Finding Magic Numbers for Heavy and Superheavy Nuclei. By Roger A. Rydin Associate Professor Emeritus of Nuclear Engineering

Size: px
Start display at page:

Download "Finding Magic Numbers for Heavy and Superheavy Nuclei. By Roger A. Rydin Associate Professor Emeritus of Nuclear Engineering"

Transcription

1 Finding Magic Numbers for Heavy and Superheavy Nuclei By Roger A. Rydin Associate Professor Emeritus of Nuclear Engineering

2 Foreword I am a Nuclear Engineer, Specializing in Reactor Physics Nuclear Physics = Physics of Nucleus Theory Taught by Robley Evans, Experiments by Norm Rasmussen Fascinated by Magic Numbers, SemiEmpirical Binding Energy Formula Disturbed by Fast Moving Nucleons in Nucleus, Coulomb Barrier Penetration

3 Foreword Met Dr. Charles Lucas at U. Tulsa Meeting PhD Theoretical Physics W&M, Newport News Accelerator, Expert in Pion/Muon Physics, Now Owns Company Models of Nucleons as Charge Carrying Ring Magnets Nucleus Model in Fixed Static Shells Under Force Balance Explained Magic Numbers New Semi-Empirical BE Formula

4 Foreword Joint Letter to NSE, Published 2009 Sent Copy to Professor Hans Weber He Suggested Application to Superheavy Nuclei Summary T/E by Dr. Mohini Gupta Gupta Suggests Annals of Nuclear Energy Paper Published December 2010 Follow On Paper Published August 2011

5 Order of Presentation Robley Evan s 1950s Nuclear Physics for Engineers Magic Numbers and the Semi-Empirical Binding Energy Formula Lucas Electromagnetic Model of the Nucleus Superheavy Nuclei New Magic Proton and Neutron Numbers Consequences for Selected Isotopes

6 The Atomic Nucleus Heavy on Experimental Data Analysis of What the Data Implied Theory of the Time Not Cut in Stone Orderly Treatment: Charge; Size; Mass; Moments; Isotopes; Nuclear Systematics; Forces; Nuclear Models

7 Nuclear Magic Numbers 2, 8, 28, 50, 82, 126 Are Closed Shells of Some Kind -> Extra Stable Isotopes Helium-4 (2p, 2n) = Alpha Decay Oxygen-16 (8p, 8n) -> UO2, etc. Double Hump Fission Yields Light (28, 50) +, and Heavy (50,82) + Delayed Neutrons, Poisons, i.e. Xe-135 Lead-208 (82, 126) Last Stable Isotope

8 Semi-Empirical Binding, B/A 1955 Stable Isotope Data Contribution Terms

9 Mass Parabolas Odd A Decay Even A Decay

10 Questions What is the Nature of the Closed Shells? What Produces Liquid Drop Property? Why Doesn t the Semi-Empirical Binding Energy Formula Match the Low A Peaks? What is the Physical Decay Mechanism?

11 Lucas Electromagnetic Nucleus Protons and Neutrons Occupy Fixed Positions in Symmetric 3D Space Under Static Force Balance They are Distributed in 6 Double Cycles Occupying 2, 8, 18, 18, 32 and 50 Inner Neutron Shells Can Expand to Next Number Like Electron Shells

12 Lucas Electromagnetic Nucleus Density Decreases in Center for Big Nuclei Lead has Outer 50 and 32 Protons = 82, and 50, 32, 18, 18, and 8 = 126 Neutrons

13 Lucas Rule Assignments for Doubly Magic Isotopes AT A Z N N1 P1 N2 He O Ca Ca Ni Sn Sn Pb P2 N3 P N4 P4 N5 P5 N6 P

14 Lucas Electromagnetic Nucleus Magic Numbers are Composites of 6 Shells Proton Shells Fill from Outside The Neutron Shell Between Outer Proton Shells Acts Like a Decoupler by Polarizing Sideways => Liquid Drop Properties Interior Neutrons Polarize with Plus Ends Toward Center and Fill Inwards Decay is a Vibration Process!

15 Complicated Vibrations Force Laws Nonlinear Nucleons Vibrate About Positions Internal Bumped Nucleon Vibrations -> Beta Decay? Non-Spherical Rotational Vibrations Linear Model Analog of Schrödinger Equation!

16 Semi-Empirical Binding Energy B/A - K1 Volume - K2 (#Neutrons + #Protons) in outermost shell /A Surface - K3 Z(Z-1) A-4/3 Coulomb - K4 (#paired Neutrons #paired Protons)2 /A Asymmetry, Magic - K5 (#unpaired Protons + #unpaired Neutrons) /A Pairing

17 Lucas New Semi-Empirical Binding Energy for 3000 Nuclei

18 Electromagnetic Nucleus Computational Confirmation

19 Superheavy Nuclei Produced by Bombarding Heavy Elements, i.e., Uranium, Plutonium, Curium, Californium, and Berkelium by Heavy Ions Like Doubly Magic Ca-48 (20, 28) Work Done at GSI Darmstadt, JINR Dubna, ORNL, RIKEN Japan, LLNL Longest Half Lives are 12 Minutes, and 22 Seconds

20 Superheavy Nuclei Sea Extent

21 Observations Lower End of the Red Peninsula is Near Z = 90 and N = 140; Upper End of the Red Peninsula is Near Z = 100 and N = 158 Low End of the Green Peninsula Area is Near Z = 82; Upper End Around Z = 108 Shoal is Near Z = 108, and it Lies Between N = 158 and 164 Island of Stability is Centered with a Red Area Near Z = 108 and N = 182; Island Lies Between Z = 102 and 118, and Between N = 172 and N= 184.

22 Theoretical Superheavy Nuclei Magic Numbers Spherical and Deformed Nuclei, Multiple Theories, Liquid Drop Plus Shells Magic Z at 108, 110, 114, 120? Magic N at 152, 164, 172, 184? Why Not Others, Close Together?

23 Z Extension of Lucas Shells Z = = 90 Z = = 92 Z = = 100 Z = = 102 Z = = 108 Z = = 110 Z = = 118 Z = = 120

24 N Extension of Lucas Shells N = = 140 N = = 142 N = = 158 N = = 164 N = = 172 N = = 182 N = = 184

25 Consequences New N and Z Numbers Cover Other Theoretical Values Agree with Peninsula, Shoal and Island Boundaries Suggestion of Lower A Single and Double Magic Nuclei in Continent Yet Unexplored Requires a Careful Look at Isotope Data In the Table of Isotopes

26 N Extension of Lucas Shells? N = = 90 N = = 92 N = = 100 N = = 102 N = = 108 N = = 110 N = = 118 N = = 120 N = = 128

27 Further Downward Z Extension of Lucas Shells? Z = = 58 i.e. Cerium, N = 58 First Suggested in 1981 by Linus Pauling Z = = 68 i.e. Erbium, Near N = 70 by Pauling Z = = 76 i.e. Osmium

28 Linus Pauling Data

29 Isotopes Considered Peninsula Thorium Z = 90 Uranium Z = 92 Fermium Z = 100 Nobelium Z = 102 Continent Cerium Z = 58 Dysprosium Z = 66 Osmium Z = 76 Lead Z = 82

30 Thorium, Z = 90 = Holy Grail? 19 Isotopes Doubly Magic Th-230 (90, y Doubly Magic Th-232 (90, 142)@ 1.4E10 y Th-229, One Short of 7300 y N/Z ~ 1.54 for Most Stable Lighter Isotopes, ns to days Heavier Isotopes, days to minutes

31 Uranium, Z = Isotopes Doubly Magic U- 232 (92, 68 y Odd 1.6E5 y Doubly Magic U- 234 (92, 2.4E5 y 2.4E7 y 4.5E9 y and N/Z = 1.52 Lighter Isotopes, µs to days Heavier Isotopes, days to minutes

32 Neptunium and Plutonium Long Lived U, Np and Pu Isotopes All Lie at a Ratio of N/Z Near 1.54 Seaborg Criterion for Even A Spontaneous Fission Parameter Z2/A > ~ 44 Odd-A Nuclei More Stable to Spontaneous Fission than Even-A Nuclei Fission Preferred Mode of Decay for the Proton Rich Heavy and Superheavy Isotopes

33 Thorium, Uranium, Neptunium and Plutonium Conclusions N/Z ~ 1.54 Is Important Magic and Near Magic Gives Longer Half Lives Magic Gives More Isotopes Worse to Have Too Many Protons vs. Too Many Neutrons

34 Fermium, Z = Isotopes Odd 100 days Longest Lived Doubly Magic Fm-258 (100, 158), Short Spontaneous Fission Lighter Isotopes, ms to days Heavier Isotopes, days to ms

35 Nobelium, Z = Isotopes Odd 58 minutes Longest Lived Doubly Magic Fm-260 (102, 158), Short Spontaneous Fission Lighter Isotopes, ms to minutes Heavier Isotopes, ms

36 Fermium and Nobelium Conclusions Magic Effects Not As Clear Longest Lived Odd, One Short of Doubly Magic Spontaneous Fission More Important, at Doubly Magic Magic Gives More Isotopes Worse to Have Too Many Protons vs. Too Many Neutrons

37 Cerium, Z = Isotopes Ce-140, Doubly Magic at N = 82, Almost 90% of Natural Cerium Ce148, Doubly Magic at N = 56 seconds, and Ce-150 Doubly Magic at N = 4 seconds Are Among Heaviest Cerium Isotopes Known

38 Dysprosium, Z = Isotopes Dy-160 to Dy-164, Comprise Most of the Naturally Stable Isotopes Lighter Dy-158, with a Magic N = 92, and Dy-156, with a Magic N = 90, Are Also Stable Light Dy-148, with a Magic N = 3.1 minutes Heavy Dy-166, with a Magic N = 81.6 hours, and Dy-168, with a Magic N = 8.7 minutes

39 Osmium, Z = Isotopes Naturally Occurring Osmium Isotopes Lie Between Os-192 and Os-187 Among Lightest Osmium Isotopes are Os166, with a Doubly Magic N = 7.1 seconds, and Os-168, with a Doubly Magic N= 2.2 seconds Among Heaviest, Os-194, with a Doubly Magic N = 6 years, and Os-196, with a Doubly Magic N = 35 minutes

40 Lead Z = Isotopes Naturally Occurring and Long-lived Lead Isotopes Lie Between Pb-204 and Pb-208 Among Lightest Doubly Magic Lead Isotopes are Pb-202, with a Magic N= 5.2E4 years, and Pb-200, with a Magic N = 21.5 hours Among Heaviest Doubly Magic, Pb-210, with a Magic N = 22.3 years

41 Better Fission Yield Distribution With Magic 58 Double Hump Fission Yields, U n Light (28, 50), and Heavy (50, 82) = 26 to Divide? Or Better Yet Light (28, 58), and Heavy (50, 82) = 18 to Divide? Matches Small Lower Bound of 86 and Large Lower Bound of 132, and 18 Width Containing 95% of Fission Products

42 Fission Yield Distributions

43 Conclusions Magic Affects Number of Stable Isotopes Magic Accounts For Longer Half Lives and Number of Lighter and Heavier Isotopes Large Number of Isotopes Related to New Magic Numbers N/Z ~ 1.54 Are Most Stable Superheavy Half Lives Won t Be Long

44 Conclusions Table of Isotopes Is Now 4 ½ Inches Thick! Data on Isotopes: Level Schemes, Half Lives, Reactions, Abundance, etc. Probably Not Examined for Systematic Behavior Fertile Area for Research!

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

Finding New Magic Numbers for Light, Heavy and Superheavy Nuclei

Finding New Magic Numbers for Light, Heavy and Superheavy Nuclei Finding New Magic Numbers for Light, Heavy and Superheavy Nuclei By Roger A. Rydin Emeritus, University of Virginia Abstract Historically, nuclear modeling came down to two complimentary ideas, the Nuclear

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Ground state half life. Ground state half life 34 Cl 32.2 minutes 1.53 seconds. 169 Re 16 seconds 8.1 seconds. 177 Lu days 6.

Ground state half life. Ground state half life 34 Cl 32.2 minutes 1.53 seconds. 169 Re 16 seconds 8.1 seconds. 177 Lu days 6. RDCH 70 Name: Quiz ssigned 5 Sep, Due 7 Sep Chart of the nuclides (up to and including page - of the lecture notes) Use the chart of the nuclides, the readings on the chart of the nuclides, table of the

More information

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers

Chemistry 132 NT. Nuclear Chemistry. Review. You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chemistry 3 NT You can t escape death and taxes. But, at least, death doesn t get worse. Will Rogers Chem 3 NT Nuclear Chemistry Module 3 Energy and Nuclear Reactions The core of a nuclear reactor used

More information

12) The Chemistry of Transuranium elements (1)

12) The Chemistry of Transuranium elements (1) 12 The Chemistry of Transuranium elements (1 Neptunium - first transuranium element which was discovered in 1940 (McMillan, Abelson - bombardment of uranium with thermal neutrons: - long-lived isotope:

More information

Inner transition elements the lanthanides and actinides

Inner transition elements the lanthanides and actinides Inner transition elements the lanthanides and actinides In the lanthanides, the 4f electronic orbitals are being filled (elements 57 to 71, 4f 1 to 4f 14 ) while the two outer shell electronic configurations

More information

The liquid drop model

The liquid drop model The liquid drop model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Tutorial 0) January 10, 2011 1 / 33 Outline 1 Total binding energy NUCS 342

More information

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 34 Nuclear fission of uranium So, we talked about fission reactions

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

The Search for Heavy Elements

The Search for Heavy Elements Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 8 The Search for Heavy Elements When a nucleus captures a neutron, it often

More information

Inner Transition Metals

Inner Transition Metals 1 Inner Transition Metals Inner Transition Metals Inner Transition Metals The inner transition metals are found in the f-block, usually put at the bottom of the Periodic Table. These elements were sometimes

More information

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

Nuclear Shell Model. Experimental evidences for the existence of magic numbers; Nuclear Shell Model It has been found that the nuclei with proton number or neutron number equal to certain numbers 2,8,20,28,50,82 and 126 behave in a different manner when compared to other nuclei having

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

22.05 Reactor Physics Part Five. The Fission Process. 1. Saturation:

22.05 Reactor Physics Part Five. The Fission Process. 1. Saturation: 22.05 Reactor Physics Part Five The Fission Process 1. Saturation: We noted earlier that the strong (nuclear) force (one of four fundamental forces the others being electromagnetic, weak, and gravity)

More information

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4 Lecture 3 Krane Enge Cohen Willaims NUCLER PROPERTIES 1 Binding energy and stability Semi-empirical mass formula 3.3 4.6 7. Ch 4 Nuclear Spin 3.4 1.5 1.6 8.6 3 Magnetic dipole moment 3.5 1.7 1.6 8.7 4

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel Chemistry 1000 Lecture 3: Nuclear stability Marc R. Roussel Radioactive decay series Source: Wikimedia commons, http://commons.wikimedia.org/wiki/file: Decay_Chain_Thorium.svg Forces between nucleons Electrostatic

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

Properties of Nuclei

Properties of Nuclei Properties of Nuclei Z protons and N neutrons held together with a short-ranged force gives binding energy m 938. 3 MeV / c m 939. 6 MeV / c p 2 2 n M Zm Nm E Am nucleus p n bind N with A Z N m u 9315.

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US

A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US Atomic Energy Commission, 1977 Nuclear Chemistry Production

More information

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell PHY492: Nuclear & Particle Physics Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell Liquid drop model Five terms (+ means weaker binding) in a prediction of the B.E. r ~A 1/3, Binding is short

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Introductory Nuclear Physics Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer Production of superheavy elements Seminar: Key experiments in particle physics 26.06.09 Supervisor: Kai Schweda Thorsten Heußer Outline 1. Introduction 2. Nuclear shell model 3. (SHE's) 4. Experiments

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following: Nuclear Chemistry Nuclear reactions are transmutation of the one element into another. We can describe nuclear reactions in a similar manner as regular chemical reactions using ideas of stoichiometry,

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

4 Nuclear Stability And Instability

4 Nuclear Stability And Instability 4 Nuclear Stability nd Instability Figure 4.1 Plot of N vs. Each black dot in Figure 4.1 represents a stable nuclide. Where more than one dot appears for a particular atomic number, those dots represent

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Radioactivity Test Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Radioactive s have unstable a. electrons. c. protons. b. nuclei.

More information

The nucleus and its structure

The nucleus and its structure The nucleus and its structure Presently no complete theory to fully describe structure and behavior of nuclei based solely on knowledge of force between nucleons (although tremendous progress for A < 12

More information

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas 22.101 Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Correction to Relativistic Mean Field binding energy and N p N n scheme

Correction to Relativistic Mean Field binding energy and N p N n scheme arxiv:0808.1945v1 [nucl-th] 14 Aug 2008 Correction to Relativistic Mean Field binding energy and N p N n scheme Madhubrata Bhattacharya and G. Gangopadhyay Department of Physics, University of Calcutta

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

Chapter 2: Atoms. 2.1 (a) NaClO 3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222.

Chapter 2: Atoms. 2.1 (a) NaClO 3 (b) AlF (a) The mass number is = 31. (b) The mass number is = 222. 2.1 (a) NaClO 3 (b) AlF 3 2.2 (a) The mass number is 15 + 16 = 31. (b) The mass number is 86 + 136 = 222. 2.3 (a) The element has 15 protons, making it phosphorus (P); its symbol is 31 P 15. (b) The element

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation

Nuclear Chemistry. The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Nuclear Chemistry The nuclei of some unstable isotopes change by releasing energy and particles, collectively known as radiation Spontaneous nuclear reactions - five kinds: ) Emission of α-particles: 4

More information

Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics Introduction to Nuclear Reactor Physics J. Frýbort, L. Heraltová Department of Nuclear Reactors 19 th October 2017 J. Frýbort, L. Heraltová (CTU in Prague) Introduction to Nuclear Reactor Physics 19 th

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β Nuclear Chemistry Subatomic Particles proton neutron 1n 0 1 H or 1 p 1 1 positron electron 0 e or 0 β +1 +1 0 e or 0 β 1 1 particle 4 α or 4 He 2 2 Nuclear Reactions A balanced nuclear equation has the

More information

Chemistry 132 NT. Nuclear Chemistry. Not everything that can be counted counts, and not everything that counts can be counted.

Chemistry 132 NT. Nuclear Chemistry. Not everything that can be counted counts, and not everything that counts can be counted. Chemistry 132 NT Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein 1 Chem 132 NT Nuclear Chemistry Module 1 Radioactivity and Nuclear Bombardment

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

THE NUCLEUS: A CHEMIST S VIEW Chapter 20 THE NUCLEUS: A CHEMIST S VIEW Chapter 20 "For a long time I have considered even the craziest ideas about [the] atom[ic] nucleus... and suddenly discovered the truth." [shell model of the nucleus]. Maria

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves

Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involves General Chemistry II Jasperse Nuclear Chemistry. Extra Practice Problems Radioactivity and Balancing Nuclear Reactions: Balancing Nuclear Reactions and Understanding which Particles are Involved he Stability

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus

PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus Prof. Kyle Leach September 5, 2017 Slide 1 KUgridlrcorner Last Week... Nuclear binding results in a mass

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

SRC Model for Nuclear Structure

SRC Model for Nuclear Structure SRC Model for Nuclear Structure Ranjeet Dalal Department of physics, Guru Jambheshwar University of Science and Technology, Hisar- 125001, India E-mail: gjuranjeetdalal@gmail.com Abstract: A new approach

More information

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z Our first model of nuclei. The motivation is to describe the masses and binding energy of nuclei. It is called the Liquid Drop Model because nuclei are assumed to behave in a similar way to a liquid (at

More information

Unit 2 Exam - Atomic Structure and Nuclear

Unit 2 Exam - Atomic Structure and Nuclear 1. The atomic number of an atom is always equal to the total number of. neutrons in the nucleus. protons in the nucleus 5. The mass number of an atom is equal to the number of. neutrons, only. protons,

More information

Production of Super Heavy Nuclei at FLNR. Present status and future

Production of Super Heavy Nuclei at FLNR. Present status and future ECOS 2012,Loveno di Menaggio, 18-21 June 2012 Production of Super Heavy Nuclei at FLNR. Present status and future M. ITKIS Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research BASIC

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

Binding Energy. Bởi: OpenStaxCollege

Binding Energy. Bởi: OpenStaxCollege Binding Energy Bởi: OpenStaxCollege The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 43 Nuclear Physics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 43 To understand some key properties

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Section 4.1 Early Theories of Matter In your textbook, read about the philosophers, John Dalton, and defining the atom. For each statement below, write true or false. 1. Ancient

More information

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt. Nuclear Reactions Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.) scattered particles detector solid angle projectile target transmitted

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay

Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay Chapter 19 - Nuclear Chemistry Nuclear Stability and Modes of Decay History and Discovery of Radioactivity The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine

More information

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4 He Hydrogen burning 3 He Incomplete PP chain (H burning) 2 H, Li, Be, B Non-thermal processes (spallation)

More information

Specific parameters for some isotopes of copernicium and flerovium

Specific parameters for some isotopes of copernicium and flerovium Science Front Publishers Journal for Foundations and Applications of Physics, 3 (2), (2016) (sciencefront.org) ISSN 2394-3688 Specific parameters for some isotopes of copernicium and flerovium Anjana Acharya

More information

CHAPTER I. Introduction. There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on

CHAPTER I. Introduction. There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on CHAPTER I Introduction There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on the earth. Eighty elements have stable isotopes, namely all elements with atomic numbers 1 to 82,

More information

PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula

PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula Prof. Kyle Leach September 7, 2017 Slide 1 Last Class... Assignment: Due September 22, 5pm to the TA mailbox

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Radioactive Decay What is Radioactivity? http://explorecuriocity.org/explore/articleid/3033 http://explorecuriocity.org/explore/articleid/3035 http://explorecuriocity.org/explore/articleid/2160 Quick Review

More information

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics Lecture 33 Chapter 22, Sections -2 Nuclear Stability and Decay Energy Barriers Types of Decay Nuclear Decay Kinetics Nuclear Chemistry Nuclei Review Nucleons: protons and neutrons Atomic number number

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information