Problem 1. Anthracene and a chiral derivative of anthracene

Size: px
Start display at page:

Download "Problem 1. Anthracene and a chiral derivative of anthracene"

Transcription

1 Molecular Photophysics 330 Physical rganic Chemistry 6C50 Thursday November 5 004, h This exam consists of four problems that have an equal weight in the final score Most problems are composed in such a way that it is not required know the answer of a previous (sub)problem to solve the next one. It is allowed to use the printouts of the course during the exam. Problem. Anthracene and a chiral derivative of anthracene Athracene (see below) has two allowed optical transitions in the UV region of the spectrum. The first transition ( 0 ) occurs around 400 nm (3 ev) and has a transition dipole moment along the x direction. The second transition ( 0 ) occurs near 50 nm (5 ev) and the transition dipole moment for this transition is along the y direction. x 5 ev y 3 ev 0 a. The molar absorption coefficient, which is related to the probability for absorption of a photon, for the 0 transition is more than ten times higher than for the 0 transition. From this experimental fact we can draw conclusions on the relative magnitude of the transition dipole moments µ for the two transitions if we assume that the Franck-Condon factors for both transitions are about the same. Explain whether µ ( 0 ) > µ ( 0 ) or that µ ( 0 ) < µ ( 0 ). Molecule I (see below) contains two anthracene units. In first approximation we may neglect the exchange of electrons between the two units and describe the interactions between the units in the excited state by transition dipole-transition dipole interactions.

2 I The rotation about the single bond joining the two anthracene units is hindered by the presence of the methyl groups and the molecule exists in two mirror image related forms (enantiomers) A and B. n the left side the absorption spectrum (notice the logarithmic scale) and circular dichroism (CD) spectrum of one of the enantiomeric forms is shown. A B Me Me Me Me b. Determine which of the forms has been measured (A or B) and explain your answer. c. In the CD spectrum shown above the CD of the 0 transition near 400 nm (3 ev) has not been measured. If it would have been measured, could this part of the CD spectrum also have been used to distinguish between enantiomer A and B? Explain your answer.

3 Problem. pins and states In this problem we consider the electronic configuration of the butadiene radical cation. There are four π orbitals. The ground state wave function is denoted by Ψ. π π π π π π π π Ψ Ψ The ground state wave function Ψ consists of the product of an orbital function and a spin function. The spin function of Ψ can be written as: σ = ( α() β () α(3) β () α() (3)) or abbreviated: σ ( αβα βαα ) α = For the radical cation an excited state Ψ exists which is illustrated above. The spin function of Ψ can be written as: σ = α() α() (3) or abbreviated: σ = ααα α We now consider optical excitation of the radical cation from its ground state Ψ to its excited state Ψ. The calculation for the transition dipole moments involves the overlap of the two spin functions: σ σ = ααα ( αβα βαα ) 3

4 a. Calculate the overlap of the spin functions and decide whether the transition is spin-allowed or spin-forbidden. b. To verify the result obtained under a. one can calculate the value of the total spin moment s (spin quantum number) for both states by calculating the eigenvalues of the operator. If the transition is allowed the spin quantum number s should be the same for both molecules. Calculate the value of s for σ and σ and confirm your result obtained under a. Use the relationships: = = = = z h z α = 0 α = h β β = h α β = 0 α α = β α = 0 α β = 0 β β = By applying the operator to σ we can generate a new spin state σ 3. By multiplying this spin state with an appropriate orbital function we have generated an additional excited state Ψ 3 c. Give an expression for this new spin state σ 3 and calculate whether the transition from the ground state Ψ to the excited state Ψ 3 is spin allowed. Problem 3. A cyclic diketone. We consider a cyclic diketone:, cyclopentanedione. This molecule has C v symmetry and is depicted in its standard orientation below: z σ v ' y For the spectroscopic properties the following orbitals play an essential role: 4

5 π* π* n n π π The character table of the C v point group is given below: a. Determine the symmetry labels of the π-orbitals π, π, π, π and the nonbonding orbitals n and n, which involve the free electron pair on the oxygen atom in a p y atomic orbital. These orbitals can be used to describe the lowest four singlet states of the diketone ( 0,,, 3 ) as illustrated below. how that the symmetry label Γ of each of the three states correspond to: Γ( 0 ) = A, Γ( ) = B, Γ( ) = A, and Γ( 3 ) = B. π n n π 0 3 5

6 b. Demonstrate that the transitions 0 (near 500 nm) and 0 3 (in the ultraviolet, ~50 nm) are dipole-allowed and determine their polarization directions. In the absorption spectrum of the cyclic diketone a very weak absorption band is observed near 350 nm, apparently due to a transition from the ground state to another state whose energy lies between that of the and 3 state. c. We now investigate whether this state could be identified as the state, which is mentioned above. Is the transition 0 allowed? If not, can molecular vibrations help to induce a small probability for the transition? If so, suggest a possible irreducible representation of a vibration, which may induce such probability. An alternative interpretation of the weak absorption band is that it arises from a transition between the singlet ground state and an unidentified triplet state at higher energy. d. Are such transitions allowed? If not, name a mechanism, which may induce some probability for such a transition. The three lowest triplet states of the diketone can be represented as follows: π n n π T T T 3 6

7 d. Based on their energy relative to the 0 ground state, one of the three triplet T, T and T 3 can be excluded in the alternative explanation of the weak transition at 350 nm involving a transitions between 0 and a higher lying triplet state. Which triplet state can be excluded? Explain your answer. Problem 4. Perylenebisimid and oligo(phenylene vinylene) in organic solar cells Perylenebisimid (PERY, see below) is a molecule that shows a very bright and intense fluorescence in CH Cl solution with a maximum in intensity near a wavelength of 530 nm. R R R R HN NH R R R R PERY PV4 A drop of the solution is put on a quartz plate and the solvent is allowed to evaporate. As dry material on the quartz plate the fluorescence of the perylenebisimid molecules is strongly reduced in intensity, and very weak in comparison with that from the solution. To explain this it may be assumed that perylenebisimid molecules form linear -dimensional aggregates upon removing the solvent. a. uggest how the perylenebisimid molecules should be arranged in the linear aggregate in order to explain the almost complete quenching of luminescence. When perylenebisimid is mixed with the oligo(phenylene vinylene) (PV4) interesting photophysical properties can be observed such as energy and electron transfer. Many of the observations can be explained by considering the energies of the Highest ccupied Molecular rbital (HM) and the Lowest Unoccupied Molecular rbital (LUM) of both PERY and PV4. 7

8 LUM.5 ev.3 ev HM PERY PV4 In the ground state (before photoexcitation) the HM of PERY and PV4 are both occupied by two electrons. b. Is electron transfer possible between ground state PERY and ground state PV4? Explain your answer drawing a HM-LUM diagram showing the occupation of orbitals. The excited state of PERY (denoted below as PERY*) may be described by promotion of one electron from the HM to the LUM. Likewise the state of the PV4 (denoted below as PV4*) may also be described by a HM-LUM excitation. c. Explain whether the following processes are likely to occur after excitation of PERY to its state, given the fact the PERY and PV4 are at very close distance:. energy transfer from PERY* to the PV4 yielding PV4- (PV4*)?. energy transfer from PERY* to PV4 yielding PV4-T? 3. electron transfer from PERY* to PV4 yielding PV4? 4. electron transfer from PV4 to PERY* yielding PV4? Explain your reasoning using a diagram. In formulating your answer also take into account spin selection rules. d. Using excitation light of 400 nm the PV4 molecule can be brought to its excited state (PV4*). Discuss whether the following processes are likely to occur:. energy transfer from PV4* to PERY yielding PERY- (PERY*)?. intersystem crossing from PV4* to PV4-T and energy transfer to, yielding singlet oxygen ( )? 8

9 3. electron transfer from PERY to PV4* yielding PV4? 4. electron transfer from PV4* to PERY yielding PV4? Explain your reasoning using a diagram. In formulating your answer also take into account spin selection rules. In the following you may assume that after excitation of PERY to its state, electron transfer from PV4 to PERY occurs. We now want to use the photoinduced electron transfer reaction between PERY and PV4 to construct a solar cell. To do so we use two different metal electrodes IT (indium-tin-oxide) and Al. For a metal the highest occupied electron level and the lowest unoccupied electron level have practically the same energy (also called the Fermi level). For the four materials the levels are summarized in the scheme below. LUM Al PERY PV4 IT Fermi level HM Fermi level Al PERY PV4 IT Constructing a solar, we start with the IT electrode at the bottom and deposit a layer of PV4 molecules on the IT. n top of the PV4 layer we deposit a layer of PERY molecules. Finally on top of the PERY layer, aluminum metal can be evaporated. e. Upon illumination of the device through the optically transparent IT electrode, a potential difference (voltage) between the two electrodes is formed, due to accumulation of charges. Explain at which electrode (Al or IT) the photogenerated electrons with negative charge and at which electrode the positively charged holes are collected. 9

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise) Chemistry 2 Lecture 11 Electronic spectroscopy of polyatomic molecules Assumed knowledge For bound excited states, transitions to the individual vibrational levels of the excited state are observed with

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

UV-vis (Electronic) Spectra Ch.13 Atkins, Ch.19 Engel

UV-vis (Electronic) Spectra Ch.13 Atkins, Ch.19 Engel XV 74 UV-vis (Electronic) Spectra-2014 -Ch.13 Atkins, Ch.19 Engel Most broadly used analytical tech / especially bio-applic. inexpensive optics / solvent & cell usually not problem intense transitions

More information

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. What determines the UV-Vis (i.e., electronic transitions) band appearance? Usually described by HOMO LUMO electron jump LUMO

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

New σ bond closes a ring. Loss of one π bond and gain of one σ bond CHAPTER 1 Pericyclic Reactions 1.1 INTRODUCTION Pericyclic reactions are defined as the reactions that occur by a concerted cyclic shift of electrons. This definition states two key points that characterise

More information

1 Basic Optical Principles

1 Basic Optical Principles 13 1 Basic Optical Principles 1.1 Introduction To understand important optical methods used to investigate biomolecules, such as fluorescence polarization anisotropy, Förster resonance energy transfer,

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

hand and delocalization on the other, can be instructively exemplified and extended

hand and delocalization on the other, can be instructively exemplified and extended Text Related to Segment 8.0 00 Claude E. Wintner The ideas developed up to this point, concerning stereochemistry on the one hand and delocalization on the other, can be instructively exemplified and extended

More information

Transition Metal Complexes Electronic Spectra 2

Transition Metal Complexes Electronic Spectra 2 Transition Metal Complexes Electronic Spectra 2 Electronic Spectra of Transition Metal Complexes Cr[(NH 3 ) 6 ] 3+ d 3 complex Molecular Term Symbols Quartet states Doublet state Different Ways of Transitions

More information

Chemistry 21b Final Examination

Chemistry 21b Final Examination Chemistry 21b Final Examination Out: 11 March 2011 Due: 16 March 2011, 5 pm This is an open book examination, and so you may use McQuarrie or Harris and Bertolucci along with the posted Lecture Notes and

More information

How to identify types of transition in experimental spectra

How to identify types of transition in experimental spectra 17 18 19 How to identify types of transition in experimental spectra 1. intensity 2. Band width 3. polarization Intensities are governed by how well the selection rules can be applied to the molecule under

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. What determines the UV-Vis (i.e., electronic transitions) band appearance? Usually described by HOMO LUMO electron jump LUMO

More information

Final Exam. Chemistry 639 Thursday, May 9, 2002

Final Exam. Chemistry 639 Thursday, May 9, 2002 inal Exam Your ame: Chemistry 639 Thursday, May 9, 00 SS This is your final exam. You can use your notes or a textbook but cannot discuss anything with other students. You have 3 hours to complete the

More information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of 1 Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of coordination compounds of transition metals involve transitions

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds:

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds: Problem 1 (2 points) Part 1 a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions

More information

Lecture 1: Chemistry of the Carbonyl Group

Lecture 1: Chemistry of the Carbonyl Group Lecture 1: Chemistry of the Carbonyl Group bjectives: By the end of this lecture you will be able to: 1. identify and name all major carbonyl functional groups; 2. use a molecular orbital approach to describe

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

Hour Examination # 4

Hour Examination # 4 CHEM 346 Organic Chemistry I Fall 2014 Exam # 4 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I Fall 2014 Instructor: Paul Bracher Hour Examination # 4 Wednesday, December 3 rd, 2014 6:00 8:00

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

E L E C T R O P H O S P H O R E S C E N C E

E L E C T R O P H O S P H O R E S C E N C E Organic LEDs part 4 E L E C T R O P H O S P H O R E S C E C E. OLED efficiency 2. Spin 3. Energy transfer 4. Organic phosphors 5. Singlet/triplet ratios 6. Phosphor sensitized fluorescence 7. Endothermic

More information

CHEM- 457: Inorganic Chemistry

CHEM- 457: Inorganic Chemistry CHEM- 457: Inorganic Chemistry Midterm I March 13 th, 2014 NAME This exam is comprised of six questions and is ten pages in length. Please be sure that you have a complete exam and place your name on each

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Fluorescence Polarization Anisotropy FPA

Fluorescence Polarization Anisotropy FPA Fluorescence Polarization Anisotropy FPA Optics study of light Spectroscopy = light interacts the study of the interaction between matter & electro-magnetic radiation matter Spectroscopy Atomic Spectroscopy

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

indicating the configuration they correspond to and predict their relative energy.

indicating the configuration they correspond to and predict their relative energy. Problem 1 (1 point) Three center four electron (3c/4e) bonds were introduced in class. John F. Berry (Dalton Trans. 2012, 41, 700-713) discusses the effect of the larger density of states for the 3c/4e

More information

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2

R BC. reaction coordinate or reaction progress R. 5) 8pts) (a) Which of the following molecules would give an infrared spectrum? HCl O 2 H 2 O CO 2 Physical Chemistry Spring 2006, Prof. Shattuck Final Name Part Ia. Answer 4 (four) of the first 5 (five) questions. If you answer more than 4, cross out the one you wish not to be graded. 1) 8pts) Of absorption

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization Advanced rganic Chemistry Chm 512/412 Spring 2010 Handout I Photochemistry Part 1 Photophysical Processes Quenching Alkene cis-trans Isomerization Importance of Photochemistry/Photophysics rganic Synthesis

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Quantum Theory of Polymers II.b Energy transfer in polymers: Förster and Dexter mechanisms

Quantum Theory of Polymers II.b Energy transfer in polymers: Förster and Dexter mechanisms Quantum Theor o Polmers II.b Energ transer in polmers: Förster and exter mechanisms Jean Marie ndré EC Socrates Erasmus programme FUNP, Namur Universit o Warsaw Light emitting devices: charge injection

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Excitation by UV/Vis Spectroscopy : Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations Radio waves: Nuclear spin states (in a magnetic field) The wavelength

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

*Assignments could be reversed. *

*Assignments could be reversed. * Name Key 5 W-Exam No. Page I. (6 points) Identify the indicated pairs of hydrogens in each of the following compounds as (i) homotopic, (ii) enantiotopic, or (iii) diastereotopic s. Write the answers as

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Fluorescence Excitation and Emission Fundamentals

Fluorescence Excitation and Emission Fundamentals Fluorescence Excitation and Emission Fundamentals Fluorescence is a member of the ubiquitous luminescence family of processes in which susceptible molecules emit light from electronically excited states

More information

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment Last Time 3-dimensional quantum states and wave functions Decreasing particle size Quantum dots (particle in box) Course evaluations Thursday, Dec. 10 in class Last HW assignment available : for practice

More information

Exercise 2.4 Molecular Orbital Energy Level Diagrams: Homonuclear Diatomics

Exercise 2.4 Molecular Orbital Energy Level Diagrams: Homonuclear Diatomics Exercise 2.4 Molecular rbital Energy Level Diagrams: Homonuclear Diatomics This exercise assumes that you are familiar with the count and sort algorithm described in Exercise 2.3. The table of atomic orbital

More information

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper)

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper) Molecular Luminescence Absorption Instrumentation light source I 0 sample I detector light source Rotating mirror (beam chopper) motor b sample I detector reference I 0 UV absorption spectrum lg ε A =

More information

1. Photoreduction of Benzophenone in 2-Propanol

1. Photoreduction of Benzophenone in 2-Propanol 1. Photoreduction of Benzophenone in 2-Propanol Topic: photochemistry, photophysics, kinetics, physical-organic chemistry Level: undergraduate physical chemistry Time: 2 x 2 hours (separated by ~24 hours)

More information

Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011 upplementary Material (EI) for Dalton Transactions This journal is The Royal ociety of Chemistry 211 Electronic upplementary Information for: Accessing the long-lived emissive 3 IL triplet excited states

More information

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points)

2018 Ch112 problem set 6 Due: Thursday, Dec. 6th. Problem 1 (2 points) Problem 1 (2 points) a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions (υ1 and

More information

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY Photochemical processes play a key role in the chemistry of the Earth s atmosphere. Most important atmospheric reactions begin with molecular photodissiciation,

More information

MO THEORY FOR CONJUGATED MOLECULES

MO THEORY FOR CONJUGATED MOLECULES 22.2 MO TEORY FOR CONJUGATED MOLECULES 959 methyl groups have a cis orientation in the cyclobutene product. There is no obvious reason why conrotation should be preferred over disrotation in the thermal

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel OLEDs and PLEDs 28.5.2014 Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel Contents 1. History 2. Working principle 4. Preparation of multilayer devices 5. Advantages and disadvantages 6.

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Last Name or Student ID

Last Name or Student ID 12/9/15, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 11. (4 pts) 2. (6 pts) 12. (3 pts) 3. (2 pts) 13. (4 pts) 4. (3 pts) 14. (3 pts) 5. (5 pts) 15. (3 pts) 6. (3 pts) 16. (7 pts) 7. (12 pts)

More information

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2 Coordination and Special Materials Chemistry Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth Part 2 Coordination Chemistry: Spectroscopy -microstates and spectroscopic symbols (RS and jj coupling), see

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13

UV-Vis Spectroscopy. Chem 744 Spring Gregory R. Cook, NDSU Thursday, February 14, 13 UV-Vis Spectroscopy Chem 744 Spring 2013 UV-Vis Spectroscopy Every organic molecule absorbs UV-visible light Energy of electronic transitions saturated functionality not in region that is easily accessible

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Excited States in Organic Light-Emitting Diodes

Excited States in Organic Light-Emitting Diodes Excited States in Organic Light-Emitting Diodes The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for solar harvesting and sensitization

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals.

Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. CH 101/103 - Practice sheet 3/17/2014 Practice sheet #6: Molecular Shape, Hybridization, Molecular Orbitals. 1. Draw the 3D structures for the following molecules. You can omit the lone pairs on peripheral

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation rganic hemistry otes by Jim Maxka hapter 14: Dienes and onjugation Topics Dienes: aming and Properties onjugation 1,2 vs 1,4 addition and the stability of the allyl cation Diels Alder eaction Simple rbital

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington Glow-Sticks are Forbidden Zachary G Wolfe Department of Physics and Physical Oceanography University of North Carolina Wilmington Abstract: Physics students learn early that certain electronic transitions

More information

Chem G8316_10 Supramolecular Organic Chemistry

Chem G8316_10 Supramolecular Organic Chemistry Chem G8316_10 Supramolecular Organic Chemistry Lecture 5, Wednesday, February 3, 2010 Photophysics of aromatic hydrocarbons Supramolecular effects on the photophysics of aromatic hydrocarbons 1 Course

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Last Updated: April 22, 2012 at 7:49pm

Last Updated: April 22, 2012 at 7:49pm Page 1 Electronic Properties of d 6 π Coordination Compounds The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for both solar

More information

e L 2m e the Bohr magneton

e L 2m e the Bohr magneton e L μl = L = μb 2m with : μ B e e 2m e the Bohr magneton Classical interation of magnetic moment and B field: (Young and Freedman, Ch. 27) E = potential energy = μ i B = μbcosθ τ = torque = μ B, perpendicular

More information

Benzene (D 6h Symmetry)

Benzene (D 6h Symmetry) 564-17 Lec 29 Mon-Wed 27,29 Mar17 Vibrations of a Polyatomic Molecule Benzene (D 6h Symmetry) The word "totally symmetric" refers to a function that ALWAYS goes into itself upon ALL symmetry operations

More information

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002

Lecture 1 - Electrons, Photons and Phonons. September 4, 2002 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 1-1 Lecture 1 - Electrons, Photons and Phonons Contents: September 4, 2002 1. Electronic structure of semiconductors 2. Electron statistics

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Electronic Selection Rules (II)

Electronic Selection Rules (II) Term Symbols Electronic Selection Rules (II) IMPORTANT now we are finally ready to clearly define our electronic states! microstates for a particular atomic configuration are grouped into what are called

More information

Exam 2 Review Problems

Exam 2 Review Problems 09-107 onors Chemistry Carnegie Mellon University Exam 2 Review Problems Exam 2 will be held on Tuesday, ctober 30, in Porter all A18C. We will be there from 2:45 to 4:45 pm. Disclaimer: This review sheet

More information

Introduction to Fluorescence Spectroscopies I. Theory

Introduction to Fluorescence Spectroscopies I. Theory March 22, 2006; Revised January 26, 2011 for CHMY 374 Adapted for CHMY 362 November 13, 2011 Edited by Lauren Woods December 2, 2011 17mar14, P.Callis; 1feb17 P. Callis, 29jan18 P. Callis Introduction

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Study Guide 5: Light Absorption by π Electrons in Biological Molecules

Study Guide 5: Light Absorption by π Electrons in Biological Molecules Study Guide 5: Light Absorption by π Electrons in Biological Molecules Text: Chapter 4, sections 5 (from end of example 4.5) 9. Upcoming quizzes: For quiz 3 (final day, Friday, Feb 29, 2008) you should

More information