Quantum Theory of Polymers II.b Energy transfer in polymers: Förster and Dexter mechanisms

Size: px
Start display at page:

Download "Quantum Theory of Polymers II.b Energy transfer in polymers: Förster and Dexter mechanisms"

Transcription

1 Quantum Theor o Polmers II.b Energ transer in polmers: Förster and exter mechanisms Jean Marie ndré EC Socrates Erasmus programme FUNP, Namur Universit o Warsaw

2 Light emitting devices: charge injection charge transport to a recombination region 3 ormation o excited states rom recombination o radical-ion (polaron) states 4 light emission. Energ harvesting / light transducing devices such as photovoltaic cells: optical absorption photoinduced charge separation 3 charge transport 4 charge collection at the electrodes

3 Photovoltaïc Cell Separation o holes and electrons

4 OLE

5 Fluorescence Phosphorescence K s- K 0-06 s-

6

7 Franck-Condon Shit The rate o non-radiative phonon emission a* a0*c0* is much larger than the radiative transition rate. Thereore, radiative transitions are most likel to occur rom the lowest vibrational level o an electronic state KSH s rule Franck-Condon energ = red shit = Stokes shit 0.5 ev

8 Non-radiative Electronic Energ Transer Förster & exter Mechanisms uring energ transer between molecules, an excited donor molecule * transers its energ to an acceptor which in turn is promoted into an excited state: * + + * In some doped organic thin ilms, the exciton energ can be transerred rom the host to the guest molecule, quenching luminescence o the host while increasing that o the guest. I and are the same = energ migration Electrostatic interaction Exchange interaction

9 Photoinduced Electron Transer Nonradiative Energ Transer (ollowed b emission)

10 From Fermi's Golden Rule to exter & Förster Non-Radiative Energ Transer Equations * + + * k m n = p p m V n ρ E n = β ρ E h h H = electrostatic interaction o all electrons and nuclei β = H ' i = i =å = =å H ' dt dt β =β C = β = H ' dt dt E

11 Scheme o the ctive Orbitals in Energ Transer General Scheme: ctive Orbitals:

12 igression: Indiscernabilit o Electrons and Pauli Principle "Energetic space" "Phsical direct" space

13 ψ(,) = ψ(,) ψ(,) = -ψ(,) ψ(,) = +ψ(,) antismmetr Pauli principle or ermions smmetr Pauli principle or bosons i: then a correct antismmetric wave unction would be: Y, = = Y, Y, µ Y =, µ

14 Förster Equation Electronic energ transer process = one-step transer o electronic excitation rom an excited ONOR molecule (*) to an CCEPTOR molecule () in separate molecules (INTERMOLECULR ENERGY TRNSFER) or in dierent parts o the same molecule (INTRMOLECULR ENERGY TRNSFER) + hν * * + + * Förster = Non-radiative resonance excitation (dipole-dipole) energ transer occurs when an excited molecule (*) can transer its excitation energ to an acceptor () molecule over distances much greater than collisional diameters (e.g Å). The Coulomb term represents the classical interaction o the charge distributions: Q() = e φ*() φ() and Q() = e φ() φ*() that can be expanded into multipole terms : dipole-dipole, dipole-quadrupole, t not too small distances R between the donor and the acceptor, the dominant dipole term is: β Coulomb dipole dipole» MM 3 R

15 Förster Equation Electronic energ transer process = one-step transer o electronic excitation rom an excited ONOR molecule (*) to an CCEPTOR molecule () in separate molecules (INTERMOLECULR ENERGY TRNSFER) or in dierent parts o the same molecule (INTRMOLECULR ENERGY TRNSFER) + hν * * + + * Förster = Non-radiative resonance excitation (dipole-dipole) energ transer occurs when an excited molecule (*) can transer its excitation energ to an acceptor () molecule over distances much greater than collisional diameters (e.g Å). Thus, ET can be approximated to occur via dipole (donor)-dipole (acceptor) interaction (Coulombic interaction). The oscillating dipole o the excited donor (*) causes electrostatic orces which can be exerted on the electronic sstem o the acceptor: k m n k ET = t R0 R = p p m V n ρ E n = β ρ E h h 6 6 R 0 = n 0 F ν α ν 4 E dν ν 4

16 Förster Equation τ = average donor exciton lietime or recombination in the absence o energ transer R0 = Förster critical distance given b the overlap integral over all energies hν φe = quantum eicienc o donor emission n = reractive index o the host F = normalized emission spectrum o the donor α = molar extinction coeicient (absorption spectrum) o the acceptor equation valid i and are well separated (0 Å) and exhibit broadened relativel unstructured spectra spectral overlap is insigniicant no important medium or solvent interactions solvent excited states ling much higher than those o and «overlap» integral: k ET = t R0 R 6 6 R 0 = n 0 F ν α ν 4 E dν ν 4

17 igression: 4-coordinates-spinorbitals H ' dt dt dt dt β C = = H ' ¹ 0 = x,, z s w = x,, z { α β Orthogonalit o spin unctions: α w α w dw= β w β w dw= α w β w dw= β w α w dw=0 Thus ater integration, ψ*()ψ() will give a result dierent o zero onl i the spins o ψ* and ψ are the same. and ater integration, ψ*()ψ() will give a result dierent o zero onl i the spins o ψ* and ψ are the same.

18 H ' Förster Mechanisms d t d t dt dt β C = = H ' ¹ 0 *(singlet) + + *(singlet) llowed H ' β = = C H ' dr Spins o and * and o and * are the same dr dt β dt w β w d w β w β w d w ¹ 0

19 H ' Förster Mechanisms d t d t dt dt β C = = H ' ¹ 0 *(singlet) *(triplet) llowed H ' β = = C H ' dr dr dt β dt w β w d w α w α w d w ¹ 0

20 H ' Förster Mechanisms d t d t dt dt β C = = H ' ¹ 0 *(triplet) + + 3*(triplet) Not allowed 3 H ' β = = C H ' dr dr dt α dt w β w d w β w α w d w =0

21 H ' Förster Equation dt dt dt dt β C = = H ' ¹ 0 spin-allowed transitions: * (singlet)+ * (singlet) * (singlet) + 3* (triplet) Forbidden transitions (triplet-triplet, singlet-triplet) 3 * (triplet) + * (singlet) + Spin conservation o both and = llowed transitions on and + 3* (triplet) + 3* (triplet) The triplet-singlet transition 3 * (triplet) + + * (singlet) is orbidden, but sometimes observed since 3* has a long lietime and although slow ket can be larger than the 3* transition rate.

22 exter Equation Electronic energ transer process = one-step transer o electronic excitation rom an excited ONOR molecule (*) to an CCEPTOR molecule () in separate molecules (INTERMOLECULR ENERGY TRNSFER) or in dierent parts o the same molecule (INTRMOLECULR ENERGY TRNSFER) + hν * * + + * exter = Non-radiative electron exchange energ transer (EEET) occurs when an excited donor molecule (*) and an acceptor molecule () are close enough (0-5 Å) to be in molecular contact. I their electron clouds suicientl overlap each other, an exciton could diusivel hop rom one molecule to the next with no change o spin. lso called overlap or collision mechanism. The exchange term represents the interaction o the exchange charge distributions: Q() = e φ*() φ*() and Q() = e φ() φ(). The vanish i the spin-orbitals φ*() φ*() or φ() φ() contain dierent spin unctions and exponentiall decrease with distance.

23 exter Equation Electronic energ transer process = one-step transer o electronic excitation rom an excited ONOR molecule (*) to an CCEPTOR molecule () in separate molecules (INTERMOLECULR ENERGY TRNSFER) or in dierent parts o the same molecule (INTRMOLECULR ENERGY TRNSFER) + hν * * + + * exter = Non-radiative electron exchange energ transer (EEET) occurs when an excited donor molecule (*) and an acceptor molecule () are close enough (0-5 Å) to be in molecular contact. I their electron clouds suicientl overlap each other, an exciton could diusivel hop rom one molecule to the next with no change o spin.. lso called overlap or collision mechanism. For transers between states with allowed transitions, exter transer is tpicall overwhelmed b long-range Förster dipole-dipole processes. But since triplet-to-triplet energ transer is orbidden b spin conservation in Förster mechanism, exter is the onl mechanism permitting triplet energ transer.

24 pz k ET = h 0 F ν F ν dν F = normalized emission spectrum o the donor F = normalized absorption spectrum o the acceptor Z, determined b the molecular overlap and related to the intermolecular spacing R Z µ exp L = eective average Bohr radius R = distance between the centers o and J= 0 F ν F ν dν spectroscopic overlap integral, measure o the donor-emission and acceptor absorption R L

25 H ' exter Mechanisms H' dt dt dt dt β E = = ¹ 0 *(singlet) + + *(singlet) llowed β = = E H ' H ' dr dr dt β dt w β w d w β w β w d w ¹ 0

26 H ' exter Mechanisms H' dt dt dt dt β E = = ¹ 0 *(triplet) + + 3*(triplet) llowed 3 β = = E H ' H ' dr dr dt α dt w α w d w β w β w d w ¹ 0

27 nother model: exter transport = simultaneous transer o an electron and a hole between * and. Mobilit o the the triplet exciton = product o electron (Ke) and hole (Kh) transer rates: K ET = K e K h Thermall activated!

28 exter Equation H ' H' dt dt dt dt β E = = ¹ 0 spin-allowed EEET: * (singlet) + 3 * (triplet) + Spin conservation o total spin o * sstem + * (singlet) (also allowed under dominating long-range Förster mechanism ) + 3* (triplet) triplet-triplet energ transer (orbidden b resonance-excitation energ transer)

29 Summar: TPT: k = p β ρe h ρe = densit o states, related to spectral overlap J β Förster (95): exter (953): k ET Coulomb» 6 R ν k ET Exchange» e J R / L J

30 Förster: Coulomb term = interaction o charge distributions : and ma be expanded in multipole expansion, limited to dipole-dipole β µ C MM 3 R k Cb µ 6 R ν J

31 exter: Exchange term = interaction o exchange charge distributions : and vanishes i Ψ* and Ψ* or Ψ and Ψ correspond to dierent spin unctions depend on the spatial overlap o orbitals o and decreases exponentiall with increasing internuclear distance β E µ exp R L k Exch µ exp R L J

32 Useul Relations ev = 8,066 cm- E ev =4. 5 λ nm

33 Reerences V. Balzani,. Juris, M. Venturi, S. Campagna, S. Serroni, Luminescent and redoxctive Polnuclear Transition Metal Complexes, Chem. Rev., 996, 96, P.F. Barbara, T.J. Meer, M.. Ratner, Contemporar issues in Electron Transer Research, J. Phs. Chem., 996, 00, R. Farchioni, G. Grosso (Eds.), Organic Electronic Materials, Conjugated Polmers and Low Molecular Weight Organic Solids, Springer, Berlin (00) M. Klessinger, J. Michl, Excited States and Photochemistr o Organic Molecules, VCH Publishers, New York (995) R.. Marcus, Nobel lecture (99), Rev. Modern Phs., 993, 65, 599 J.F. Rabek, Mechanisms o Photophsical Processes and Photochemical Recations in Polmers, Theor and pplications, J. Wile, New York (987) G.C. Schatz, M.. ratner, Quantum mechanics in Chemistr, Prentice Hall, Englewood Clis (993)

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Survival Strategy: Photosynthesis

Survival Strategy: Photosynthesis Energy and Electron Transfer Survival Strategy: Photosynthesis Light Energy Harvested by Plants 6 CO 2 + 6 H 2 O + light energy C 6 H 12 O 6 + 6 O 2 Importance of Photosynthesis Provides energy for plants

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Chapter 2 Energy Transfer Review

Chapter 2 Energy Transfer Review Chapter 2 Energy Transfer Review In this chapter, we discuss the basic concepts of excitation energy transfer, making the distinction between radiative and nonradiative, and giving a brief overview on

More information

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas Fotoquímica Aula 5 e 6 Transferência de Energia e Transferência de Elétron Prof. Amilcar Machulek Junior IQ/USP - CEPEMA Caminhos de espécies fotoexcitadas 1 Diagrama de Jablonski S 2 Relaxation (τ < 1ps)

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Problem 1. Anthracene and a chiral derivative of anthracene

Problem 1. Anthracene and a chiral derivative of anthracene Molecular Photophysics 330 Physical rganic Chemistry 6C50 Thursday November 5 004, 4.00-7.00 h This exam consists of four problems that have an equal weight in the final score Most problems are composed

More information

Molecular Fluorescence Spectroscopy Jose Hodak

Molecular Fluorescence Spectroscopy Jose Hodak Molecular Fluorescence Spectroscopy Jose Hodak Introduction This notes were prepared based mainly on Bernard Valeur molecular luorescence book. I would recommend this book to the students who need learn

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

E L E C T R O P H O S P H O R E S C E N C E

E L E C T R O P H O S P H O R E S C E N C E Organic LEDs part 4 E L E C T R O P H O S P H O R E S C E C E. OLED efficiency 2. Spin 3. Energy transfer 4. Organic phosphors 5. Singlet/triplet ratios 6. Phosphor sensitized fluorescence 7. Endothermic

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

Triplet state diffusion in organometallic and organic semiconductors

Triplet state diffusion in organometallic and organic semiconductors Triplet state diffusion in organometallic and organic semiconductors Prof. Anna Köhler Experimental Physik II University of Bayreuth Germany From materials properties To device applications Organic semiconductors

More information

Resonance energy transfer using biotin-peg/pama stabilized CdS quantum dots

Resonance energy transfer using biotin-peg/pama stabilized CdS quantum dots Resonance energy transer using biotin-peg/pm stabilized ds quantum dots Third Research Group, Quantum Nano-Technology Laboratory, Konan Universit 呂威 Wei Lu Semiconductor nanocrystals represent a potential

More information

A MODEL OF ORGANIC THIN FILM ELECTROLUMINESCENCE

A MODEL OF ORGANIC THIN FILM ELECTROLUMINESCENCE Journal o Optoelectronics and Advanced Materials, Vol. 4, No., September, p. 575-58 A MODEL OF ORGANIC THIN FILM ELECTROLUMINESCENCE Institute o Molecular and Atomic Physics, F. Skaryna ave. 7, Minsk,

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Generation of light Light sources

Generation of light Light sources Generation of light Light sources Black-body radiation Luminescence Luminescence Laser Repetition Types of energy states in atoms and molecules are independent (not coupled) Energy states are non-continuous,

More information

1 Basic Optical Principles

1 Basic Optical Principles 13 1 Basic Optical Principles 1.1 Introduction To understand important optical methods used to investigate biomolecules, such as fluorescence polarization anisotropy, Förster resonance energy transfer,

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper)

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper) Molecular Luminescence Absorption Instrumentation light source I 0 sample I detector light source Rotating mirror (beam chopper) motor b sample I detector reference I 0 UV absorption spectrum lg ε A =

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel OLEDs and PLEDs 28.5.2014 Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel Contents 1. History 2. Working principle 4. Preparation of multilayer devices 5. Advantages and disadvantages 6.

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

4 Single molecule FRET

4 Single molecule FRET 4 Single molecule FRET FRET basics Energie Dipole-dipole interaction Teil I SM Fluo, Kap. 4 FRET FRET basics transfer rate (from Fermis Golden Rule) k t = 1 0 1 r 6 apple 2 9 ln(10) n 4 N A 128 5 Z d f

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

7 Conjugated Polymers

7 Conjugated Polymers 7 Conjugated Polymers The large majority of polymers, first of all the broadly used commodity materials polyethylene, polypropylene, poly(ethylene terephthalate) or polystyrene, have similar electrical

More information

Chemistry Instrumental Analysis Lecture 3. Chem 4631

Chemistry Instrumental Analysis Lecture 3. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 3 Quantum Transitions The energy of a photon can also be transferred to an elementary particle by adsorption if the energy of the photon exactly matches the

More information

Last Updated: April 22, 2012 at 7:49pm

Last Updated: April 22, 2012 at 7:49pm Page 1 Electronic Properties of d 6 π Coordination Compounds The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for both solar

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

i) impact of interchain interactions

i) impact of interchain interactions i) impact of interchain interactions multiple experimental observations: in dilute solutions or inert matrices: the photoluminescence quantum yield of a given conjugated polymers can be very large: up

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Thomas Schmidt Department of Biophysics Leiden University, The Netherlands tschmidt@biophys.leidenuniv.nl www.biophys.leidenuniv.nl/research/fvl Biophysical Structural Biology

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Energy Transfer Upconversion Processes

Energy Transfer Upconversion Processes 1. Up-conversion Processes Energy Transfer Upconversion Processes Seth D. Melgaard NLO Final Project The usual fluorescence behavior follows Stokes law, where exciting photons are of higher energy than

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Design of organic TADF molecules. The role of E(S 1 -T 1 ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism.

Design of organic TADF molecules. The role of E(S 1 -T 1 ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism. Design of organic TADF molecules. The role of E(S -T ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism. H. Yersin, L. Mataranga-Popa, R. Czerwieniec University of Regensburg,

More information

Semiconductor quantum dots

Semiconductor quantum dots Semiconductor quantum dots Quantum dots are spherical nanocrystals of semiconducting materials constituted from a few hundreds to a few thousands atoms, characterized by the quantum confinement of the

More information

Marcus Theory for Electron Transfer a short introduction

Marcus Theory for Electron Transfer a short introduction Marcus Theory for Electron Transfer a short introduction Minoia Andrea MPIP - Journal Club -Mainz - January 29, 2008 1 Contents 1 Intro 1 2 History and Concepts 2 2.1 Frank-Condon principle applied to

More information

How does a polymer LED OPERATE?

How does a polymer LED OPERATE? How does a polymer LED OPERATE? Now that we have covered many basic issues we can try and put together a few concepts as they appear in a working device. We start with an LED:. Charge injection a. Hole

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Förster Energy Transfer - AKA - Fluorescence Resonance Energy Transfer

Förster Energy Transfer - AKA - Fluorescence Resonance Energy Transfer örster Energy Transfer - K - luorescence esonance Energy Transfer 1. Origins: Theory of Energy Transfer developed by T. örster (örster. 1948. nnalen der Physi. :55-75.). evelopment of ET as a Spectroscopic

More information

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin Collisionally Excited Spectral Lines (Cont d) Please Note: Contrast the collisionally excited lines with the H and He lines in the Orion Nebula spectrum. Preview: Pure Recombination Lines Recombination

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light) Photochemistry Introduction ENERGY Heat Electricity Electromagnetic irradiation (light) Vision: Triggered by a photochemical reaction Is red in the dark? The answer must be NO - Since what we see as colour

More information

Luminescence spectroscopy

Luminescence spectroscopy Febr. 203 Luminescence spectroscopy Biophysics 2 nd semester Józse Orbán University o Pécs, Department o Biophysics Deinitions, laws FUNDAMENTALS o SPECTROSCY review - Spectral types (absorbtion/emission

More information

Singlet. Fluorescence Spectroscopy * LUMO

Singlet. Fluorescence Spectroscopy * LUMO Fluorescence Spectroscopy Light can be absorbed and re-emitted by matter luminescence (photo-luminescence). There are two types of luminescence, in this discussion: fluorescence and phosphorescence. A

More information

ELECTRONIC SPECTROSCOPY AND PHOTOCHEMISTRY

ELECTRONIC SPECTROSCOPY AND PHOTOCHEMISTRY 5.61 Physical Chemistry Lecture #33 1 ELECTRONIC SPECTROSCOPY AND PHOTOCHEMISTRY The ability of light to induce electronic transitions is one of the most fascinating aspects of chemistry. It is responsible

More information

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1. NERS311/Fall 2014 Revision: August 27, 2014 Index to the Lecture notes Alex Bielajew, 2927 Cooley, bielajew@umich.edu NERS 311 Current Old notes notes Chapter 1 1 1 Chapter 1: Introduction to the course

More information

Chem G8316_10 Supramolecular Organic Chemistry

Chem G8316_10 Supramolecular Organic Chemistry Chem G8316_10 Supramolecular Organic Chemistry Lecture 5, Wednesday, February 3, 2010 Photophysics of aromatic hydrocarbons Supramolecular effects on the photophysics of aromatic hydrocarbons 1 Course

More information

Excited States in Organic Light-Emitting Diodes

Excited States in Organic Light-Emitting Diodes Excited States in Organic Light-Emitting Diodes The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for solar harvesting and sensitization

More information

General Considerations 1

General Considerations 1 General Considerations 1 Absorption or emission of electromagnetic radiation results in a permanent energy transfer from the emitting object or to the absorbing medium. This permanent energy transfer can

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Fluorescence Polarization Anisotropy FPA

Fluorescence Polarization Anisotropy FPA Fluorescence Polarization Anisotropy FPA Optics study of light Spectroscopy = light interacts the study of the interaction between matter & electro-magnetic radiation matter Spectroscopy Atomic Spectroscopy

More information

Introduction to Fluorescence Spectroscopies I. Theory

Introduction to Fluorescence Spectroscopies I. Theory March 22, 2006; Revised January 26, 2011 for CHMY 374 Adapted for CHMY 362 November 13, 2011 Edited by Lauren Woods December 2, 2011 17mar14, P.Callis; 1feb17 P. Callis, 29jan18 P. Callis Introduction

More information

24 Introduction to Spectrochemical Methods

24 Introduction to Spectrochemical Methods 24 Introduction to Spectrochemical Methods Spectroscopic method: based on measurement of the electromagnetic radiation produced or absorbed by analytes. electromagnetic radiation: include γ-ray, X-ray,

More information

1 Fluorescence Resonance Energy Transfer

1 Fluorescence Resonance Energy Transfer 1 Fluorescence Resonance Energy Transfer FRET is nominally the non-radiative transfer of energy from a donor molecule to the acceptor molecule, therefore the signature of FRET is quenching of the low energy

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Exciton transport in organic nanostructures

Exciton transport in organic nanostructures Exciton transport in organic nanostructures Tarik Abdelmoula, Department of Physics, Imperial College London A thesis presented for the degree of Doctor of Philosophy of Imperial College London September

More information

MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes

MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes MOSTOPHOS: Modelling stability of organic phosphorescent light-emitting diodes Version Date: 2015.11.13. Last updated 2016.08.16. 1 USER CASE 2 3 4 CHAIN OF MODELS PUBLICATION ON THIS SIMULATION ACCESS

More information

Complex Reaction Mechanisms Chapter 36

Complex Reaction Mechanisms Chapter 36 Reaction Mechanisms: Complex Reaction Mechanisms Chapter 36 Reaction mechanism is a collection o elementary (one step) reactions that would add up to result in the overall reaction. Generally elementary

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities for continuum processes - recombination - brehmsstrahlung

More information

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington Glow-Sticks are Forbidden Zachary G Wolfe Department of Physics and Physical Oceanography University of North Carolina Wilmington Abstract: Physics students learn early that certain electronic transitions

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

we will discuss the electronic excitation energy transfer (EET) between two molecules according to the general scheme

we will discuss the electronic excitation energy transfer (EET) between two molecules according to the general scheme Chapter 3 Excitation Energy Transfer 3.1 Introduction we will discuss the electronic excitation energy transfer EET) between two molecules according to the general scheme D + A D + A the excitation energy

More information

Photophysical requirements for absorption/emission

Photophysical requirements for absorption/emission Photophysical requirements for absorption/emission For any photophysical process the following conservation laws must be followed: conservationofenergy (E=hν ; E=0) conservation of angular momentum( l

More information

General Considerations on the Radiation and Photochemistry of Resists

General Considerations on the Radiation and Photochemistry of Resists Chapter 8 General Considerations on the Radiation and otochemistry of Resists Here the boundaries meet and all contradictions exist side by side. Fyodor Dostoevsky, The Brothers Karamazov 8.1 Interaction

More information

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy

Winter College on Optics and Energy February Photophysics for photovoltaics. G. Lanzani CNST of Milano Italy 13-4 Winter College on Optics and Energy 8-19 February 010 Photophysics for photovoltaics G. Lanzani CNST of IIT@POLIMI Milano Italy Winter College on Optics and Energy Guglielmo Lanzani CNST of IIT@POLIMI,

More information

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/ OLEDs Basic principles, technology and applications Sébastien FORGET Laboratoire de Physique des Lasers Université Paris Nord P13 www-lpl.univ-paris13.fr:8088/lumen/ Paris Nord University (Paris 13) This

More information

Helsinki Winterschool in Theoretical Chemistry 2013

Helsinki Winterschool in Theoretical Chemistry 2013 Helsinki Winterschool in Theoretical Chemistry 2013 Prof. Dr. Christel M. Marian Institute of Theoretical and Computational Chemistry Heinrich-Heine-University Düsseldorf Helsinki, December 2013 C. M.

More information

Surface Plasmon Enhanced Light Emitting Devices

Surface Plasmon Enhanced Light Emitting Devices Surface Plasmon Enhanced Light Emitting Devices Alexander Mikhailovsky, Jacek Ostrowski, Hadjar Benmansour, and Guillermo Bazan + Department of Chemistry and Biochemistry, University of California Santa

More information

Organic Semiconductors (Molecular / Polymeric Materials)

Organic Semiconductors (Molecular / Polymeric Materials) Organic Semiconductors (Molecular / Polymeric Materials) Van-der-Waals Bonds no dangling bonds Conjugated Materials (extended (delocalized) π-electrons) Bandgap of 1.5 to 3 ev Conducting Polymers Synthetic

More information

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1

15. Nuclear Decay. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 15. Nuclear Decay 1 15. Nuclear Decay Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 15. Nuclear Decay 1 In this section... Radioactive decays Radioactive dating α decay β decay γ decay Dr. Tina Potter 15. Nuclear

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Basic Photoexcitation and Modulation Spectroscopy

Basic Photoexcitation and Modulation Spectroscopy Basic Photoexcitation and Modulation Spectroscopy Intro Review lock-in detection Photoinduced absorption Electroabsorption (Stark) Spectroscopy Charge Modulation Photoexcite sample Take absorption spectra

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

CHEM Outline (Part 15) - Luminescence 2013

CHEM Outline (Part 15) - Luminescence 2013 CHEM 524 -- Outline (Part 15) - Luminescence 2013 XI. Molecular Luminescence Spectra (Chapter 15) Kinetic process, competing pathways fluorescence, phosphorescence, non-radiative decay Jablonski diagram

More information

Chapter 11. Basics in spin-orbit couplings

Chapter 11. Basics in spin-orbit couplings 1- The Jablonski diagram (or the state diagram of diamagnetic molecules) 2- Various natures of excited states and basics in molecular orbitals 3- Vibronic coupling and the Franck-Condon term 4- Excited

More information

Theoretical Photochemistry WiSe 2017/18

Theoretical Photochemistry WiSe 2017/18 Theoretical Photochemistry WiSe 2017/18 Lecture 7 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information