Production of haploids from anther culture of banana [Musa balbisiana (BB)]

Size: px
Start display at page:

Download "Production of haploids from anther culture of banana [Musa balbisiana (BB)]"

Transcription

1 Plant Cell Rep (2003) 21: DOI /s CELL BIOLOGY AND MORPHOGENESIS A. Assani F. Bakry F. Kerbellec R. Haïcour G. Wenzel B. Foroughi-Wehr Production of haploids from anther culture of banana [Musa balbisiana (BB)] Received: 17 May 2002 / Revised: 15 October 2002 / Accepted: 19 October 2002 / Published online: 17 December 2002 Springer-Verlag 2002 Abstract We report here, for the first time, the production of haploid plants of banana Musa balbisiana (BB). Callus was induced from anthers in which the majority of the microspores were at the uninucleate stage. The frequency of callus induction was 77%. Callus proliferation usually preceded embryo formation. About 8% of the anthers developed androgenic embryos. Of the 147 plantlets obtained, 41 were haploids (n=x=11). The frequency of haploid production depended on genotypes used: 18 haploid plants were produced from genotype Pisang klutuk, 12 from Pisang batu, seven from Pisang klutuk wulung and four from Tani. The frequency of regeneration was 1.1%, which was based on the total number of anthers cultured. Diploid plants (2n=2x=22) were also observed in the regenerated plants. The haploid banana plants that were developed will be important Communicated by H. Lörz A. Assani ( ) R. Haïcour Université de Paris Sud XI, Laboratoire de Morphogenèse Végétale Expérimentale, Bâtiment 360, Orsay Cedex, France akym.assani@u-bourgogne.fr Tel.: , Fax: F. Bakry F. Kerbellec CIRAD-FLHOR, Avenue du Val Montferrand, BP 5035, Montpellier Cedex, France G. Wenzel Lehrstuhl für Pflanzenbau und Pflanzenzüchtung, Technische Universität München, Freising-Weihenstephan, Germany B. Foroughi-Wehr Bundesanstalt für Züchtungsforschung an Kulturpflanzen, Institut für Resistenzgenetik, Graf-Seinsheim-Strasse 23, Grünbach, Germany A. Assani Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l Alimentation, Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques 1, Esplanade Erasme, Dijon, France material for the improvement of banana through breeding programmes. Keywords Musa balbisiana Anther culture Androgenesis Haploids Plant regeneration Abbreviations BAP: Benzylaminopurine CIRAD: Centre de coopération internationale en recherche agronomique pour le développement DAPI: 4,6-Diamidino-2-phenylindole IAA: Indole-3-acetic acid MOPS: 3-(Nmorpholino)propanesulfonic acid Introduction Haploids can result through natural parthenogenesis (development of haploid plants from unfertilised eggs) or androgenesis (development of haploid sporophytes from pollen). They can also be artificially induced through the culture of ovaries (Muren 1989), ovules (Hansen et al.1994), anthers (Foroughi-Wehr et al. 1982), microspores (Köhler and Wenzel 1985) and sexual hybridisation [e.g. cross between cultivated barley and the wild species (Kasha and Kao 1970)]. However, anther or microspore cultures have been found to be the most efficient techniques for obtaining a large number of haploid plants (De Buyser and Henry 1980). The regenerated haploid plants are generally sterile, requiring chromosome doubling for use in breeding programmes. Chromosomes can be doubled either spontaneously or artificially, and haploid plantlets are usually treated with colchicine as a means of inducing chromosome doubling (Foroughi-Wehr and Friedt 1984). Whereas many years are needed to obtain inbreds by conventional breeding methods, homozygous lines can be produced in only 1 year by chromosome doubling of haploid plantlets obtained by anther culture (Foroughi-Wehr et al. 1982; Foroughi-Wehr and Wenzel 1989). The inbred line produced by anther culture has fixed genotypes so that continued selection for an inter-

2 512 esting gene combination is not required (Wan and Widholm 1993). Since a reproducible method for producing haploid plants is available in banana, it may be used to produce haploid plants which could be used in conventional breeding programmes for banana improvement. Further, the establishment of haploid cell cultures may be useful in somatic fusion procedures (unconventional breeding) to obtain directly triploid cells starting from diploid and haploid cells. Kerbellec (1996) was first to report successful haploid plant regeneration in banana Musa acuminata (AA). However, to date, no report is available on haploid plant production in M. balbisiana (BB). In the present investigation, we report, for the first time, the successful regeneration of haploid plants (x=n=11) of four genotypes of the species M. balbisiana (BB), which is known to carry resistant genes against economically important banana diseases. Materials and methods Plant materials The plants, diploid (2n=2x=22) Pisang klutuk (BB), Pisang klutuk wulung (BB), Pisang batu (BB) and Tani (BB), all derived from the diploid wild species Musa balbisiana (BB), which contributes the B genome, were provided by CIRAD-Guadeloupe. Fig 1 A Male flower bud of banana (adapted from Champion 1963). Bar 6 cm. B Male flower of banana (adapted from Champion 1963). Bar 2cm Methods Anther cultures The anthers were isolated according to procedure described by Kerbellec (1996), with some modifications. The male flower bud (Fig. 1A), which contains male flowers in all developmental stages (immature and mature flowers), was used as donor material for anther isolation. For sterilisation, male flower buds cm in length were immersed in 95% (v/v) ethanol, followed by flaming. This sterilisation procedure was repeated three times. The bract was separated from the immature male flowers (Fig. 1B) and eliminated. An immature male flower (5 6 cm), which contained five stamens with fully developed anthers was isolated and transferred into a petri dish (diameter: 9.5 cm) containing filter paper that had been moistened with sterile water. The surrounding tepals (compound and free tepals) and the ovary on which the anthers were fixed were eliminated. One anther from each flower was squashed in 2.8% NaH 2 PO 4 buffer or 1% aceto-carmine in order to determine the appropriate microspore developmental stage, i.e. uninucleate stage (Fig 2A). Banana anthers are relatively large cm so that their isolation and transfer onto culture medium can be done with the naked eye. Ten anthers (each approx. 1 cm in length) containing microspores at the uninucleate stage were placed in a petri dish (diameter: 9.5 cm) containing 30 ml medium. The solid culture medium contained MS macro- and micro-nutrients (Murashige and Skoog1962), vitamins of Morel (Morel and Wetmore1951), 500 mg l -1 casein hydrolysate, 73 mm sucrose, 4.4 µm BAP, 2.3 µm IAA and 6 g l -1 agarose (type II; Sigma, St. Louis, Mo.). The ph of the medium was adjusted to 5.7 before autoclaving. Cultures were kept at 27 C in darkness. Anthers were maintained on the same culture medium without subculture until callus formation, which occurred after 4 months on the culture medium. Androgenic embryos were formed 6 months after the anthers had been plated. Plant regeneration Androgenic embryos were transferred onto regeneration medium containing MS macro- and micro-nutrients, vitamins of Morel, 88 mm sucrose, 2.2 µm BAP, 2.3 µm IAA, 7.5 g l -1 agarose sea plaque (Sigma) (ph 5.7). The cultures were kept at 27 C in the dark. Plant regeneration occurred 8 months after the anthers had been plated. Regenerated plantlets were transferred to solidified growth regulator-free MS medium with 1.2 mm NH 4 NO 3 (ph 5.7) and cultured at 27 C under a 16/8-h (day/night) photoperiod (light intensity: 65 µmol m -2 s -1 ). Determination of ploidy level The flow cytometric technique was used to determine the ploidy level of the anther-derived plants. Leaf pieces (1 1 cm) from in vitro plants derived from anther cultures were chopped with a razor blade in 600 µl buffer solution consisting of 45 mm MgCl 2, 30 mm Tri-sodium citrate (Na 3 C 6 H 5 O 7, 2H 2 O), 20 mm MOPS, 1% triton X-100, 10 mm sodium-metabisulfite (Na 2 S 2 O 5 ) (ph 7) to obtain a nuclei suspension. The whole sample was sieved through a 40-µm mesh nylon filter and stained with 6 µg ml -1 DAPI solution. A diploid parental plant was used as an internal standard. Nuclei analysis was done using a Partec CA II flow cytometer. Results Androgenic callus About 4 months after being transferred onto culture medium, banana anthers formed the first androgenic calli. Callus was only initiated from cultured anthers between

3 Fig. 2 A Microspores isolated from banana anthers. Bar 14 µm. B Development of callus from anthers after 5 months on induction medium. Bar 2 mm. C Androgenic embryos formed on calli. Bar 4 mm. D Haploid plantlets regenerated from anthers. Bar 3cm 513

4 514 Table 1 Frequency of embryo formation in anther culture of four genotypes of banana Musa balbisiana (BB) a Number of anthers forming callus/total number of anthers cultured b Number of embryos formed/ total number of anthers cultured Genotype Number of Anthers forming calli Embryos formed: cultured anthers Number Percentage a Number Percentage b Pisang klutuk wulung Pisang klutuk 1,650 1, Pisang batu 1, Tani ,890 2, Table 2 Frequency of plant regeneration in anther culture of four genotypes of banana Musa balbisiana (BB) a Number of plantlets/total number of anthers cultured Genotype Total number Diploid plantlets: Haploid plantlets: of plantlets Number Percentage a Number Percentage a Pisang klutuk wulung Pisang klutuk Pisang batu Tani scales 17 and 28 relative to the floral apex (floral apex has a scale of 0). Squashes of anthers ( cm) from these scales showed microspores at the uninucleate stage (Fig. 2A). A subculture of the anthers before the induction of first calli led to necrosis; therefore, a subculture of anthers before callus formation should be avoided. The calli formed were either friable or compact (Fig. 2B). There was no correlation between the type of calli and the genotype; friable and compact calli were observed in all genotypes. Anther-derived calli were produced from all four of the genotypes tested. The number of anthers producing calli was generally very high (Table 1) and appeared to be genotype-dependent. Among the genotypes studied, the best results with respect to callus formation were obtained with Pisang klutuk wulung (88.5%) and Pisang klutuk (81.5%), with the average rate being 76.8%. Androgenic embryos Androgenic embryos (Fig. 2C) were formed on calli after 6 months of anther culture. The frequency of embryo formation was found to be genotype-dependent (Table 1). The highest relative embryo number per anther was obtained with Pisang klutuk wulung (9.2%) followed by Pisang batu (8.7%), Pisang klutuk (7.3%) and Tani (4.8%). The average rate of embryos formed was 7.9% based on the total number of anthers cultured. Haploid plantlet regeneration Fig. 3 Flow scheme for anther culture of banana Plant regeneration occurred after 8 months of anther culture. Of the 147 plantlets obtained, 41 were haploid plantlets (Table 2): four (1.4%, based on the total number of anthers cultured) were from Tani, seven (1.3%) from Pisang klutuk wulung, 18 (1.1%) from Pisang klutuk and 12 (0.8%) from Pisang batu. The average relative number of haploid plantlets that developed from the cultured anthers was 1.1%. Flow cytometry analysis revealed that diploid plants were also present among the regenerated plants. The relative number of diploid plants

5 formed was 2.7%, based on the total number of anthers cultured. The haploid plants (Fig. 2D) obtained have been kept as an in vitro collection, and some were transplanted to the field for further testing. A flow scheme for anther culture of banana is presented in Fig. 3. Discussion The results of the investigation reported here show, for the first time, that haploid plants can be produced efficiently in Musa balbisiana (BB). This species plays an important role in banana breeding because it contains resistant genes against banana diseases (Fouré 1993). To the best of our knowledge, there is only one report on haploid plant regeneration in banana M. acuminata (AA) (Kerbellec 1996). We showed that callus formation was obtained if the cultured anthers contained microspores at the uninucleate stage. This has also been observed in banana M. acuminata (Kerbellec 1996) and in many other monocots like barley (Foroughi-Wehr et al. 1982), wheat (Hu and Kasha 1997), maize (Wan et al. 1991) and rice (Alemanno and Guiderdoni 1994). The average frequency of calli formed was 76.8% under our culture conditions, which is higher than that obtained for rice (20%) (Sathish et al. 1995). Some of the androgenic calli were also embryogenic. The embryos produced were similar to those obtained in previous studies on embryogenesis in banana (Assani et al. 2001, 2002). The percentage of anthers developing into embryos was 7.9%, which is similar to the value obtained for wheat (Stober and Hess 1997). The frequency of haploid plant regeneration was 1.1%. The differential response among the genotypes with respect to plant regeneration suggests that genetic factors affect anther cultures. According to Powell (1988), the genotype dependency of anther culture response is the major limitation to a wider exploitation of anther culture in breeding. However, genotype difference can be overcome by crossing a highly responsive genotype to a non-responsive genotype (Hou et al. 1994). However, this is only relevant for conventional cross breeding. The presence of diploid plants was also observed among the regenerants. While this could be a consequence of the regeneration of diploid anther tissues such as anther wall or connective tissue, in monocots the regeneration of somatic anther tissue has been very rarely reported. The other possibility is spontaneous chromosome doubling in haploid cells. The possible factors leading to spontaneous doubled-haploid plants could be nuclear fusion in the early divisions of the microspores, endomitosis, endoreduplication or multipolar mitosis during the callus phase (Chen et al.1982; De Buyser and Henry1986). Spontaneous chromosome doubling in anther cultures is considered to be advantageous because artificially induced chromosome doubling through colchicine treatment of haploid plants is then not necessary. Conclusion Haploid plant production can be achieved in banana M. balbisiana (BB). Our results show that: (1) the callus phase usually preceded embryo formation, (2) the frequency of haploid plant regeneration was genotypedependent, (3) diploid plants were present among the regenerants; this could be a result of spontaneous chromosome doubling occurring during androgenesis. The haploid plants developed here may be important for the improvement of banana through breeding programmes. Acknowledgements We thank Dr. M.V. Rajam, University of Delhi South Campus, New Delhi for reading the manuscript and Mr. D. Froger for his help with the photography. This investigation was generously supported by the European Union (INCO- DC-Contract no. IC18-CT ). References 515 Alemanno L, Guiderdoni E (1994) Increased doubled haploid plant regeneration from rice (Oryza sativa L.) anthers cultured on colchicine-supplemented media. Plant Cell Rep 13: Assani A, Haïcour R, Wenzel G, Côte FX, Bakry F, Foroughi- Wehr B, Ducreux G, Aguillar ME, Grapin A (2001) Plant regeneration from protoplasts of dessert banana Grande Naine (Musa spp., Cavendish sub-group AAA) via somatic embryogenesis. Plant Cell Rep 20: Assani A, Haïcour R, Wenzel G, Foroughi-Wehr B, Bakry F, Côte FX, Ducreux G, Ambroise A, Grapin A (2002) Influence of donor material and genotype on protoplast regeneration in banana and plantain cultivars (Musa spp.). Plant Sci 162: Champion J (1963) Le bananier. G.-P. Maisonneuve et Larose, Paris Chen Z, Qian C, Qin M, Xu X, Xiao Y (1982) Recent advances in anther culture of Hevea brasiliensis (Muell.-Arg.). Theor Appl Genet 62: De Buyser J, Henry Y (1980) Induction of haploid and diploid plants through in vitro anther culture of haploid wheat (n=3x=21). Theor Appl Genet 57:57 58 De Buyser J, Henry Y (1986) Wheat: production of haploids, performance of doubled haploids, and yield trials. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York, pp Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenetic haploid formation in Hordeum vulgare L. Theor Appl Genet 62: Foroughi-Wehr B, Friedt W (1984) Rapid production of recombinant barley yellow mosaic virus resistant Hordeum vulgare lines by anther culture. Theor Appl Genet 67: Foroughi- Wehr B, Wenzel G (1989) Androgenic haploid production. Int Assoc Plant Tissue Cult Newsl 58:11 18 Fouré E (1993) Characterization of the reactions of banana cultivars to Mycosphaerella fijiensis Morelet in Cameroon and genetics of resistance. In: Ganry J (ed) Breeding banana and plantain for resistance to diseases and pests. Proc Int Symp Genet Improve Bananas Resistance Dis Pests. Cirad, Montpellier, pp Hansen AL, Plever C, Pedersen HC, Keimer B, Andersen SB (1994) Efficient in vitro chromosome doubling during Beta vulgaris ovule culture. Plant Breed 112:89 95 Hou L, Ullrich SE, Kleinhofs A (1994) Inheritance of anther culture traits in barley. Crop Sci 34: Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16: Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:

6 516 Kerbellec F (1996) Etablissement d une technique d androgenèse pour l amélioration génétique du bananier (Musa spp.). PhD thesis, Ecole Nationale Agronomique de Rennes, France Köhler F, Wenzel G (1985) Regeneration of isolated barley microspores in conditioned media and trials to characterise the responsible factor. J Plant Physiol 121: Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38: Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: Muren RC (1989) Haploid plant induction from unpollinated ovaries in onion. Hortic Sci 24: Powell W (1988) Diallel analysis of barley anther culture response. Genome 30: Sathish P, Gamborg OL, Nabors MW (1995) Rice anther culture: callus initiation and androclonal variation in progenies of regenerated plants. Plant Cell Rep 14: Stober A, Hess D (1997) Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breed 116: Wan Y, Duncan DR, Rayburn AL, Petolino JF, Widholm JM (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81: Wan Y, Widholm JM (1993) Anther culture of maize. Plant Breed Rev 11:

Induction of Haploid Callus from Isolated Microspores of Peony in vitro

Induction of Haploid Callus from Isolated Microspores of Peony in vitro Plant & Cell Physiol. 22(2): 337-34 (98) Short communication Induction of Haploid Callus from Isolated Microspores of Peony in vitro Kanji Ono and Shuichi Harashima Department of Biology, Faculty of Science,

More information

Production of Haploid and Doubled Haploid Plants from Anther-derived Callus of Lilium formosanum

Production of Haploid and Doubled Haploid Plants from Anther-derived Callus of Lilium formosanum Production of Haploid and Doubled Haploid Plants from Anther-derived Callus of Lilium formosanum D.-S. Han and Y. Niimi Faculty of Agriculture, Niigata University 2-8050 Ikarashi, Niigata 950-2181 Japan

More information

Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.)

Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.) Plant Cell Reports (2000) 19:1155 1159 Q Springer-Verlag 2000 CELL BIOLOGY AND MORPHOGENESIS S. Gürel 7 E. Gürel 7 Z. Kaya Doubled haploid plant production from unpollinated ovules of sugar beet (Beta

More information

In Vitro Polyploid Induction of Ophiopogon planiscapus. Dominic A. Gillooly, Darren H. Touchell and Thomas G. Ranney

In Vitro Polyploid Induction of Ophiopogon planiscapus. Dominic A. Gillooly, Darren H. Touchell and Thomas G. Ranney In Vitro Polyploid Induction of Ophiopogon planiscapus Dominic A. Gillooly, Darren H. Touchell and Thomas G. Ranney North Carolina State University, Departement of Horticultural Science Mountain Crop Improvement

More information

ABSTRACT. Key words: hemp, microsporogenesis, androgenesis

ABSTRACT. Key words: hemp, microsporogenesis, androgenesis ABSTRACT Key words: hemp, microsporogenesis, androgenesis Hemp (Cannabis sativa L.) has a growing economical importance, because of the various utilizations in alimentation, textiles, plastics, constructions

More information

Polyploidy so many options

Polyploidy so many options Polyploidy so many options Impacts of Ploidy Changes Changes in chromosome number and structure can have major health impacts e.g. trisomy 21 Polyploidy in cultivated and domesticated plants is widespread

More information

Doubled haploid ramets via embryogenesis of haploid tissue cultures

Doubled haploid ramets via embryogenesis of haploid tissue cultures Doubled haploid ramets via embryogenesis of haploid tissue cultures Harry E. Iswandar 1, J. M. Dunwell 2, Brian P. Forster 3, Stephen P. C. Nelson 1,4 and Peter D. S. Caligari,3,4,5 ABSTRACT Tissue culture

More information

Organogenesis and Embryogenesis

Organogenesis and Embryogenesis Organogenesis and Embryogenesis Medium and growth conditions are manipulated to obtain a complete plant from explant through either organogenesis or embryogenesis; both of them may be direct or following

More information

Effect of embryoids age, size and shape for improvement of regeneration efficiency from microspore-derived embryos in wheat (Triticum aestivum L.

Effect of embryoids age, size and shape for improvement of regeneration efficiency from microspore-derived embryos in wheat (Triticum aestivum L. POJ 3(5):149-153 (2010) ISSN:1836-3644 Effect of embryoids age, size and shape for improvement of regeneration efficiency from microspore-derived embryos in wheat (Triticum aestivum L.) S. M. Shahinul

More information

Obtaining of doubled haploid lines by anther culture method for the Latvian wheat breeding

Obtaining of doubled haploid lines by anther culture method for the Latvian wheat breeding Agronomy Research 8 (Special Issue III), 545 552, 2010 Obtaining of doubled haploid lines by anther culture method for the Latvian wheat breeding D. Grauda 1, N. Lepse 1, V. Strazdiņa 2, I. Kokina 3, L.

More information

Methods of isolation of Cucumis sativus and C. melo pollen grains and their utilization in in vitro pollination 1

Methods of isolation of Cucumis sativus and C. melo pollen grains and their utilization in in vitro pollination 1 Methods of isolation of Cucumis sativus and C. melo pollen grains and their utilization in in vitro pollination 1 D. Skálová *, B. Navrátilová, and A. Lebeda * Palacký University, Faculty of Science, Department

More information

Sporic life cycles involve 2 types of multicellular bodies:

Sporic life cycles involve 2 types of multicellular bodies: Chapter 3- Human Manipulation of Plants Sporic life cycles involve 2 types of multicellular bodies: -a diploid, spore-producing sporophyte -a haploid, gamete-producing gametophyte Sexual Reproduction in

More information

1( ) 5, dist. 4 5, dist. 3 5, dist. 5 5, dist

1( ) 5, dist. 4 5, dist. 3 5, dist. 5 5, dist and plant regeneration protocols for Brassica napus // International Journal of agriculture & Biology. 2011. Vol. 13. P. 83 88. 10. Gamborg O. L., Miller R. A, Ojima K. Nutrient requirements of suspension

More information

dry areas of West Asia and North Africa

dry areas of West Asia and North Africa J. Genet. & Breed. 45: 33-38 (1991) Anther culture of wheat (Triticum aest.iwum) adapted to dry areas of West Asia and North Africa P. Lashermes', G. Engin2 and G. Ortiz-Ferrara' International Center for

More information

Genetic analysis of androgenetic traits in wheat (Triticum aestivum L.)

Genetic analysis of androgenetic traits in wheat (Triticum aestivum L.) IRANIAN JOURNAL of BIOTCNOLOGY, Vol. 5, No. 1, 2007 Genetic analysis of androgenetic traits in wheat (Triticum aestivum L.) Badraldin brahim Sayed Tabatabaei 1, Ghodratollah Saeidi* 2 and Mohammad Reza

More information

Marian Verzea, Mihaela Cialâcu and Ioana Hagima 1) ABSTRACT

Marian Verzea, Mihaela Cialâcu and Ioana Hagima 1) ABSTRACT EMBRYOGENIC ABILITY AND ISOPEROXIDASE PATTERNS OF THE SCUTELLAR CALLI FROM IMMATURE HYBRID EMBRYOS TRITICUM DURUM x SECALE CEREALE AND THEIR PARENTAL FORMS ABSTRACT Somaclonal variability has been suggested

More information

Plant Regeneration and Chromosome Doubling of Wild Gladiolus Species

Plant Regeneration and Chromosome Doubling of Wild Gladiolus Species Plant Regeneration and Chromosome Doubling of Wild Gladiolus Species K. Suzuki, Y. Takatsu, T. Gonai and M. Kasumi Plant Biotechnology Institute Ibaraki Agricultural Center, Ibaraki Japan Keywords: gladiolus,

More information

CALLUS INDUCTION AND SOMATIC EMBRYOGENESIS FROM MAIZE MATURE EMBRYOS (ZEA MAYS L.)

CALLUS INDUCTION AND SOMATIC EMBRYOGENESIS FROM MAIZE MATURE EMBRYOS (ZEA MAYS L.) Journal of Cell and Tissue Research Vol. 13(1) 3565-3569 (2013) (Available online at www.tcrjournals.com) ISSN: 0973-0028; E-ISSN: 0974-0910 Original Article CALLUS INDUCTION AND SOMATIC EMBRYOGENESIS

More information

Callus induction and plant regeneration on optimization of the culture conditions in Jow Haw rice (Oryza sativa L.)

Callus induction and plant regeneration on optimization of the culture conditions in Jow Haw rice (Oryza sativa L.) Journal of Agricultural Technology 2016 Vol. 12(2):241-248 Available online http://www.ijat-aatsea.com ISSN 1686-9141 Callus induction and plant regeneration on optimization of the culture conditions in

More information

Flow cytometric analysis of Ploidy level

Flow cytometric analysis of Ploidy level Flow cytometric analysis of Ploidy level Centre of Plant Structural and Functional Genomics of the Institute of Experimental Botany AS CR, Olomouc, Czech Republic Riccardo Pasculli Roman Hudec Field application

More information

Chromosome variations in protoplast-derived calli and in plants regenerated from the calli of

Chromosome variations in protoplast-derived calli and in plants regenerated from the calli of Jpn. J. Genet. (1989) 64, pp. 355-361 Chromosome variations in protoplast-derived calli and in plants regenerated from the calli of cultivated rice (Oryza sativa L.) Soryu NISHIBAYASHI*, Yasuyuki HAYASHI,

More information

Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture

Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture Scientia Horticulturae 83 (2000) 301±310 Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture S. Sato *, N. Katoh, H. Yoshida, S. Iwai 1, M. Hagimori

More information

PRODUCTION OF HAPLOID PLANTS FROM ANTHER CULTURES AND SECONDARY EMBRYOIDS OF WINTER OILSEED RAPE, BRASSICA NAP US SSP. OLEIFERA

PRODUCTION OF HAPLOID PLANTS FROM ANTHER CULTURES AND SECONDARY EMBRYOIDS OF WINTER OILSEED RAPE, BRASSICA NAP US SSP. OLEIFERA Phytol. (9) 9, 57-56 PRODUCTION OF HAPLOID PLANTS FROM ANTHER CULTURES AND SECONDARY EMBRYOIDS OF WINTER OILSEED RAPE, BRASSICA NAP US SSP. OLEIFERA BY LOH, CHIANG SHIONG AND D. S. INGRAM The Botany School,

More information

Efficient Doubled Haploid Production in Brassica napus via Microspore Colchicine Treatment in vitro and Ploidy Determination by Flow Cytometry

Efficient Doubled Haploid Production in Brassica napus via Microspore Colchicine Treatment in vitro and Ploidy Determination by Flow Cytometry Efficient Doubled Haploid Production in Brassica napus via Microspore Colchicine Treatment in vitro and Ploidy Determination by Flow Cytometry Steffen Weber 1, Wilfried Lühs and Wolfgang Friedt Plant Breeding

More information

Efficient plant regeneration via somatic embryogenesis from anthers of Datura stramonium L.

Efficient plant regeneration via somatic embryogenesis from anthers of Datura stramonium L. Available online http://www.ijat-rmutto.com Journal of Agricultural Technology 2010 Vol. ISSN 6(4): 1686-9141 741-745 Efficient plant regeneration via somatic embryogenesis from anthers of Datura stramonium

More information

Chromosomal Analysis of Cultured Cells of Barley (Hordeum vulgare L.): Chromosome Number Variation

Chromosomal Analysis of Cultured Cells of Barley (Hordeum vulgare L.): Chromosome Number Variation _??_ 1990 by Cytologia, Tokyo Cytologia 55: 399-404, 1990 Chromosomal Analysis of Cultured Cells of Barley (Hordeum vulgare L.): Chromosome Number Variation B. D. Mohanty1 Department of Botany, University

More information

Effect of Acetosyringone on Agrobacterium-mediated Transformation of Eustoma grandiflorum Leaf Disks

Effect of Acetosyringone on Agrobacterium-mediated Transformation of Eustoma grandiflorum Leaf Disks JARQ 51 (4), 351-355 (2017) https://www.jircas.go.jp Improvement in Agrobacterium-mediated Transformation of Eustoma grandiflorum by Acetosyringone Effect of Acetosyringone on Agrobacterium-mediated Transformation

More information

Evaluation of chemical and physical parameters for callus induction from anther cultures of tea (Camellia sinensis (L.) O. Kuntze)

Evaluation of chemical and physical parameters for callus induction from anther cultures of tea (Camellia sinensis (L.) O. Kuntze) Evaluation of chemical and physical parameters for callus induction from anther cultures of tea (Camellia sinensis (L.) O. Kuntze) Mishra Vijay Kumar a and Chaturvedi Rakhi *a a Department of Biotechnology

More information

Somaclonal Variation

Somaclonal Variation Tissue-culture cycle involves: dedifferentiation in culture proliferation of cells (implies sev. cell generations removed from original differentiated cell) subsequent regeneration to plants no selection

More information

By P. M. GRESSHOFF* and C. H. Doy* [Manuscript received 21 October 1971] AbBtract

By P. M. GRESSHOFF* and C. H. Doy* [Manuscript received 21 October 1971] AbBtract HAPLOID ARABIDOPSIS THALIANA CALLUS AND PLANTS FROM ANTHER CULTURE By P. M. GRESSHOFF* and C. H. Doy* [Manuscript received 21 October 1971] AbBtract Haploid callus and plants were cultured from the anthers

More information

X-Sheet 3 Cell Division: Mitosis and Meiosis

X-Sheet 3 Cell Division: Mitosis and Meiosis X-Sheet 3 Cell Division: Mitosis and Meiosis 13 Key Concepts In this session we will focus on summarising what you need to know about: Revise Mitosis (Grade 11), the process of meiosis, First Meiotic division,

More information

THE DEVELOPMENT OF PLANT REGENERATION SYSTEMS FOR THE GENETIC IMPROVEMENT OF WALNUT. Walt Tu1ecke and Gale McGranahan

THE DEVELOPMENT OF PLANT REGENERATION SYSTEMS FOR THE GENETIC IMPROVEMENT OF WALNUT. Walt Tu1ecke and Gale McGranahan THE DEVELOPMENT OF PLANT REGENERATION SYSTEMS FOR THE GENETIC IMPROVEMENT OF WALNUT Walt Tu1ecke and Gale McGranahan ABSTRACT The techniques and capability to regenerate asexual embryos from walnut cotyledon

More information

Endosperm culture double fertilization Corn endosperm

Endosperm culture double fertilization Corn endosperm culture In angiosperms the endosperm is the main nutritive tissue for the embryo. The endosperm is the product of double fertilization during which out of the two male gametes, one fertilizes the egg to

More information

IN VITRO COLCHICINE TREATMENT OF ANTHER-DERIVED PEPPER HAPLOIDS

IN VITRO COLCHICINE TREATMENT OF ANTHER-DERIVED PEPPER HAPLOIDS 806 Bulgarian Journal of Agricultural Science, 21 (No 4) 2015, 806-810 Agricultural Academy IN VITRO COLCHICINE TREATMENT OF ANTHER-DERIVED PEPPER HAPLOIDS D. OLSZEWSKA, I. JEDRZEJCZYK *, P. NOWACZYK,

More information

POPLAR PLANTS THROUGH ANTHER CULTURE

POPLAR PLANTS THROUGH ANTHER CULTURE POPLAR PLANTS THROUGH ANTHER CULTURE Rong H. Ho, A. Yesoda Raj and Louis Zsuffa Ontario Ministry of Natural Resources Ontario Tree Improvement and Forest Biomass Institute Maple, Ontario LOJ 1E0 Abstract.--

More information

Raphanus sativus L. Raphaiol. Thin Layer Chromatography R f

Raphanus sativus L. Raphaiol. Thin Layer Chromatography R f Raphaiol Thin Layer Chromatography R f Tissue Cultivation of Plant and Identification of Raphaiol Alkaloid of Extraction of The Seeds, Explants, Callus and produced Plants from tissue Cultivation Asst.

More information

Factors Affecting In Vitro Androgenesis in Cereals

Factors Affecting In Vitro Androgenesis in Cereals International Journal of Plant Developmental Biology 2008 Global Science Books Factors Affecting In Vitro Androgenesis in Cereals N. Tyankova * N. Zagorska Institute of Genetics, Bulgarian Academy of Science,

More information

Pitahayas: introduction, agrotechniques and breeding

Pitahayas: introduction, agrotechniques and breeding Pitahayas: introduction, agrotechniques and breeding The French Associates Institute for Agriculture and Biotechnology of Drylands May 8 Noemi Tel-Zur The J. Blaustein Institutes for Desert Research Ben-Gurion

More information

CELL DIVISION - AN INTRODUCTION

CELL DIVISION - AN INTRODUCTION CELL DIVISION - AN INTRODUCTION Dear Reader In the previous chapter you have read about the diversity in the living world. One of the fundamental feature of all living organisms is reproduction. Reproduction

More information

IN VITRO RHIZOGENESIS IN PAPAYA (CARICA PAPAYA L.)

IN VITRO RHIZOGENESIS IN PAPAYA (CARICA PAPAYA L.) J. Plant Develop. 20(2013): 51 55 IN VITRO RHIZOGENESIS IN PAPAYA (CARICA PAPAYA L.) Jaime A. TEIXEIRA DA SILVA 1,2 Abstract: The seeds of two papaya (Carica papaya L.) cultivars ('Rainbow' and 'Sunrise

More information

Combining Ability of Callus Induction and Plant Regeneration in Canola (Brassica napus L.) Anther Culture

Combining Ability of Callus Induction and Plant Regeneration in Canola (Brassica napus L.) Anther Culture Middle East Journal of Agriculture Research Volume : 05 Issue : 04 Oct.-Dec. 2016 Pages: 422-429 Combining Ability of Callus Induction and Plant Regeneration in Canola (Brassica napus L.) Anther Culture

More information

Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture

Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture Plant Cell Rep (2003) 21:531 537 DOI 10.1007/s00299-002-0565-6 CELL BIOLOGY AND MORPHOGENESIS R. Chaturvedi M. K. Razdan S. S. Bhojwani Production of haploids of neem (Azadirachta indica A. Juss.) by anther

More information

a. capture sunlight and absorb CO 2

a. capture sunlight and absorb CO 2 BIO 274-01 Exam 1 Name Matching (10 pts) 1. Match each plant part with its function: root c a. capture sunlight and absorb CO 2 for photosynthesis leaves a b. provides support, conducts water and nutrients

More information

Exam 1 PBG430/

Exam 1 PBG430/ 1 Exam 1 PBG430/530 2014 1. You read that the genome size of maize is 2,300 Mb and that in this species 2n = 20. This means that there are 2,300 Mb of DNA in a cell that is a. n (e.g. gamete) b. 2n (e.g.

More information

State Forest Research Institute, Post Box No. 159, Itanagar , India 1 Department of Botany, Rajiv Gandhi University, Itanagar , India

State Forest Research Institute, Post Box No. 159, Itanagar , India 1 Department of Botany, Rajiv Gandhi University, Itanagar , India Indian Journal of Biotechnology Vol 6, April 2007, pp. 256-261 Effects of different culture media on seed germination and subsequent in vitro development of protocorms of Hygrochilus parishii (Veith &

More information

Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION. Faddel Ismail NCARE June,

Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION. Faddel Ismail NCARE June, Maximizing productivity of wheat and barley under dry-land systems HYBRIDIZATION Faddel Ismail NCARE June, 8-10 2015 Hybridization Hybridization is the process of crossing two genetically different individuals

More information

Histological and Scanning Electron Observations on Embryogenic and Non-embryogenic Calli of Aromatic Thai Rice (Oryza sativa L. cv. Khao Daw Mali 105)

Histological and Scanning Electron Observations on Embryogenic and Non-embryogenic Calli of Aromatic Thai Rice (Oryza sativa L. cv. Khao Daw Mali 105) Kasetsart J. (Nat. Sci.) 35 : 427-432 (2001) Histological and Scanning Electron Observations on Embryogenic and Non-embryogenic Calli of Aromatic Thai Rice (Oryza sativa L. cv. Khao Daw Mali 105) Nitsri

More information

Cytological Analysis of Embryogenic Callus and Regenerated Plants of Urginea Indica Kunth., Indian Squill

Cytological Analysis of Embryogenic Callus and Regenerated Plants of Urginea Indica Kunth., Indian Squill Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics ISSN: 0008-7114 (Print) 2165-5391 (Online) Journal homepage: http://www.tandfonline.com/loi/tcar20 Cytological Analysis of

More information

2. REVIEW OF LITERATURE

2. REVIEW OF LITERATURE 4 2. REVIEW OF LITERATURE The first recognition of haploids in plants was exercised by A.D. Bergner in 1921 in Datura stramonium L. which was reported in the journal Science by Blakeslee et al. (1922).

More information

PRODUCTION OF WINTER BARLEY HAPLOIDS BY BULBOSUM SYSTEM. 2. INFLUENCE OF BARLEY GENOTYPE ON IN VITRO HAPLOID REGENERATION

PRODUCTION OF WINTER BARLEY HAPLOIDS BY BULBOSUM SYSTEM. 2. INFLUENCE OF BARLEY GENOTYPE ON IN VITRO HAPLOID REGENERATION PRODUCTION OF WINTER BARLEY HAPLOIDS BY BULBOSUM SYSTEM. 2. INFLUENCE OF BARLEY GENOTYPE ON IN VITRO HAPLOID REGENERATION Alexandrina Mihãilescu and Aurel Giura ABSTRACT Haploid induction in barley using

More information

Factors Affecting Androgenesis in Indica Rice

Factors Affecting Androgenesis in Indica Rice Factors Affecting Androgenesis in Indica Rice Sant S. Bhojwani, Himani Pande and Anupam Raina Department of Botany, University of Delhi, Delhi 110007, India e-mail: ssbhojwani@satyam.net.in Abstract For

More information

Segregation distortion in F 2 and doubled haploid populations of temperate japonica rice

Segregation distortion in F 2 and doubled haploid populations of temperate japonica rice c Indian Academy of Sciences RESEARCH NOTE Segregation distortion in F 2 and doubled haploid populations of temperate japonica rice MASUMI YAMAGISHI 1,2,6, YOSHINOBU TAKEUCHI 3,7, ISAO TANAKA 4, IZUMI

More information

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section 1. In the following cross, all genes are on separate chromosomes. A is dominant to a, B is dominant to b and D is dominant

More information

INTRODUCING PLANT TISSUE CULTURE IN THE CLASSROOM CONCEPTS & HISTORICAL PERSPECTIVE

INTRODUCING PLANT TISSUE CULTURE IN THE CLASSROOM CONCEPTS & HISTORICAL PERSPECTIVE INTRODUCING PLANT TISSUE CULTURE IN THE CLASSROOM CONCEPTS & HISTORICAL PERSPECTIVE Dr. Mike Kane University of Florida Applications of Plant Tissue Culture Concepts & Terminology Micropropagation: A Historical

More information

Supplementary Figure 1. Phenotype of the HI strain.

Supplementary Figure 1. Phenotype of the HI strain. Supplementary Figure 1. Phenotype of the HI strain. (A) Phenotype of the HI and wild type plant after flowering (~1month). Wild type plant is tall with well elongated inflorescence. All four HI plants

More information

USE OF INTERGENERIC CROSS FOR PRODUCTION OF DOUBLED HAPLOID WHEAT (TRITICUM AESTIVUM L.)

USE OF INTERGENERIC CROSS FOR PRODUCTION OF DOUBLED HAPLOID WHEAT (TRITICUM AESTIVUM L.) Sci., Tech. and Dev., 31 (4): 295-300, 2012 USE OF INTERGENERIC CROSS FOR PRODUCTION OF DOUBLED HAPLOID WHEAT (TRITICUM AESTIVUM L.) M. AHSAN KHAN 1*, SHADAB SHAUKAT 1, JAVED AHMAD 2, M. KASHIF 1, ABDUS

More information

Deepak Prem, María-Teresa Solís, Ivett Bárány, Héctor Rodríguez-Sanz, María C Risueño and Pilar S Testillano *

Deepak Prem, María-Teresa Solís, Ivett Bárány, Héctor Rodríguez-Sanz, María C Risueño and Pilar S Testillano * Prem et al. BMC Plant Biology 2012, 12:127 RESEARCH ARTICLE Open Access A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently

More information

Title. Author(s)NIIZEKI, Minoru. Issue Date Doc URL. Type. File Information. plant in vitro.

Title. Author(s)NIIZEKI, Minoru. Issue Date Doc URL. Type. File Information. plant in vitro. Title Studies on Plant Cell and Tissue Culture : Ⅳ. Effect plant in vitro Author(s)NIIZEKI, Minoru CitationJournal of the Faculty of Agriculture, Hokkaido Univ Issue Date 1974-09 Doc URL http://hdl.handle.net/2115/12885

More information

MICROPROPAGATION OF COCONUT THROUGH PLUMULE CULTURE

MICROPROPAGATION OF COCONUT THROUGH PLUMULE CULTURE COCOS (2004), 16, 01-10 Printed in Sri Lanka MICROPROPAGATION OF COCONUT THROUGH PLUMULE CULTURE S C Fernando, L K Weerakoon and T R Gunathilake Coconut Research Institute, Lunuwila, Sh Lanka ABSTRACT

More information

EFFECT OF 5-AZACYTIDINE ON CALLUS INDUCTION AND PLANT REGENERATION POTENTIAL IN ANTHER CULTURE OF WHEAT (TRITICUM AESTIVUM L.)

EFFECT OF 5-AZACYTIDINE ON CALLUS INDUCTION AND PLANT REGENERATION POTENTIAL IN ANTHER CULTURE OF WHEAT (TRITICUM AESTIVUM L.) BULG. J. PLANT PHYSIOL, 2004, 30(1-2), 45-50 45 EFFECT OF 5-AZACYTIDINE ON CALLUS INDUCTION AND PLANT REGENERATION POTENTIAL IN ANTHER CULTURE OF WHEAT (TRITICUM AESTIVUM L.) Ivan Belchev 1 ; Magdalena

More information

ANTHER CULTURE SORGHUM BICOLOR (L.) MOENCH^ requirements for the degree MASTER OF SCIENCE. Genetics. Approved by; by FUSHI WEN A MASTER'S THESIS

ANTHER CULTURE SORGHUM BICOLOR (L.) MOENCH^ requirements for the degree MASTER OF SCIENCE. Genetics. Approved by; by FUSHI WEN A MASTER'S THESIS ANTHER CULTURE OF SORGHUM BICOLOR (L.) MOENCH^ a^' by FUSHI WEN B.S., Northwestern University, China, 1982 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF

More information

PLANT CYTOGENETICS. Ram J. Singh Department of Agronomy University of Illinois Urbana, Illinois. CRC Press Boca Raton Ann Arbor London Tokyo

PLANT CYTOGENETICS. Ram J. Singh Department of Agronomy University of Illinois Urbana, Illinois. CRC Press Boca Raton Ann Arbor London Tokyo f{ PLANT CYTOGENETICS Ram J. Singh Department of Agronomy University of Illinois Urbana, Illinois CRC Press Boca Raton Ann Arbor London Tokyo TABLE OF CONTENTS Chapter 1. INTRODUCTION 1 Chapter 2. THE

More information

Application of flow cytometry in plant sciences Elwira Sliwinska

Application of flow cytometry in plant sciences Elwira Sliwinska Application of flow cytometry in plant sciences Elwira Sliwinska Head, Laboratory of Molecular Biology and Cytometry Department of Genetics and Plant Breeding University of Technology and Life Sciences,,

More information

Mapping QTL for Seedling Root Traits in Common Wheat

Mapping QTL for Seedling Root Traits in Common Wheat 2005,38(10):1951-1957 Scientia Agricultura Sinica 1,2,3 1 1 1 2 1 / / 100081 2 050021 3 100039 DH 10 14 11 15 5A 4B 2D 6D 7D 3 2 3 3 2 2 2 3 2 1 3 1 3 DH Mapping for Seedling Root Traits in Common Wheat

More information

Meiosis and Life Cycles - 1

Meiosis and Life Cycles - 1 Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism

More information

Md. Mahmudul Islam, Md. Enamul Haque, Shah Md. Mahbub Alam, Md. Asadul Islam, Md. Khalekuzzaman, Biswanath Sikdar*

Md. Mahmudul Islam, Md. Enamul Haque, Shah Md. Mahbub Alam, Md. Asadul Islam, Md. Khalekuzzaman, Biswanath Sikdar* Research in Plant Biology, 3(5): 21-27, 2013 ISSN : 2231-5101 www.resplantbiol.com Regular Article Morphological and Histological Observation of Embryogenic Calli Derived from Immature Embryo of BRRI Dhan28

More information

Anther culture for haploid and doubled haploid production

Anther culture for haploid and doubled haploid production Plant Cell Tiss Organ Cult (2011) 104:283 300 DOI 10.1007/s11240-010-9852-z REVIEW Anther culture for haploid and doubled haploid production Maria Antonietta Germanà Received: 30 May 2010 / Accepted: 9

More information

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis Genetics Terminology: Autosomes Somatic cell Gamete Karyotype Homologous chromosomes Meiosis Sex chromosomes Diploid Haploid Zygote Synapsis

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

Introduction to Plant Breeding. Master Gardener Training

Introduction to Plant Breeding. Master Gardener Training Introduction to Plant Breeding Master Gardener Training Start with a seed Germplasm Germplasm The greatest service which can be rendered to any country is to add a useful plant to its culture -Thomas Jefferson

More information

Germplasm. Introduction to Plant Breeding. Germplasm 2/12/2013. Master Gardener Training. Start with a seed

Germplasm. Introduction to Plant Breeding. Germplasm 2/12/2013. Master Gardener Training. Start with a seed Introduction to Plant Breeding Master Gardener Training Start with a seed Germplasm Germplasm The greatest service which can be rendered to any country is to add a useful plant to its culture -Thomas Jefferson

More information

Ch. 22: Plant Growth, Reproduction & Response

Ch. 22: Plant Growth, Reproduction & Response Ch. 22: Plant Growth, Reproduction & Response generally reproduce sexually, though many can also reproduce asexually. Some have lost ability to reproduce sexually. All plant lifecycles involve alternation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Haploid plant produced by centromere-mediated genome elimination Chromosomes containing altered CENH3 in their centromeres (green dots) are eliminated after fertilization in a cross to wild

More information

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells

Binary fission occurs in prokaryotes. parent cell. DNA duplicates. cell begins to divide. daughter cells Chapter 11 Chapter 11 Some eukaryotes reproduce through mitosis. Binary fission is similar in function to mitosis. Asexual reproduction is the creation of offspring from a single parent. Binary fission

More information

The using of gibberellic acid hormone on cotton mature embryo resulted by crossing between wild and commercial species on artificial medium

The using of gibberellic acid hormone on cotton mature embryo resulted by crossing between wild and commercial species on artificial medium African Journal of Biotechnology Vol. 10(46), pp. 9322-9327, 22 August, 2011 Available online at http://www.academicjournals.org/ajb DOI: 10.5897/AJB10.1957 ISSN 1684 5315 2011 Academic Journals Full Length

More information

SAFDAR ALI & JAVED IQBQL. Department of Botany, GC University, Lahore (SA), School of Biological Sciences, University of the Punjab, Lahore (JI)

SAFDAR ALI & JAVED IQBQL. Department of Botany, GC University, Lahore (SA), School of Biological Sciences, University of the Punjab, Lahore (JI) IOLOGIA (PAKISTAN) 2010, 56 (1&2), 55-62 PK ISSN 0006 3096 Facile regeneration through adventive/somatic embryogenesis from in vitro cultured immature leaf segments of elite varieties of sugarcane (Saccharum

More information

Production of haploid Gerbera jamesonii plants by in vitro culture of unfertilized ovules

Production of haploid Gerbera jamesonii plants by in vitro culture of unfertilized ovules Production of haploid Gerbera jamesonii plants by in vitro culture of unfertilized ovules Mireille Sitbon To cite this version: Mireille Sitbon. Production of haploid Gerbera jamesonii plants by in vitro

More information

EVALUATION OF POLLINATORS (ZEA MAYS L. AND HORDEUM BULBOSUM L.) FOR WHEAT AND BARLEY HAPLOID PRODUCTION

EVALUATION OF POLLINATORS (ZEA MAYS L. AND HORDEUM BULBOSUM L.) FOR WHEAT AND BARLEY HAPLOID PRODUCTION EVALUATION OF POLLINATORS (ZEA MAYS L. AND HORDEUM BULBOSUM L.) FOR WHEAT AND BARLEY HAPLOID PRODUCTION Alexandrina Mihãilescu and Aurel Giura 1) ABSTRACT Main genetic and environmental factors affect

More information

Reproductive Development

Reproductive Development Plant Reproduction Chapter 42 Angiosperms represent an evolutionary innovation with their production of flowers and fruits Plants go through developmental changes leading to reproductive maturity by adding

More information

Factors Affecting Embryogenic Callus Production and Plant Regeneration in Anther Culture of Bupleurum chinense

Factors Affecting Embryogenic Callus Production and Plant Regeneration in Anther Culture of Bupleurum chinense 214 Yang CM et al. Chinese Herbal Medicines, 2011, 3(3): 214-220 Factors Affecting Embryogenic Callus Production and Plant Regeneration in Anther Culture of Bupleurum chinense YANG Cheng-min, ZHAO Yu-kai,

More information

Science Unit Learning Summary

Science Unit Learning Summary Learning Summary Inheritance, variation and evolution Content Sexual and asexual reproduction. Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. In

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/331/6019/876/dc1 Supporting Online Material for Synthetic Clonal Reproduction Through Seeds Mohan P. A. Marimuthu, Sylvie Jolivet, Maruthachalam Ravi, Lucie Pereira,

More information

Partitioning of General and Specific Combining Ability Effects for Estimating Maternal and Reciprocal Effects

Partitioning of General and Specific Combining Ability Effects for Estimating Maternal and Reciprocal Effects Partitioning of General and Specific Combining Ability Effects for Estimating Maternal and Reciprocal Effects Galal M. A. Mahgoub Maize Research Department, Field Crops Research Institute. Agricultural

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Induction of tetraploid gynogenesis in the European sea bass. (Dicentrarchus labrax L.) S. Peruzzi* & B. Chatain

Induction of tetraploid gynogenesis in the European sea bass. (Dicentrarchus labrax L.) S. Peruzzi* & B. Chatain Induction of tetraploid gynogenesis in the European sea bass (Dicentrarchus labrax L.) S. Peruzzi* & B. Chatain IFREMER, Laboratoire de Recherche Piscicole de Méditerranée, Chemin de Maguelone, F-34250

More information

Reproduction & Development. 1 parent cell divides to form 2 daughter cells All offspring have exact same DNA as parent

Reproduction & Development. 1 parent cell divides to form 2 daughter cells All offspring have exact same DNA as parent Living Environment Dr. Golub Reproduction & Development Asexual reproduction 1 parent cell divides to form 2 daughter cells All offspring have exact same DNA as parent Sexual Reproduction Requires 2 parents

More information

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on

More information

Review of Mitosis and Meiosis

Review of Mitosis and Meiosis Review of Mitosis and Meiosis NOTE: Since you will have already had an introduction to both mitosis and meiosis in Biol 204 & 205, this lecture is structured as a review. See the text for a more thorough

More information

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 13 Meiosis and Sexual Life Cycles Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Variations on a Theme Living

More information

Optimization of doubled haploid production in maize (Zea mays L.)

Optimization of doubled haploid production in maize (Zea mays L.) Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Optimization of doubled haploid production in maize (Zea mays L.) Adam Edward Vanous Iowa State University

More information

COCONUT CLONES THROUGH SOMATIC EMBRYOGENESIS

COCONUT CLONES THROUGH SOMATIC EMBRYOGENESIS - COCONUT CLONES THROUGH SOMATIC EMBRYOGENESIS 27 J. L. Verdeil, J. Buffàrd-Morel, A. Rival, R. Grosdemange, C. Huet and C. Panne tier* QRSTOM-IRHOKIRAD, Laboratoire de Ressources Genetiques et d Amelioration

More information

a type of reproduction in which one parent organism produces offspring without meiosis and fertilization

a type of reproduction in which one parent organism produces offspring without meiosis and fertilization Define the following terms: Term Final Exam Vocabulary Review 2016-2017 Definition adaptation an inherited trait that increases an organism's chance of surviving and reproducing in a particular environment

More information

Micropropagation of Lisianthus (Eustoma grandiflorum L.) from different explants to flowering onset

Micropropagation of Lisianthus (Eustoma grandiflorum L.) from different explants to flowering onset 583 Micropropagation of Lisianthus (Eustoma grandiflorum L.) from different explants to flowering onset Fatemeh Rezaee, Faezeh Ghanati* and Laleh Yusefzadeh Boroujeni Department of Plant Biology, Faculty

More information

Plant Propagation PLS 3221/5222

Plant Propagation PLS 3221/5222 Plant Propagation PLS 3221/5222 Dr. Sandra Wilson Dr. Mack Thetford Chapter 2 Introduction to the Biology of Plant Propagation -A review- 1 The Plant Breeder and the Plant Propagator Plant Breeder, The

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

Title. Author(s)NIIZEKI, Minoru. CitationJournal of the Faculty of Agriculture, Hokkaido Univ. Issue Date Doc URL. Type.

Title. Author(s)NIIZEKI, Minoru. CitationJournal of the Faculty of Agriculture, Hokkaido Univ. Issue Date Doc URL. Type. Title Studies on Plant Cell and Tissue Culture : Ⅵ. Karyot Nicotiana Species Author(s)NIIZEKI, Minoru CitationJournal of the Faculty of Agriculture, Hokkaido Univ Issue Date 1975-12 Doc URL http://hdl.handle.net/2115/12898

More information

Chapter 11 INTRODUCTION TO GENETICS

Chapter 11 INTRODUCTION TO GENETICS Chapter 11 INTRODUCTION TO GENETICS 11-1 The Work of Gregor Mendel I. Gregor Mendel A. Studied pea plants 1. Reproduce sexually (have two sex cells = gametes) 2. Uniting of male and female gametes = Fertilization

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

Determination of the Crossing Barriers in Hybridization of Cucumis sativus and Cucumis melo

Determination of the Crossing Barriers in Hybridization of Cucumis sativus and Cucumis melo Determination of the Crossing Barriers in Hybridization of Cucumis sativus and Cucumis melo V. Ondřej, B. Navrátilová and A. Lebeda Palacký University, Faculty of Science, Department of Botany, Šlechtitelů

More information

Asexual & Plant Reproduction

Asexual & Plant Reproduction For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ sexual & Plant Reproduction Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International

More information