Semiconducting Polymers

Size: px
Start display at page:

Download "Semiconducting Polymers"

Transcription

1 Georges Hadziioannou, Paul F. van Hütten (Eds.) Semiconducting Polymers Chemistry, Physics and Engineering WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto

2 Contents 1 Poly(arylene vinylene)s - Synthesis and Applications in Semiconductor Devices 1 Michael M. Murray and Andrew B. Holmes 1.1 Introduction Poly(l,4-phenylene vinylene) and its Derivatives The Basic Polymer LED Device Architecture Substituted Poly(phenylene vinylene)s Poly(anthrylenevinylene)s Step-Growth Routes to PPV Derivatives PPV Copolymers Refining the Properties of PPV - Multilayer Devices Multilayer Devices: The Incorporation of Charge-Transporting Layers Electron-Deficient Polymers - Luminescent Transport Layers Other Electron-Deficient PPV Derivatives Electron-Deficient Aromatic Systems Full Color Displays - The Search for Blue Emitters Isolated Chromophores - Towards Blue Emission Comb Polymers with Chromophores on the Side-Chain Chiral PPV - Polarized Emission Poly(thienylene vinylene)s - A Stable Class of Low-Band-Gap Materials Organic Field Effect Transistors (FETs) Synthesis Aldol Route Ring-Substituted PTV Derivatives Vinylene-Substituted PTV Derivatives - Tuning the Gap Conclusions and Outlook 31 Acknowledgements 32 References 32

3 X Contents 2 Oligo- and Poly(phenylene)s 37 Ullrich Scherf and Klaus Müllen 2.1 Introduction Polymers Oxidative Condensation of Benzene Derivatives Transition Metal-Mediated Couplings Other Routes to Poly(p-phenylene)s Oligomers Dendritic and Hyperbranched Poly(phenylene)s Hyperbranched Poly(phenylene) Derivatives Ohgo(phenylene)s Composed of Orthogonally Arranged Arms Dendritic Poly(phenylene)s and Giant Polyaromatic Hydrocarbons (PAHs) Conclusion 60 References 61 3 Disorder and Solitons in Гга/is-Polyacetylene 63 Jasper Knoester and Maxim Mostovoy 3.1 Introduction The Peierls Instability and Solitons Disorder: The Fluctuating Gap Model Disorder-Induced Kinks Concluding Remarks 82 Acknowledgements 83 References 84 4 Gas Phase to Solid State Evolution of the Electronic and Optical Properties of Conjugated Chains: A Theoretical Investigation 87 Jerome Cornil, Donizetti A. dos Santos, David Beljonne, Zhigang Shuai, and Jean-Luc Bredas 4.1 Introduction Theoretical Methodology Wavefunction Analysis of the Excited States in PPV Oligomers Interchain Interactions Absorption Properties of Highly Symmetrical Complexes Photoluminescence Properties of Highly Symmetrical Complexes The Influence of the Number and Relative Orientations of the Interacting Molecules Clusters of Sexithienyl Molecules Conclusions and Outlook 111 Acknowledgements 111 References 112

4 Contents Electronic Structure of Surfaces and Interfaces in Conjugated Polymers 115 Michael Lögdlund and William R. Salaneck 1 Introduction Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy Ultraviolet Photoelectron Spectroscopy Theoretical Approaches Materials Electronic Structure of /rans-polyacetylene Charge Storage States in Conjugated Polymers Polymer Surfaces and Interfaces Poly(p-phenylenevinylene) Interface Formation Between Aluminum and PPV Interface Formation Between Calcium and PPV Polythiophene Interface Formation Between Aluminum and Polythiophene Interface Formation Between Copper and Polythiophene Polyaniline Polyaniline on Indium Tin-Oxide Summary 144 Acknowledgements 145 References 146 Electronic Structure and Energy Transfer in Solid o-sexithienyl 149 Carlo Taliani, Fabio Biscarini, and Michele Muccini 1 Introduction Experimental Excited Electronic States in Isolated T Single-Crystal Electronic Structure Davydov Splitting Herzberg-Teller Vibronic Coupling Thin Films Growth in High Vacuum 164' 5.2 Thin-Film Morphology Scaling Behavior of Surface Roughness Disorder Effect on Energy Transfer Single-Crystal Fluorescence Thin-Film Fluorescence Morphology-Dependent Polarization of Fluorescence and Electroluminescence Morphology-Dependent Energy Transfer Conclusions 185 Acknowledgements 186 References 187

5 XII Contents 7 Spectroscopy of Photoexcitations in Conjugated Polymers 189 Paul A. Lane, Sergey V. Frolov, and Zev V. Vardeny 7.1 Introduction Experimental Techniques CW Photomodulation Spectroscopy Optically Detected Magnetic Resonance Transient Photomodulation Spectroscopy Non-Linear Optical Spectroscopy Poly(para-phenylene vinylene) Absorption and Photoluminescence Transient Photomodulation Non-Linear Spectroscopy (TPA and EA) CW Photomodulation Polythiophene Linear and Non-Linear Absorption Transient Photomodulation CW Photomodulation Fullerene-Doped DOO-PPV Transient Photomodulation Summary 232 References Photophysics of Methyl-Substituted Poly(para-Phenylene)-Type Ladder Polymers 235 Guiglielmo Lanzani, Sandro De Silvestri, Giulio Cerullo, Salvatore Stagira, Mauro Nisoli, Willi Graupner, Günther Leising, Ulrich Scherf, and Klaus Müllen 8.1 Introduction An Overview of Previous Results Optical Properties Experimental Conventional Pump-Probe Field-Assisted Pump-Probe The Primary Photoexcitations in m-lppp Overview of the Experimental Results A Model for m-lppp Electronic Structure High Excitation Density Scenario The Emission Process in m-lppp Charge Photogeneration in m-lppp Conclusions 256 References 257

6 9 Solid-State Aspects of Conjugated Semiconductors 259 Wilhelm Graupner, Stefan Tasch, and Günther Leising 9.1 Introduction Materials Functionalities in Devices Order in Conjugated Semiconductors Excited-State Spectroscopy Excited States Neutral Photoexcitations Charged Photoexcitations Electroluminescence Devices and Models EL Devices from Conjugated Polymers with a High Defect Concentration EL Devices from Conjugated Polymers with a Low Defect Concentration Electroluminescence from an Electrochemical Cell Carrier Injection and Charge Transport Thermal Emission Field-Induced Injection Charge Recombination and Efficiency Highly Excited Conjugated Films Conclusions 303 Acknowledgements 303 References basing in Conjugated Polymers 309 Uli Lemmer, Andreas Haugeneder, Christian Kallinger, and Jochen Feldmann 10.1 Introduction Stimulated Emission in Organic Materials Gain Narrowing in Conjugated Polymer Thin Films Lasing in Conjugated Polymers Outlook 325 Acknowledgements 320 Appendix I 327 Appendix II 328 References Physics of Polymer Light-Emitting Diodes 333 /. H. Campbell and D. L. Smith 11.1 Introduction Thin Films of Electroluminescent Polymers Electronic Energy Structure Optical Properties Electrical Transport Properties 338

7 XIV Contents 11.3 Device Electronic Structure Internal Photoemission Measurements of Schottky Energy Barriers Built-in Potentials in Device Structures Single-Layer Devices Single-Carrier Structures Two-Carrier Structures Multi-Layer Devices Blocking Layers Transport Layers Two-Carrier Multi-Layer Devices Conclusion 362 References Charge Transport in Random Organic Semiconductors 365 Heinz Bässler 12.1 Introduction Charge Carrier Injection Concepts Comparison with Experiment Space Charge Limited (SCL) Currents The Concept Experimental Results Charge Carrier Transport Concepts Transport in the Presence of Extrinsic Traps Charge Carrier Transport in Conjugated Polymers Time-of-Flight Studies Transient Absorption of Radical Cations Some Remarks Concerning the Nature of Charge-Carrying Moieties 406 Acknowledgements 407 References The Chemistry, Physics and Engineering of Organic Light-Emitting Diodes 411 John Campbell Scott and George G. Malliaras 13.1 Introduction Materials Conjugated Polymers Small Molecules Molecularly Doped Polymers and Polymer Blends Self-Assembled Layers, Langmuir-Blodgett Layers, and Liquid Crystals Electrodes and Interface Modification 421

8 Contents XV Anodes Cathodes Electrode Modification Barrier Layers Transparent Cathodes Device Structures Characterization Device Characteristics Figures-of-Merit Built-in Potential Barrier Heights Charge Transport Photoluminescence Device Physics The Elementary Processes Single-Layer Devices Analytic Theory Numerical Simulations Experimental Studies Multilayer Devices Electrochemical Cells Microcavities Degradation Application of OLEDs in Flat-Panel Displays Display Engineering Units and Conversions Pixels, Patterning, and Drivers Color Encapsulation Outlook 456 Acknowledgements 457 References Physics of Organic Field-Effect Transistors 463 Gilles Horowitz 14.1 Introduction Basic Principles Junctions Metal-Semiconductor (MS) Junction Formation of the Junction The Junction at Equilibrium (Zero Bias) Current-Voltage Characteristic Metal-Insulator-Semiconductor (MIS) Junction Field-Effect Transistors Metal-Insulator-Semiconductor FET (MISFET) Principle of Operation 472

9 XVI Contents Current-Voltage Characteristic Metal-Semiconductor FET (MESFET) Thin-Film Transistor (TFT) Accumulation Mode, Linear Regime Depletion Mode Accumulation Mode, Saturation Regime Mobility Threshold Charge Transport in Organic Materials Localized Versus Delocalized States Hopping Hopping Rate Polarons Polarons in Conjugated Polymers Transport Mechanism of Polarons Multiple Trapping and Release Field-Dependent Mobility Fabrication Techniques Deposition of the Semiconductor Electropolymerization Solution-Processed Deposition Vacuum Evaporation Langmuir-Blodgett All-Organic Devices Materials Oligothiophenes Other Small Molecules Phthalocyanines Pentacene n-type Semiconductors Polymers Models Temperature and Gate Bias Dependence Trap-Limited Transport Polaron and Hopping Models Current-Voltage Characteristics Short-Channel Effects On-Off Current Ratio Concluding Remarks 510 References Conjugated Polymer Based Plastic Solar Cells 515 Christoph J. Brabec and N. Serdar Sariciftci 15.1 Introduction Conjugated Polymers as Photoexcited Donors Optical Properties Linear Optical Properties 518

10 Contents XVII Photoinduced Absorption 521 Quenching of the Intersystem Crossing to the Triplet State 521 Photoinduced IRÄV Studies 522 Time-Resolved Photoinduced Studies Sensitization of Photoconductivity Magnetic Properties Light-Induced Electron Spin Resonance (LESR) Pure Conjugated Polymer Photovoltaic Devices Definitions Basic Transport Properties Metal/Conjugated Polymer Contacts Spectral Response Conjugated Polymer Bilayer Devices Conjugated Polymer/C 60 Heterojunction Photodiodes Conjugated Polymer Bulk Heterojunction Diodes Conjugated Polymer/C 60 Bulk Heterojunction Photodiodes Conjugated Polymer/Conjugated Polymer Bulk Heterojunction Photodiodes Flexible, Large Area, Plastic Solar Cells Stability of Plastic Solar Cells The Guest-Host Approach: Blending with Conventional Polymers Outlook and Strategies 555 Acknowledgements 556 References A Model Oligomer Approach to Semiconducting Polymers 561 Paul van Hütten and Georges Hadziioannou 16.1 Introduction Background The Copolymer Approach to Controlled Light Emission in Polymers Oligomers as Model Compounds for Structure-Property Studies Synthesis and Solution Properties of OPVs Synthesis Introduction General Strategy Synthesis of Model Compounds Three-ring OVPs Synthesis of U-OPV Synthesis of oct-opv5 and Ooct-OPV Synthesis of Cyano-Substituted OPV3s and OPV5s Optical Properties in Solution Comparison of Copolymers and Related Oligomers Three-Ring Chromophores 569

11 XVIII Contents Five-Ring Chromophores Substitution Effects in OPV5s About the Geometry of the Excited State OPVs in the Condensed State Single Crystals Introduction Crystal Structures of Five-Ring OPVs Ooct-OPV Ooct-OPV5-CN' Ooct-OPV5-CN" Crystal Structures of Three-Ring OPVs Ooct-OPV Ome-OPV Ooct-OPV3-CN' Ooct-OPV3-CN" Oct-OPV Oct-OPV3-CN" Optical Properties of Single Crystals Thermal Properties: Liquid-Crystalline Phases Thin Films Introduction Thin-Film Structure Ooct-OPV5 589 Optical Microscopy 589 X-Ray Diffraction (XRD) 589 Atomic Force Microscopy (AFM) Ooct-OPV5-CN' Ooct-OPV5-CN" Ooct-OPV Optical Properties Five-Ring OPVs Ooct-OPV Light Emission Applications of OPVs Introduction Light-Emitting Diodes Single-Layer Devices Influence of Morphology on Device Performance Double-Layer Devices Stimulated Emission Single Crystals Vacuum-Deposited Films Summary and Outlook 608 Acknowledgements 610 References 610 Index 615

Organic Molecular Solids

Organic Molecular Solids Markus Schwoerer, Hans Christoph Wolf Organic Molecular Solids BICENTENNIAL BICENTENNIAL WILEY-VCH Verlag GmbH & Co. KGaA VII Contents 1 Introduction 1 1.1 What are Organic Solids? 1 1.2 What are the Special

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Semiconductor Polymer

Semiconductor Polymer Semiconductor Polymer Organic Semiconductor for Flexible Electronics Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic semiconductors with hole

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Physics of Organic Semiconductors

Physics of Organic Semiconductors Physics of Organic Semiconductors Edited by Wolfgang Brüning WI LEY- VCH WI LEY-VCH Verlag GmbH 8e, Co. KGaA I v Contents List of Contributors XV Introduction to the Physics of Organic Semiconductors 1

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

7 Conjugated Polymers

7 Conjugated Polymers 7 Conjugated Polymers The large majority of polymers, first of all the broadly used commodity materials polyethylene, polypropylene, poly(ethylene terephthalate) or polystyrene, have similar electrical

More information

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Structure Property Relationships of Organic Light-Emitting Diodes Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Introduction Many of today s solid-state inorganic microelectronic devices

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

i) impact of interchain interactions

i) impact of interchain interactions i) impact of interchain interactions multiple experimental observations: in dilute solutions or inert matrices: the photoluminescence quantum yield of a given conjugated polymers can be very large: up

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Appendix A. MS713M: Organic Materials. New Course Code and Title Course Coordinator. AP Andrew Grimsdale. Rationale for introducing this course

Appendix A. MS713M: Organic Materials. New Course Code and Title Course Coordinator. AP Andrew Grimsdale. Rationale for introducing this course New Course Code and Title Course Coordinator Details of Course MS713M: Organic Materials AP Andrew Grimsdale Rationale for introducing this course This course will cover the subject of organic materials.

More information

Introduction to Organic Solar Cells

Introduction to Organic Solar Cells Introduction to Organic Solar Cells Dr Chris Fell Solar Group Leader CSIRO Energy Technology, Newcastle, Australia Organic semiconductors Conductivity in polyacetylene 1970s Nobel Prize Alan J. Heeger

More information

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M. University of Groningen Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M. Published in: Physical Review. B: Condensed Matter and Materials

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara Charge Extraction from Complex Morphologies in Bulk Heterojunctions Michael L. Chabinyc Materials Department University of California, Santa Barbara OPVs Vs. Inorganic Thin Film Solar Cells Alta Devices

More information

Triplet state diffusion in organometallic and organic semiconductors

Triplet state diffusion in organometallic and organic semiconductors Triplet state diffusion in organometallic and organic semiconductors Prof. Anna Köhler Experimental Physik II University of Bayreuth Germany From materials properties To device applications Organic semiconductors

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

ULTRATHIN ORGANIC FILMS

ULTRATHIN ORGANIC FILMS An Introduction to ULTRATHIN ORGANIC FILMS From Langmuir-Blodgett to Self-Assembly Abraham Ulman Corporate Research Laboratories Eastman Kodak Company Rochester, New York Academic Press San Diego New York

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 1, JANUARY/FEBRUARY

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 1, JANUARY/FEBRUARY IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 1, JANUARY/FEBRUARY 1998 105 Electrical Characterization of Polymer Light-Emitting Diodes Paul W. M. Blom and Marc J. M. de Jong Abstract

More information

Alignment, Characterization and Application of Polyfluorene in Polarized Light-Emitting Devices

Alignment, Characterization and Application of Polyfluorene in Polarized Light-Emitting Devices Alignment, Characterization and Application of Polyfluorene in Polarized Light-Emitting Devices Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. phil. nat.) angefertigt am Max Planck-Institut

More information

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel OLEDs and PLEDs 28.5.2014 Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel Contents 1. History 2. Working principle 4. Preparation of multilayer devices 5. Advantages and disadvantages 6.

More information

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005 Organic Device Simulation Using Silvaco Software Silvaco Taiwan September 2005 Organic Devices Simulation: Contents Introduction Silvaco TCAD Simulator Theory Models OTFT Simulation v.s Measurement OLED

More information

Organic Electroluminescent Displays

Organic Electroluminescent Displays Organic Electroluminescent Displays Richard Friend Cambridge Display Technology Cambridge, UK Recent Reviews: ( both can be downloaded from: www.cdtltd.co.uk ) R. H. Friend, et al., Nature 397, 121 (1999).

More information

A Comprehensive Multiphysics Model for Organic Photovoltaics. A Comprehensive Multiphysics Model for Organic Photovoltaics

A Comprehensive Multiphysics Model for Organic Photovoltaics. A Comprehensive Multiphysics Model for Organic Photovoltaics A Comprehensive Multiphysics Model for Organic Photovoltaics Zi Shuai Wang, Wei E. I. Sha, and Wallace C. H. Choy Presenter: Wei E. I. Sha Email: wsha@eee.hku.hk Website: http://www.eee.hku.hk/~wsha Department

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Problem 1. Anthracene and a chiral derivative of anthracene

Problem 1. Anthracene and a chiral derivative of anthracene Molecular Photophysics 330 Physical rganic Chemistry 6C50 Thursday November 5 004, 4.00-7.00 h This exam consists of four problems that have an equal weight in the final score Most problems are composed

More information

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Dr. Alex Zakhidov Assistant Professor, Physics Department Core faculty at Materials Science, Engineering

More information

Plastic Electronics. Joaquim Puigdollers.

Plastic Electronics. Joaquim Puigdollers. Plastic Electronics Joaquim Puigdollers Joaquim.puigdollers@upc.edu Nobel Prize Chemistry 2000 Origins Technological Interest First products.. MONOCROMATIC PHILIPS Today Future Technological interest Low

More information

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU) Federal Agency for Science and Innovations, Russia (grant 2.74.11.5155) NGC211, Moscow, 12-16 Sep 211 Artem A. Bakulin (Cambridge U) Almis Serbenta Jan C. Hummelen Vlad Pavelyev Paul H.M. van Loosdrecht

More information

INTRODUCTION TO ORGANIC SEMICONDUCTOR HETEROJUNCTIONS

INTRODUCTION TO ORGANIC SEMICONDUCTOR HETEROJUNCTIONS INTRODUCTION TO ORGANIC SEMICONDUCTOR HETEROJUNCTIONS Donghang Yan Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China Haibo Wang Changchun Institute of Applied Chemistry, Chinese

More information

Supporting Information

Supporting Information Supporting Information Oh et al. 10.1073/pnas.0811923106 SI Text Hysteresis of BPE-PTCDI MW-TFTs. Fig. S9 represents bidirectional transfer plots at V DS 100VinN 2 atmosphere for transistors constructed

More information

How does a polymer LED OPERATE?

How does a polymer LED OPERATE? How does a polymer LED OPERATE? Now that we have covered many basic issues we can try and put together a few concepts as they appear in a working device. We start with an LED:. Charge injection a. Hole

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

University of Groningen. Molecular Solar Cells Hummelen, Jan. Published in: EPRINTS-BOOK-TITLE

University of Groningen. Molecular Solar Cells Hummelen, Jan. Published in: EPRINTS-BOOK-TITLE University of Groningen Molecular Solar Cells Hummelen, Jan Published in: EPRINTS-BOOK-TITLE IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

ELECTROLUMINESCENCE OF POLYMERS

ELECTROLUMINESCENCE OF POLYMERS Universität Potsdam Institute of Physics and Astronomy Advanced Physics Lab Course May 2015 M7 ELECTROLUMINESCENCE OF POLYMERS I. INTRODUCTION The recombination of holes and electrons in a luminescent

More information

Organic devices and electronics -for non-display application

Organic devices and electronics -for non-display application Chalmers 2006-05-17 Examiner: Thorvald Andersson Miniproject in FMI040 Semiconductor Materials Physics Organic devices and electronics -for non-display application Tutor: Måns Andreasson Group members:

More information

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Photovoltaics Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak Barcelona, Spain Perpignan train station, France source: pinterest Why organic solar cells? 1.

More information

К вопросу о «горячей диссоциации»

К вопросу о «горячей диссоциации» UNIVERSITY OF CAMBRIDGE Cavendish laboratory К вопросу о «горячей диссоциации» экситонов в органических полупроводниках Артем Бакулин Plastic electronics Displays Transistors Solar cells Recent hot debates

More information

Organic Semiconductors (Molecular / Polymeric Materials)

Organic Semiconductors (Molecular / Polymeric Materials) Organic Semiconductors (Molecular / Polymeric Materials) Van-der-Waals Bonds no dangling bonds Conjugated Materials (extended (delocalized) π-electrons) Bandgap of 1.5 to 3 ev Conducting Polymers Synthetic

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

Synthesis Breakout. Overarching Issues

Synthesis Breakout. Overarching Issues Synthesis Breakout. Overarching Issues 1. What are fundamental structural and electronic factors limiting Jsc, Voc, and FF in typical polymer bulk-heterojunction cells? Rational P- and N-type materials

More information

Solutions for Assignment-8

Solutions for Assignment-8 Solutions for Assignment-8 Q1. The process of adding impurities to a pure semiconductor is called: [1] (a) Mixing (b) Doping (c) Diffusing (d) None of the above In semiconductor production, doping intentionally

More information

Spin-dependent exciton formation rates in p-conjugated oligomers and polymers

Spin-dependent exciton formation rates in p-conjugated oligomers and polymers Physica B 338 (23) 38 322 Spin-dependent exciton formation rates in p-conjugated oligomers and polymers M. Wohlgenannt a, *, X.M. Jiang b, Z.V. Vardeny b a Department of Physics and Astronomy, University

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http://www.tu-ilmenau.de/nanostruk/ Organic Semiconductors & Organic Electronics Organic semiconductors

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Photoconductive AFM of Organic Solar Cells APP NOTE 15 Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Xuan-Dung Dang and Thuc-Quyen Nguyen

More information

doi: /C0PY00279H

doi: /C0PY00279H doi: 10.1039/C0PY00279H Uniaxially Ordered Conjugated Polymer Film Prepared by Electrochemical Polymerization in a Nematic Liquid Crystal with Rubbing Orientation Method Showing Redox-Driven Tunable Dichroism

More information

SEMINAR. Organic Semiconductor Thin Film Transistors

SEMINAR. Organic Semiconductor Thin Film Transistors University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR Organic Semiconductor Thin Film Transistors Author: Tomaž Mlakar Adviser: Dr. Gvido Bratina Nova Gorica Polytechnic

More information

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates S. Logothetidis Lab for Thin Films, Nanosystems & Nanometrology, Aristotle University of Thessaloniki,

More information

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material**

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material** DOI: 1.12/adma.262437 Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material** By In-Wook Hwang, Cesare Soci, Daniel Moses,* Zhengguo Zhu, David Waller, Russell

More information

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

PROGRESS IN INTERCALATION RESEARCH

PROGRESS IN INTERCALATION RESEARCH PROGRESS IN INTERCALATION RESEARCH Edited by W. MÜLLER-WARMUTH Institute ofphysical Chemistry Westphalian Wilhelms University Münster, Germany and R. SCHÖLLHORN Institute of Inorganic and Analytical Chemistry

More information

Field Effect on the Singlet and Triplet Exciton Formation in Organic/Polymeric Light-Emitting Diodes

Field Effect on the Singlet and Triplet Exciton Formation in Organic/Polymeric Light-Emitting Diodes 9608 J. Phys. Chem. B 2004, 108, 9608-9613 Field Effect on the Singlet and Triplet Exciton Formation in Organic/Polymeric Light-Emitting Diodes Shiwei Yin, Liping Chen, Pengfei Xuan, Ke-Qiu Chen, and Z.

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Electronics go everywhere

Electronics go everywhere The Chemistry, Physics and Engineering of Organic Light Emitting Diodes George G. Malliaras Department of Materials Science and Engineering Cornell University Electronics go everywhere Pioneer e-ink &

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS PARAS N. PRASAD Photonics Research Laboratory Department of Chemistry State University of New York Buffalo, New York and DAVID J. WILLIAMS

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Singlet exciton binding energy in poly(phenylene vinylene)

Singlet exciton binding energy in poly(phenylene vinylene) Singlet exciton binding energy in poly(phenylene vinylene) D. Moses, J. Wang, A. J. Heeger, N. Kirova, and S. Brazovski Institute for Polymers and Organic Solids, University of California, Santa Barbara,

More information

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Organic solar cells. State of the art and outlooks Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Solar energy Solar energy on earth: 75,000 tep/year 6000 times the world consumption in 2007

More information

GaN based transistors

GaN based transistors GaN based transistors S FP FP dielectric G SiO 2 Al x Ga 1-x N barrier i-gan Buffer i-sic D Transistors "The Transistor was probably the most important invention of the 20th Century The American Institute

More information

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/ OLEDs Basic principles, technology and applications Sébastien FORGET Laboratoire de Physique des Lasers Université Paris Nord P13 www-lpl.univ-paris13.fr:8088/lumen/ Paris Nord University (Paris 13) This

More information

organic semiconductors Henning Sirringhaus

organic semiconductors Henning Sirringhaus Charge transport physics of highmobility organic semiconductors Henning irringhaus Organic electronics tatus and opportunities OLED Existing markets Emerging applications Advanced prototypes Next generation

More information

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Miaomiao Tian 1, 2, Jinsong Luo 1, and Xingyuan Liu 1* 1 Key Laboratory of Excited State Processes,

More information

Charge carriers photogeneration. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013

Charge carriers photogeneration. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013 Charge carriers photogeneration Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Electronic Structure and Geometry Relaxation at Excited State

Electronic Structure and Geometry Relaxation at Excited State Electronic Structure and Geometry Relaxation at Excited State Speaker: Chun I Wang ( 王俊壹 ) 2016.07.14 Structure-Performance Relationship Processing schemes Solvent quality Thermal annealing Blend composition

More information

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati vikram.kuppa@uc.edu Fei Yu Yan Jin Andrew Mulderig Greg

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Theoretical Study of Electric Field-Dependent Polaron-type Mobility in Conjugated Polymers. Helena M. G. Correia, Marta M. D.

Theoretical Study of Electric Field-Dependent Polaron-type Mobility in Conjugated Polymers. Helena M. G. Correia, Marta M. D. Theoretical Study of Electric Field-Dependent Polaron-type Mobility in Conjugated Polymers Helena M. G. Correia, Marta M. D. Ramos Physics Department, University of Minho, Campus de Gualtar, 4710-059 Braga,

More information

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad

Ali Ahmadpour. Fullerenes. Ali Ahmadpour. Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad Ali Ahmadpour Fullerenes Ali Ahmadpour Department of Chemical Engineering Faculty of Engineering Ferdowsi University of Mashhad 2014 World of Carbon Materials 2 Fullerenes 1985 Robert F. Curl Jr. Richard

More information

MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs

MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs Abstract MESOSCOPIC MODELLING OF BIPOLAR CHARGE EVOLUTION IN CN-PPV LEDs Marta M. D. Ramos, Helena M. G. Correia, R. Mendes Ribeiro Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057

More information

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Opto-electronic Characterization of Perovskite Thin Films & Solar Cells Arman Mahboubi Soufiani Supervisors: Prof. Martin Green Prof. Gavin Conibeer Dr. Anita Ho-Baillie Dr. Murad Tayebjee 22 nd June 2017

More information

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors

Lecture Note #13. Bard, ch. 18. Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Lecture Note #13 Photoelectrochemistry (ch. 18) 1. Electrogenerated Chemiluminescence 2. Photoelectrochemistry at Semiconductors Bard, ch. 18 Photoelectrochemistry Radiation energy electrical or chemical

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Contents. Preface to the first edition

Contents. Preface to the first edition Contents List of authors Preface to the first edition Introduction x xi xiii 1 The nanotechnology revolution 1 1.1 From micro- to nanoelectronics 2 1.2 From the macroscopic to the nanoscopic world 4 1.3

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Dan Vacar Page 1 of PATENTS

Dan Vacar Page 1 of PATENTS Dan Vacar Page 1 of 6 PATENTS 1. Apparatus and method for testing electrical interconnects with switches. VACAR, DAN; McElfresh, David K; Melanson, Robert H; Lopez, Leon D; US 7,982,468 (2011). 2. Surface

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 The driving force dependence of charge Carrier dynamics in donor-acceptor

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

Lecture 2 Thin Film Transistors

Lecture 2 Thin Film Transistors Lecture 2 Thin Film Transistors 1/60 Announcements Homework 1/4: Will be online after the Lecture on Tuesday October 2 nd. Total of 25 marks. Each homework contributes an equal weight. All homework contributes

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

Organic Electronics. MatWi II summer term Priv. Doz. Bert Nickel

Organic Electronics. MatWi II summer term Priv. Doz. Bert Nickel Organic Electronics MatWi II summer term 2018 Introduction: Organic electronics Fabrication and characterization of organic thin films Devices: solar cells, OLEDs, OFETs blackboard part: OFET Priv. Doz.

More information

Photonic Devices Human eye: about 400 nm to 700 nm

Photonic Devices Human eye: about 400 nm to 700 nm Photonic Devices Human eye: about 400 nm to 700 nm λ [ nm] = 1240 E[ ev ] S. M. Sze, Physics of Semiconductor Devices Sensitivity of the human eye Two LEDs: red (λ = 660 nm) green (λ = 560 nm) emitting

More information