Introduction : 1.2 New properties:

1. Introduction : 1.2 New properties: Nanodevices In Electronics Rakesh Kasaraneni(PID : 4672248) Department of Electrical Engineering EEL 5425 Introduction to Nanotechnology Florida International University Abstract : This paper describes

More information

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

Available online at   ScienceDirect. Procedia Materials Science 11 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 11 (2015 ) 287 292 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM15 Tunneling

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 Postdoctoral Research Associate Center for Low Energy Systems Technology (LEAST), Department of Electrical Engineering University of Notre Dame, B20

More information

Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica

Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica Transistori ad effetto di campo con canale in grafene (GFET) aventi risposta fotoelettrica M. A. Giambra, E. Calandra, S. Stivala, A. Busacca DEIM Università di Palermo, via delle Scienze, Edifico 9, 90128,

More information

p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance

p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance American Journal of Engineering and Applied Sciences Original Research Paper p-n Junction of 1.95 nm Carbon Nanotube: Fabrication, Properties and Performance Soheli Farhana and Mohamad Fauzan Noordin Faculty

More information

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Applied Physics Undergraduate Courses

Applied Physics Undergraduate Courses Applied Physics Undergraduate Courses Jim Hoburg Professor Department of ECE Jimmy Zhu ABB Professor Department of ECE Director, Data Storage Systems Center hoburg@ece.cmu.edu jzhu@ece.cmu.edu Applied

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

How a single defect can affect silicon nano-devices. Ted Thorbeck

How a single defect can affect silicon nano-devices. Ted Thorbeck How a single defect can affect silicon nano-devices Ted Thorbeck tedt@nist.gov The Big Idea As MOS-FETs continue to shrink, single atomic scale defects are beginning to affect device performance Gate Source

More information

A -SiC MOSFET Monte Carlo Simulator Including

A -SiC MOSFET Monte Carlo Simulator Including VLSI DESIGN 1998, Vol. 8, Nos. (1-4), pp. 257-260 Reprints available directly from the publisher Photocopying permitted by license only (C) 1998 OPA (Overseas Publishers Association) N.V. Published by

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING PUNALKULAM. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE : EC1401 SEM / YEAR : VII/ IV SUBJECT NAME : VLSI DESIGN UNIT I CMOS TECHNOLOGY

More information

ECE 989 Advanced Topics in Plasma Spring 2019

ECE 989 Advanced Topics in Plasma Spring 2019 ECE 989 Advanced Topics in Plasma Spring 209 Instructor: Schedule: Office Hours: Peng Zhang Room 323 EB Tel. (57) 353-3654 E-mail: pz@egr.msu.edu Tu Th 2:40 PM 2:00 PM, 2250 Engineering Building Tu Th

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours.

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours. 14 1 8 6 IBM ES9 Bipolar Fujitsu VP IBM 39S Pulsar 4 IBM 39 IBM RY6 CDC Cyber 5 IBM 4381 IBM RY4 IBM 381 Apache Fujitsu M38 IBM 37 Merced IBM 36 IBM 333 Vacuum Pentium II(DSIP) 195 196 197 198 199 NTT

More information

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Module No. #05 Lecture No. #02 FETS and MOSFETS (contd.) In the previous lecture, we studied the working

More information

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. References IEICE Electronics Express, Vol.* No.*,*-* Effects of Gamma-ray radiation on

More information

CV Biddut K Sarker

CV Biddut K Sarker Biddut K Sarker University of Central Florida, Nanoscience Technology Center and Department of Physics 12424 Research Pkwy Suite 400, Orlando, FL 32826 Email: bksarker@gmail.com; www.bksarker@weebly.com

More information

III-V field-effect transistors for low power digital logic applications

III-V field-effect transistors for low power digital logic applications Microelectronic Engineering 84 (2007) 2133 2137 www.elsevier.com/locate/mee III-V field-effect transistors for low power digital logic applications Suman Datta * Components Research, Technology Manufacturing

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER

DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER Research Manuscript Title DESIGN OF QCA FULL ADDER CIRCUIT USING CORNER APPROACH INVERTER R.Rathi Devi 1, PG student/ece Department, Vivekanandha College of Engineering for Women rathidevi24@gmail.com

More information

Analysis of flip flop design using nanoelectronic single electron transistor

Analysis of flip flop design using nanoelectronic single electron transistor Int. J. Nanoelectronics and Materials 10 (2017) 21-28 Analysis of flip flop design using nanoelectronic single electron transistor S.Rajasekaran*, G.Sundari Faculty of Electronics Engineering, Sathyabama

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Moore s Law Forever?

Moore s Law Forever? NCN Nanotechnology 101 Series Moore s Law Forever? Mark Lundstrom Purdue University Network for Computational Nanotechnology West Lafayette, IN USA NCN 1) Background 2) Transistors 3) CMOS 4) Beyond CMOS

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Carbon Nanotube Electronics

Carbon Nanotube Electronics Carbon Nanotube Electronics Jeorg Appenzeller, Phaedon Avouris, Vincent Derycke, Stefan Heinz, Richard Martel, Marko Radosavljevic, Jerry Tersoff, Shalom Wind H.-S. Philip Wong hspwong@us.ibm.com IBM T.J.

More information

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS

NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS International Journal of Control Theory and Computer Modeling (IJCTCM) Vol.3, No.2, March 213 NEW ANALYTICAL MODEL AND SIMULATION OF INTRINSIC STRESS IN SILICON GERMANIUM FOR 3D NANO PMOSFETS Abderrazzak

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS

NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS NANOTECHNOLOGY FOR ELECTRONICS AND SENSORS APPLICATIONS SMALLER FASTER MORE SENSETIVE MORE EFFICIENT NANO CONNECT SCANDINAVIA www.nano-connect.org Chalmers University of Technology DTU Halmstad University

More information

ECE 635. Advanced Semiconductor Devices

ECE 635. Advanced Semiconductor Devices ECE 635 Advanced Semiconductor Devices Gong Gu Course website: http://web.eecs.utk.edu/~ggu1/files/gradhome.html Fall 2017 Why Semiconductors? Sometimes we say solid state Image, sound, temperature, pressure,

More information

P.Geetha, Dr.R.S.D.Wahida Banu.

P.Geetha, Dr.R.S.D.Wahida Banu. International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 62 Performance Characterization of Capacitance Modeling for Carbon Nanotube MOSFET P.Geetha, Dr.R.S.D.Wahida Banu.

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information