PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus

Size: px
Start display at page:

Download "PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus"

Transcription

1 PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 5: The Liquid Drop Model of the Nucleus Prof. Kyle Leach September 5, 2017 Slide 1 KUgridlrcorner

2 Last Week... Nuclear binding results in a mass that is less than the sum of their constituent parts We can release that energy by performing nuclear reactions. The energy released is called the Q value. The atomic mass can be measured through several techniques, to a very high precision. Slide 2 Prof. Kyle Leach PHGN 422: Nuclear Physics

3 What Have We Learned About the Nucleus So Far? 1 The nuclear density is roughly constant for all nuclei Slide 3 Prof. Kyle Leach PHGN 422: Nuclear Physics

4 What Have We Learned About the Nucleus So Far? 1 The nuclear density is roughly constant for all nuclei 2 Nuclei are positively charged, and the nuclear charge density is also roughly constant Slide 3 Prof. Kyle Leach PHGN 422: Nuclear Physics

5 What Have We Learned About the Nucleus So Far? 1 The nuclear density is roughly constant for all nuclei 2 Nuclei are positively charged, and the nuclear charge density is also roughly constant 3 The strong force is attractive only at short range... Slide 3 Prof. Kyle Leach PHGN 422: Nuclear Physics

6 What Have We Learned About the Nucleus So Far? 1 The nuclear density is roughly constant for all nuclei 2 Nuclei are positively charged, and the nuclear charge density is also roughly constant 3 The strong force is attractive only at short range... 4 AND is repulsive at very short range (ie. nuclear matter is highly incompressible) Slide 3 Prof. Kyle Leach PHGN 422: Nuclear Physics

7 What Have We Learned About the Nucleus So Far? 1 The nuclear density is roughly constant for all nuclei 2 Nuclei are positively charged, and the nuclear charge density is also roughly constant 3 The strong force is attractive only at short range... 4 AND is repulsive at very short range (ie. nuclear matter is highly incompressible) These observations are remarkable, and have been performed with very simple concepts so far. We are now at the level of understanding where we can begin to theoretically model the nucleus in an attempt to predict our observations. Slide 3 Prof. Kyle Leach PHGN 422: Nuclear Physics

8 How Do We Begin to Understand Nuclear Binding? In order to understand nuclear binding, we need to derive a mathematical framework to explain our empirical observations. This method is typically referred to as mathematical modelling To start with, let us consider the nucleus as a charged drop of incompressible liquid. How do we do with that assumption? Slide 4 Prof. Kyle Leach PHGN 422: Nuclear Physics

9 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The scattering experiments we saw previously suggested that nuclei have approximately constant density. We were then able to calculate the nuclear radius assuming a uniform sphere. A drop of uniform liquid has the same property. Slide 5 Prof. Kyle Leach PHGN 422: Nuclear Physics

10 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The scattering experiments we saw previously suggested that nuclei have approximately constant density. We were then able to calculate the nuclear radius assuming a uniform sphere. A drop of uniform liquid has the same property. Source: Krane - Fig. 3.4 Slide 5 Prof. Kyle Leach PHGN 422: Nuclear Physics

11 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The nuclear force is short-range, but does not allow for compression of nuclear matter. Molecules in a liquid drop have the same basic properties. Slide 6 Prof. Kyle Leach PHGN 422: Nuclear Physics

12 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The nuclear force is short-range, but does not allow for compression of nuclear matter. Molecules in a liquid drop have the same basic properties. Slide 6 Prof. Kyle Leach PHGN 422: Nuclear Physics Source: Department of Chemistry, UC Davis

13 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The nucleus is a positively charged object. For our purposes here, we can assume our liquid drop also has a uniform positive charge. Slide 7 Prof. Kyle Leach PHGN 422: Nuclear Physics

14 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus The nucleus is a positively charged object. For our purposes here, we can assume our liquid drop also has a uniform positive charge. Proton (π) + + Neutron (ν) + + Slide 7 Prof. Kyle Leach PHGN 422: Nuclear Physics

15 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus We have been assuming spherical nuclei so far, but when additional energy is introduced into the system, nuclei can change their shape. A drop of liquid has the same property, and when other forces are present, it can deviate from a spherical shape. Slide 8 Prof. Kyle Leach PHGN 422: Nuclear Physics

16 The Liquid Drop Model A Simple Approach to Modelling the Atomic Nucleus We have been assuming spherical nuclei so far, but when additional energy is introduced into the system, nuclei can change their shape. A drop of liquid has the same property, and when other forces are present, it can deviate from a spherical shape. Source: L.P. Gaffney et al., Nature 497, (2013) Slide 8 Prof. Kyle Leach PHGN 422: Nuclear Physics

17 The Liquid Drop Model: The Volume Term Now that a suitable (conceptual) model has been proposed for how to treat the nucleus theoretically, we need to define the parameters for how we develop the mathematical formalism. We can start with our BE/A curve for nuclear matter: Slide 9 Prof. Kyle Leach PHGN 422: Nuclear Physics

18 The Liquid Drop Model: The Volume Term We ll discuss our starting point on the chalkboard... Slide 10 Prof. Kyle Leach PHGN 422: Nuclear Physics

19 The Liquid Drop Model: The Volume Term We ll discuss our starting point on the chalkboard... B volume = a V A Slide 10 Prof. Kyle Leach PHGN 422: Nuclear Physics

20 The Liquid Drop Model: The Volume Term We ll discuss our starting point on the chalkboard... B volume = a V A The volume term constant Slide 10 Prof. Kyle Leach PHGN 422: Nuclear Physics

21 The Liquid Drop Model: The Volume Term We ll discuss our starting point on the chalkboard... B volume = a V A The volume term constant Proportional to the number of nucleons Slide 10 Prof. Kyle Leach PHGN 422: Nuclear Physics

22 The Liquid Drop Model: The Volume Term We ll discuss our starting point on the chalkboard... B volume = a V A The volume term constant Proportional to the number of nucleons Empirically, a fit to the experimental data binding energies gives: a V = MeV!! But we know that B/A is roughly constant... B/A 8 MeV...so what is going on? Is our model that far off?...well sort of. Slide 10 Prof. Kyle Leach PHGN 422: Nuclear Physics

23 Corrections to our Leading Order Volume Approximation We already know that the liquid drop has further terms that define its binding energy other than accounting for just its volume of matter. Since the emperical value for a V is much greater than 8 MeV, we can surmise that each of these corrections lowers the total calculated binding energy. That means that our initial volume assumption is an overestimation of the total binding. Slide 11 Prof. Kyle Leach PHGN 422: Nuclear Physics

24 Corrections to our Leading Order Volume Approximation We already know that the liquid drop has further terms that define its binding energy other than accounting for just its volume of matter. Since the emperical value for a V is much greater than 8 MeV, we can surmise that each of these corrections lowers the total calculated binding energy. That means that our initial volume assumption is an overestimation of the total binding. Slide 11 Prof. Kyle Leach PHGN 422: Nuclear Physics

25 The Liquid Drop Model: The Surface Term First, we need to account for the fact that the nucleons on the surface have less neighbours, and do not exhibit the same binding as those in the interior (volume)... Slide 12 Prof. Kyle Leach PHGN 422: Nuclear Physics

26 The Liquid Drop Model: The Surface Term First, we need to account for the fact that the nucleons on the surface have less neighbours, and do not exhibit the same binding as those in the interior (volume)... B surface = a S A 2/3 Slide 12 Prof. Kyle Leach PHGN 422: Nuclear Physics

27 The Liquid Drop Model: The Surface Term First, we need to account for the fact that the nucleons on the surface have less neighbours, and do not exhibit the same binding as those in the interior (volume)... B surface = a S A 2/3 The surface term constant Slide 12 Prof. Kyle Leach PHGN 422: Nuclear Physics

28 The Liquid Drop Model: The Surface Term First, we need to account for the fact that the nucleons on the surface have less neighbours, and do not exhibit the same binding as those in the interior (volume)... B surface = a S A 2/3 The surface term constant Proportional to A 2/3 Slide 12 Prof. Kyle Leach PHGN 422: Nuclear Physics

29 The Liquid Drop Model: The Surface Term First, we need to account for the fact that the nucleons on the surface have less neighbours, and do not exhibit the same binding as those in the interior (volume)... B surface = a S A 2/3 The surface term constant Proportional to A 2/3 Empirically, a S = MeV Slide 12 Prof. Kyle Leach PHGN 422: Nuclear Physics

30 The Liquid Drop Model: The Coulomb Term Protons in the nucleus repel each other due to their mutual positive charge, this reduces the binding energy further... Slide 13 Prof. Kyle Leach PHGN 422: Nuclear Physics

31 The Liquid Drop Model: The Coulomb Term Protons in the nucleus repel each other due to their mutual positive charge, this reduces the binding energy further... B Coulomb = a C Z(Z 1) A 1/3 Slide 13 Prof. Kyle Leach PHGN 422: Nuclear Physics

32 The Liquid Drop Model: The Coulomb Term Protons in the nucleus repel each other due to their mutual positive charge, this reduces the binding energy further... B Coulomb = a C Z(Z 1) A 1/3 The Coulomb term constant Slide 13 Prof. Kyle Leach PHGN 422: Nuclear Physics

33 The Liquid Drop Model: The Coulomb Term Protons in the nucleus repel each other due to their mutual positive charge, this reduces the binding energy further... B Coulomb = a C Z(Z 1) A 1/3 The Coulomb term constant Inversely proportional to A 1/3 Slide 13 Prof. Kyle Leach PHGN 422: Nuclear Physics

34 The Liquid Drop Model: The Coulomb Term Protons in the nucleus repel each other due to their mutual positive charge, this reduces the binding energy further... B Coulomb = a C Z(Z 1) A 1/3 The Coulomb term constant Inversely proportional to A 1/3 Empirically, a C = 0.71 MeV Slide 13 Prof. Kyle Leach PHGN 422: Nuclear Physics

35 Deviations from the Liquid Drop Analogy After accounting for the volume, surface, and Coulomb terms, how well have we done at our reproduction? Slide 14 Prof. Kyle Leach PHGN 422: Nuclear Physics

36 Deviations from the Liquid Drop Analogy After accounting for the volume, surface, and Coulomb terms, how well have we done at our reproduction? Slide 14 Prof. Kyle Leach PHGN 422: Nuclear Physics Source: Krane, Fig. 3.17

37 Neutron and Proton Numbers on the Nuclear Chart Slide 15 Prof. Kyle Leach PHGN 422: Nuclear Physics

38 The Liquid Drop Model: The Symmetry (or Asymmetry) Term For light nuclei, N Z (for heavy nuclei N is only slightly larger than Z). Where the Coulomb term would always favour Z = 0 for any A, we must account for the fact that nuclei are quantum objects (specifically that nucleons are fermions), and must obey the Pauli exclusion principle... Slide 16 Prof. Kyle Leach PHGN 422: Nuclear Physics

39 The Liquid Drop Model: The Symmetry (or Asymmetry) Term For light nuclei, N Z (for heavy nuclei N is only slightly larger than Z). Where the Coulomb term would always favour Z = 0 for any A, we must account for the fact that nuclei are quantum objects (specifically that nucleons are fermions), and must obey the Pauli exclusion principle... B asymmetry = a A (N Z)2 A Slide 16 Prof. Kyle Leach PHGN 422: Nuclear Physics

40 The Liquid Drop Model: The Symmetry (or Asymmetry) Term For light nuclei, N Z (for heavy nuclei N is only slightly larger than Z). Where the Coulomb term would always favour Z = 0 for any A, we must account for the fact that nuclei are quantum objects (specifically that nucleons are fermions), and must obey the Pauli exclusion principle... B asymmetry = a A (N Z)2 A The asymmetry term constant Slide 16 Prof. Kyle Leach PHGN 422: Nuclear Physics

41 The Liquid Drop Model: The Symmetry (or Asymmetry) Term For light nuclei, N Z (for heavy nuclei N is only slightly larger than Z). Where the Coulomb term would always favour Z = 0 for any A, we must account for the fact that nuclei are quantum objects (specifically that nucleons are fermions), and must obey the Pauli exclusion principle... B asymmetry = a A (N Z) 2 A The asymmetry term constant Inversely proportional to A Slide 16 Prof. Kyle Leach PHGN 422: Nuclear Physics

42 The Liquid Drop Model: The Symmetry (or Asymmetry) Term For light nuclei, N Z (for heavy nuclei N is only slightly larger than Z). Where the Coulomb term would always favour Z = 0 for any A, we must account for the fact that nuclei are quantum objects (specifically that nucleons are fermions), and must obey the Pauli exclusion principle... B asymmetry = a A (N Z) 2 A The asymmetry term constant Inversely proportional to A Empirically, a A = MeV Slide 16 Prof. Kyle Leach PHGN 422: Nuclear Physics

43 Emperical Observations on Nuclear Binding There is still one observation that can tell us something about the binding energy, and how nucleons interact with one another. How many nuclei with an even or odd number of protons and neutrons are stable? Slide 17 Prof. Kyle Leach PHGN 422: Nuclear Physics

44 Emperical Observations on Nuclear Binding There is still one observation that can tell us something about the binding energy, and how nucleons interact with one another. How many nuclei with an even or odd number of protons and neutrons are stable? Z N Number of Stable Nuclei Even Even 177 Even Odd 58 Odd Even 54 Odd Odd 10 Slide 17 Prof. Kyle Leach PHGN 422: Nuclear Physics

45 Emperical Observations on Nuclear Binding There is still one observation that can tell us something about the binding energy, and how nucleons interact with one another. How many nuclei with an even or odd number of protons and neutrons are stable? Z N Number of Stable Nuclei Even Even 177 Even Odd 58 Odd Even 54 Odd Odd 10 Slide 17 Prof. Kyle Leach PHGN 422: Nuclear Physics

46 Emperical Observations on Nuclear Binding There is still one observation that can tell us something about the binding energy, and how nucleons interact with one another. How many nuclei with an even or odd number of protons and neutrons are stable? This suggests that there is a force we need to consider that adds additional binding when we have an even number of nucleons. We call this nuclear pairing Slide 17 Prof. Kyle Leach PHGN 422: Nuclear Physics

47 The Liquid Drop Model: The Pairing Term We just saw that unpaired protons and neutrons are less bound. How do we represent this in our liquid drop model? +δ for even-even nuclei B pair = 0 for even-odd or odd-even δ for odd-odd nuclei Slide 18 Prof. Kyle Leach PHGN 422: Nuclear Physics

48 The Liquid Drop Model: The Pairing Term We just saw that unpaired protons and neutrons are less bound. How do we represent this in our liquid drop model? +δ for even-even nuclei B pair = 0 for even-odd or odd-even δ for odd-odd nuclei δ = a P A 1/2 Slide 18 Prof. Kyle Leach PHGN 422: Nuclear Physics

49 The Liquid Drop Model: The Pairing Term We just saw that unpaired protons and neutrons are less bound. How do we represent this in our liquid drop model? +δ for even-even nuclei B pair = 0 for even-odd or odd-even δ for odd-odd nuclei The pairing term constant δ = a P A 1/2 Slide 18 Prof. Kyle Leach PHGN 422: Nuclear Physics

50 The Liquid Drop Model: The Pairing Term We just saw that unpaired protons and neutrons are less bound. How do we represent this in our liquid drop model? +δ for even-even nuclei B pair = 0 for even-odd or odd-even δ for odd-odd nuclei δ = a P A 1/2 The pairing term constant Inversely proportional to A 1/2 Slide 18 Prof. Kyle Leach PHGN 422: Nuclear Physics

51 The Liquid Drop Model: The Pairing Term We just saw that unpaired protons and neutrons are less bound. How do we represent this in our liquid drop model? +δ for even-even nuclei B pair = 0 for even-odd or odd-even δ for odd-odd nuclei δ = a P A 1/2 The pairing term constant Inversely proportional to A 1/2 Empirically, a P = 12 MeV Slide 18 Prof. Kyle Leach PHGN 422: Nuclear Physics

52 Next Class... Reading Before Next Class Section 3.3 in Krane (if you haven t already) Next Class Topics Introduction of the Semi-Empirical Mass Formula Comparing our Liquid Drop Model to Experimental Observations (ie. how do we do?) The mass parabola, and energy concerns for radioactive decay. Assignment #1! Slide 19 Prof. Kyle Leach PHGN 422: Nuclear Physics

The nucleus and its structure

The nucleus and its structure The nucleus and its structure Presently no complete theory to fully describe structure and behavior of nuclei based solely on knowledge of force between nucleons (although tremendous progress for A < 12

More information

PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies

PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 3: Nuclear Radii, Masses, and Binding Energies Prof. Kyle Leach August 29, 2017 Slide 1 Last Week... The atomic nucleus is a very dense, positively

More information

PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula

PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 6: The Semi-Empirical Mass Formula Prof. Kyle Leach September 7, 2017 Slide 1 Last Class... Assignment: Due September 22, 5pm to the TA mailbox

More information

The Charged Liquid Drop Model Binding Energy and Fission

The Charged Liquid Drop Model Binding Energy and Fission The Charged Liquid Drop Model Binding Energy and Fission 103 This is a simple model for the binding energy of a nucleus This model is also important to understand fission and how energy is obtained from

More information

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z Our first model of nuclei. The motivation is to describe the masses and binding energy of nuclei. It is called the Liquid Drop Model because nuclei are assumed to behave in a similar way to a liquid (at

More information

PHGN 422: Nuclear Physics Lecture 1: General Introduction to Nuclear Physics

PHGN 422: Nuclear Physics Lecture 1: General Introduction to Nuclear Physics PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 1: General Introduction to Nuclear Physics Prof. Kyle Leach August 22, 2017 Slide 1 Course Goals and Objectives Introduction to subatomic physics

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Lecture 2. The Semi Empirical Mass Formula SEMF. 2.0 Overview

Lecture 2. The Semi Empirical Mass Formula SEMF. 2.0 Overview Lecture The Semi Empirical Mass Formula SEMF Nov 6, Lecture Nuclear Physics Lectures, Dr. Armin Reichold 1. Overview.1 The liquid drop model. The Coulomb Term.3 Mirror nuclei, charge asymmetry and independence.4

More information

What did you learn in the last lecture?

What did you learn in the last lecture? What did you learn in the last lecture? Charge density distribution of a nucleus from electron scattering SLAC: 21 GeV e s ; λ ~ 0.1 fm (to first order assume that this is also the matter distribution

More information

3. Introductory Nuclear Physics 1; The Liquid Drop Model

3. Introductory Nuclear Physics 1; The Liquid Drop Model 3. Introductory Nuclear Physics 1; The Liquid Drop Model Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number is Z and the nucleus is written

More information

Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus is equal to the number of neutrons in the other and vice versa.

Mirror Nuclei: Two nuclei with odd A in which the number of protons in one nucleus is equal to the number of neutrons in the other and vice versa. Chapter 4 The Liquid Drop Model 4.1 Some Nuclear Nomenclature Nucleon: A proton or neutron. Atomic Number, Z: The number of protons in a nucleus. Atomic Mass number, A: The number of nucleons in a nucleus.

More information

Properties of Nuclei deduced from the Nuclear Mass

Properties of Nuclei deduced from the Nuclear Mass Properties of Nuclei deduced from the Nuclear Mass -the 2nd lecture- @Milano March 16-20, 2015 Yoshitaka Fujita Osaka University Image of Nuclei Our simple image for Nuclei!? Nuclear Physics by Bohr and

More information

The liquid drop model

The liquid drop model The liquid drop model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Tutorial 0) January 10, 2011 1 / 33 Outline 1 Total binding energy NUCS 342

More information

UNIT 15: NUCLEUS SF027 1

UNIT 15: NUCLEUS SF027 1 is defined as the central core of an atom that is positively charged and contains protons and neutrons. UNIT 5: NUCLUS SF07 Neutron lectron 5. Nuclear Structure nucleus of an atom is made up of protons

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

PHGN 422: Nuclear Physics Lecture 10: The Nuclear Shell Model II - Application

PHGN 422: Nuclear Physics Lecture 10: The Nuclear Shell Model II - Application PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 10: The Nuclear Shell Model II - Application Prof. Kyle Leach September 21, 2017 Slide 1 Last Class... Introduction of the nuclear shell model

More information

PHGN 422: Nuclear Physics Lecture 15: Introduction to β Decay

PHGN 422: Nuclear Physics Lecture 15: Introduction to β Decay PHGN 422: NUCLEAR PHYSICS PHGN 422: Nuclear Physics Lecture 15: Introduction to β Decay Prof. Kyle Leach October 9, 2018 Slide 1 Last Week... We learned α decay is a result of having a Coulomb term in

More information

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel Chemistry 1000 Lecture 3: Nuclear stability Marc R. Roussel Radioactive decay series Source: Wikimedia commons, http://commons.wikimedia.org/wiki/file: Decay_Chain_Thorium.svg Forces between nucleons Electrostatic

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Introductory Nuclear Physics Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4 Each nucleus is a bound collection of N neutrons and Z protons. The mass number is A = N + Z, the atomic number

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and strophysics PHY-302 Dr. E. Rizvi Lecture 7 - The SemiEmpirical Mass Formula Material For This Lecture Today we will cover Liquid Drop Model Motivation Model terms and Parameters pplications:

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability

Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability 22.101 Applied Nuclear Physics (Fall 2004) Lecture 11 (10/20/04) Nuclear Binding Energy and Stability References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap.2. The

More information

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas

Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas 22.101 Applied Nuclear Physics (Fall 2006) Lecture 12 (10/25/06) Empirical Binding Energy Formula and Mass Parabolas References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Physics 1C. Lecture 29A. Nuclear powered vacuum cleaners will probably be a reality within 10 years.  --Alex Lewyt, 1955 Physics 1C Lecture 29A "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955 The Nucleus All nuclei are composed of protons and neutrons (they can also be called

More information

Nuclear Binding & Stability. Stanley Yen TRIUMF

Nuclear Binding & Stability. Stanley Yen TRIUMF Nuclear Binding & Stability Stanley Yen TRIUMF UNITS: ENERGY Energy measured in electron-volts (ev) 1 volt battery boosts energy of electrons by 1 ev 1 volt battery 1 MeV = 106 ev 1 e-volt = 1.6x10-19

More information

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4 Lecture 3 Krane Enge Cohen Willaims NUCLER PROPERTIES 1 Binding energy and stability Semi-empirical mass formula 3.3 4.6 7. Ch 4 Nuclear Spin 3.4 1.5 1.6 8.6 3 Magnetic dipole moment 3.5 1.7 1.6 8.7 4

More information

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8 Nuclei introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8.1 - The nucleus The atomic nucleus consists of protons and neutrons. Protons and neutrons are called nucleons. A nucleus is characterized

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Nuclear models: The liquid drop model Fermi-Gas Model

Nuclear models: The liquid drop model Fermi-Gas Model Lecture Nuclear models: The liquid dro model ermi-gas Model WS1/1: Introduction to Nuclear and Particle Physics,, Part I 1 Nuclear models Nuclear models Models with strong interaction between the nucleons

More information

22.05 Reactor Physics Part Five. The Fission Process. 1. Saturation:

22.05 Reactor Physics Part Five. The Fission Process. 1. Saturation: 22.05 Reactor Physics Part Five The Fission Process 1. Saturation: We noted earlier that the strong (nuclear) force (one of four fundamental forces the others being electromagnetic, weak, and gravity)

More information

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so.

Question 1 (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. Question (a) is the volume term. It reflects the nearest neighbor interactions. The binding energy is constant within it s value, so. + is the surface term. The volume term has to subtract this term since

More information

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 5 Semi empirical Mass Formula So, nuclear radius size we talked and

More information

INTRODUCTION. The present work is mainly concerned with the comprehensive analysis of nuclear binding energies and the

INTRODUCTION. The present work is mainly concerned with the comprehensive analysis of nuclear binding energies and the 1 $ $ INTRODUCTION One of the main objectives of the study of nuclear physics is the understanding of the "Structure of Nuclei". This includes all aspects of the motion of the nucleons, their paths in

More information

The Proper)es of Nuclei. Nucleons

The Proper)es of Nuclei. Nucleons The Proper)es of Nuclei Z N Nucleons The nucleus is made of neutrons and protons. The nucleons have spin ½ and (individually) obey the Pauli exclusion principle. Protons p 938.3 MeV 2.79µ N Neutrons n

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PAN Summer Science Program University of Notre Dame June, 2014 Tony Hyder Professor of Physics Topics we will discuss Ground-state properties of the nucleus size, shape,

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 34 Nuclear fission of uranium So, we talked about fission reactions

More information

Nuclear Physics: Models of the Nucleus and Radioactivity ( ) SteveSekula, 8 April 2010 (created 7 April 2010)

Nuclear Physics: Models of the Nucleus and Radioactivity ( ) SteveSekula, 8 April 2010 (created 7 April 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Nuclear Physics: Models of the Nucleus and Radioactivity (11.3-11.5) SteveSekula, 8 April 2010 (created 7 April 2010) Review

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Properties of Nuclei

Properties of Nuclei Properties of Nuclei Z protons and N neutrons held together with a short-ranged force gives binding energy m 938. 3 MeV / c m 939. 6 MeV / c p 2 2 n M Zm Nm E Am nucleus p n bind N with A Z N m u 9315.

More information

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1 The Atomic Nucleus Bloomfield Sections 14.1, 14., and 14. (download) 4/1/04 ISP 09-1A 1 What is matter made of? Physics is a reductionist science. Beneath the surface, nature is simple! All matter is composed

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering 22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering References: M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading, 1962). E. Segre, Nuclei and Particles

More information

Nuclei with combinations of these three numbers are called nuclides and are written A X or A

Nuclei with combinations of these three numbers are called nuclides and are written A X or A 2. NUCLEAR PHENOMENOLOGY We turn now to start examining what we learn from experiments, beginning with some basic facts about nuclei. But before that we have to introduce some notation. 2.1 Notation Nuclei

More information

Binding Energy. Bởi: OpenStaxCollege

Binding Energy. Bởi: OpenStaxCollege Binding Energy Bởi: OpenStaxCollege The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Recall: Nuclear Physics A Z 6 3 Li Nucleus = Protons+ Neutrons nucleons Z = proton number (atomic number) Gives chemical

More information

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4 Lecture 11 Krane Enge Cohen Williams Isospin 11.3 6.7 6.3 8.10 Beta decay` Ch 9 Ch 11 Ch 11 5.3/4 Problems Lecture 11 1 Discuss the experimental evidence for the existence of the neutrino. 2 The nuclide

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β Nuclear Chemistry Subatomic Particles proton neutron 1n 0 1 H or 1 p 1 1 positron electron 0 e or 0 β +1 +1 0 e or 0 β 1 1 particle 4 α or 4 He 2 2 Nuclear Reactions A balanced nuclear equation has the

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Institute for ET/JRF, GTE, IIT-JM, M.Sc. Entrance, JEST, TIFR and GRE in Physics. asic Properties of uclei. asic uclear Properties n ordinary hydrogen atom has as its nucleus a single proton, whose charge

More information

Nuclear and Radiation Physics

Nuclear and Radiation Physics 501503742 Nuclear and Radiation Physics Why nuclear physics? Why radiation physics? Why in Jordan? Interdisciplinary. Applied? 1 Subjects to be covered Nuclear properties. Nuclear forces. Nuclear matter.

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 Physics 102: Lecture 26 X-rays Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 But first a quick review of the periodic table http://www.youtube.com/watch?v=smwlzwgmmwc

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 2 Fall 2018 Semester Prof. Matthew Jones Cross Sections Reaction rate: R = L σ The cross section is proportional to the probability of

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Atoms, nuclei, particles

Atoms, nuclei, particles Atoms, nuclei, particles Nikolaos Kidonakis Physics for Georgia Academic Decathlon September 2016 Age-old questions What are the fundamental particles of matter? What are the fundamental forces of nature?

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 11 1.) Determination of parameters of the SEMF 2.) α decay 3.) Nuclear energy levels

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Using liquid drop nuclear equation, to obtain quark total binding energy of nucleons in the nuclide. (Part I)

Using liquid drop nuclear equation, to obtain quark total binding energy of nucleons in the nuclide. (Part I) Using liquid drop nuclear equation, to obtain quark total binding energy of nucleons in the nuclide (Part I) The General Science Journal (ISSN 1916-5382) No. 001-2010E Using liquid drop nuclear equation,

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Preview of Period 5: Forces and Newton s Laws

Preview of Period 5: Forces and Newton s Laws Preview of Period 5: Forces and Newton s Laws 5.1 The Fundamental Forces of Nature What are the four fundamental forces of nature? How do we see their effects? 5.2 Forces and Newton s Laws What causes

More information

Estimation of Nuclear Separation Energy and Its Relation with Q Value

Estimation of Nuclear Separation Energy and Its Relation with Q Value Estimation of Nuclear and Its Relation with Q Value Abhinav Mishra 1*, Tanuj Gupta 1, Bidhubhusan Sahu 2 1 School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha, India. 2 School of Applied

More information

Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2

Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2 Surface energy coefficient determination in global mass formula from fission barrier energy Serkan Akkoyun 1,* and Tuncay Bayram 2 1 Cumhuriyet University, Faculty of Science, Department of Physics, Sivas,

More information

The Shell Model: An Unified Description of the Structure of th

The Shell Model: An Unified Description of the Structure of th The Shell Model: An Unified Description of the Structure of the Nucleus (I) ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) TSI2015 Triumf, July 2015

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

PHY492: Nuclear & Particle Physics. Lecture 5 Angular momentum Nucleon magnetic moments Nuclear models

PHY492: Nuclear & Particle Physics. Lecture 5 Angular momentum Nucleon magnetic moments Nuclear models PHY492: Nuclear & Particle Physics Lecture 5 Angular momentum Nucleon magnetic moments Nuclear models eigenfunctions & eigenvalues: Classical: L = r p; Spherical Harmonics: Orbital angular momentum Orbital

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 Physics 102: Lecture 26 X-rays Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1 X-Rays Photons with energy in approx range 100eV to 100,000eV. This large energy means they

More information

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions

Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Question Answer Marks Guidance 1 (a) The neutrons interact with other uranium (nuclei) / the neutrons cause further (fission) reactions Not: neutrons interact with uranium atoms / molecules / particles

More information

Lecture 32 April

Lecture 32 April Lecture 32 April 08. 2016. Hydrogen Discharge Tube and Emission of Discrete Wavelengths Description of the discrete Hydrogen Emission Spectrum by the Balmer (1884) Rydberg Ritz formula (1908) Cathode Ray

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY

SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY This introductory section covers some standard notation and definitions, and includes a brief survey of nuclear and particle properties along with the major

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

221B Lecture Notes Many-Body Problems I

221B Lecture Notes Many-Body Problems I 221B Lecture Notes Many-Body Problems I 1 Quantum Statistics of Identical Particles If two particles are identical, their exchange must not change physical quantities. Therefore, a wave function ψ( x 1,

More information

Chapter 5. Par+cle Physics

Chapter 5. Par+cle Physics Chapter 5 Par+cle Physics Types of Forces Force Range (m) Relative Strength Force Carrier Gravitational! 10-38 Graviton Weak 10-18 10-5 W ±, Z 0 Electromagnetic! =1/137 Photon Strong 10-15 1 Gluon What

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information