Data visualization and clustering: an application to gene expression data

Size: px
Start display at page:

Download "Data visualization and clustering: an application to gene expression data"

Transcription

1 Data visualization and clustering: an application to gene expression data Francesco Napolitano Università degli Studi di Salerno Dipartimento di Matematica e Informatica DAA Erice, April 2007

2 Thanks to Dipartimento di Matematica e Informatica, University of Salerno A. Ciaramella (*), F. Iorio (**), G. Raiconi, R. Tagliaferri. Dipartimento di Scienze Fisiche, University Federico II of Naples G. Miele, A. Staiano (*), G. Longo Complex Disease Genetics Unit, Dpt. of Cellular and Molecular Biology and Pathology "L. Califano" University Federico II of Naples S. Cocozza, M. Pinelli (*) Currently with Parthenope University of Naples (**) Currently with Telethon Institute of Genetics and Medicine, Naples

3 Introduction Genomic data analysis is an example of hard data mining challenge. In fact genomic datasets are usually noisy and big, both in the number of genes to be analized and in their dimensionality. We propose a visual and interactive approach applied to the analysis of the HeLa Cell dataset.

4 Human Cell Cycle Gene Expression Data The complete dataset was obtained by a DNA microarray (*). The extracted values refer to the ratio between the two microarray channels (Cy5/Cy3). In (**) 1334 were extracted basing on the periodicity of their expression values. They also performed an hierarchical clustering on the dataset. We used the data from the experiment which provided more information and less missing values (TT3 in the next figure) and tried to explore more clustering possibilities. (*) (**) M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown, D. Botstein. (2002) Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors, Molecular Biology of the Cell, vol. 13,

5 Dataset overview

6 The space of clusterizations for a dataset Clusterization 1 Initialization 1 Clusterization 2 dataset Clustering Method 1 Clustering Method 2 Parameter set 1 Parameter set 2 Parameter set N Initialization 2 Which one is the best? Initialization P Clusterization Q Clustering Method M

7 Which one is the best? Which ones are good?

8 Clustering the HeLa cell dataset We try various approaches to explore other solutions for the clustering of the HeLa cell dataset. We seek for both similar and different solutions to the one proposed in the referred paper. The clustering process will always be divided into two steps, the first of which will enable human interaction for the second by reducing the number of objects to deal with.

9 How many clusters? Stability of the clusterization of a dataset is seen as how much it is likely to be produced by a clustering procedure. This phenomenon can be estimated through the comparison of clusterings performed on subsamples of the dataset. Comparison between clusterizations is performed through classical measures (such as Mionkowski Index, Jaccard Coefficient, correlation) or entropy based measures (such as the entropy of the confusion matrix between clusterizations). Averaging over the similarities between the clusterizations of subsamples, a final value for the stability of the clusterization of the whole dataset is found. A good choice for the number of clusters can be the one giving maximum stability.

10 Clusterization 1 We choose PPS Parameter set 1 Initialization 1 Initialization 2 Clusterization 2 Clustering Method 1 Parameter set 2 Clusterization Q dataset Clustering Method 2 Parameter set N Initialization P We choose PCA We use random projections of the preprocessed HeLa dataset Clustering Method M We vary the number of neurons between 12 and 150

11 Stability of the HeLa cell clusterization through PPS

12 Clusters reliability Once chosen a set of parameters, the reliability of the clusters obtained using it can be assessed by means of subsampling techniques.

13 Clusterization 1 We choose PPS Parameter set 1 Initialization 1 Initialization 2 Clusterization 2 Clustering Method 1 Parameter set 2 Clusterization Q dataset Clustering Method 2 Parameter set N Initialization P We choose PCA We use subsets of the preprocessed HeLa dataset Clustering Method M We choose some parameter set according to the previous analysis

14 Clusters reliability: The Fuzzy Similarity Tool Exploiting the fuzzy similarity information, a subset of the patterns obeying a given reliability threshold can be extracted. The higher the requested reliability, the more the presence of outliers and the smaller the clusters.

15 The 62 clusters obtained with PPS We choose 62 as the number of clusters, being a good compromise between the stability of the clusterization and the reliability of the clusters. Also, 62 is a number of objects a human can directly deal with, thus allowing the next interactive step.

16 Interactive agglomeration The next phase consists in merging the clusters found in the first phase through the interactive agglomeration tool.

17 Interactive Hierarchical Agglomeration

18 Biological findings: cluster comparison 8 our cluster 6 4 Whitfield cluster Whitfield unlabelled Cluster associated with DNA replication in Whitfield et al. turned out to be less characterized than our corresponding cluster. Many of the unlabelled clusters, in fact, are actually associated with DNA replication.

19 Further exploring the space of clusterizations Clusterization 1 We try PPS, SOM and K-means Initialization 1 Clusterization 2 Clustering Method 1 Parameter set 1 Parameter set 2 Initialization 2 Clusterization Q dataset We start form the preprocessed HeLa dataset Clustering Method 2 Clustering Method M Parameter set N Initialization P We choose 60 As the number of neurons (62 for PPS) We try random initializations

20 K-means Clustering Map KMS Clustering Map for HeLa Distorsion Histogram Distances Histogram K-means is performed 100 times with K=60 and random initialization. Using MDS, each clusterization is mapped to a point on the plane, exploiting an entropy based similarity measure. The map is colored according to a fitness function, defined as the sum of clusters distorsions. Clusterizations 34, 65, 66 are extracted for next steps

21 SOM Clustering Map SOM Clustering Map for HeLa Distorsion Histogram Distances Histogram SOM clustering is performed 100 times with K=60 and random initialization. Using MDS, each clusterization is mapped to a point on the plane, exploiting an entropy based similarity measure. The map is colored according to a fitness function, defined as the sum of clusters distorsions. Clusterizations 42, 49, 100 are extracted for next steps

22 PPS Clustering Map PPS Clustering Map for HeLa Distorsion Histogram Distances Histogram PPS clustering is performed 100 times with K=62 and random initialization. Using MDS, each clusterization is mapped to a point on the plane, exploiting an entropy based similarity measure. The map is colored according to a fitness function, defined as the sum of clusters distorsions. Clusterization 88 is extracted for next steps

23 Comparison between SOM and K- Means candidate clusterizations F0.5 SOM 100 SOM 42 SOM 49 KMS 34 KMS 66 KMS 65 SOM ,7192 0,6788 0,7179 0,7068 0,6841 SOM42 0, ,704 0,7398 0,7243 0,7111 SOM49 0,6786 0, ,708 0,7184 0,6821 KMS65 0,7177 0,7346 0, ,7139 0,6939 KMS66 0,7068 0,7194 0,7186 0, ,6956 KMS34 0,6881 0,7103 0,6863 0,6981 0,6996 1

24 Comparison of the biological functionalities of our clusters (SOM 42) with the ones in Whitfield et al. Other DNA Repl. early DNA Repl. late Histone Tubulin Spindle Assembly Mitotic Surv Cell Adhesion Chromosome metab RAS Signal. Trasd. Description establishment and/or maintenance of chromatin architecture nucleotide biosynthesis neurophysiological process response to DNA damage stimulus transcription from RNA polymerase II promoter transport cell proliferation development sister chromatid segregation cell cycle

25 Comparing biological functionalities of our clusters (KMS 34) with the ones in Whitfield et al. Other DNA Repl. early DNA Repl. late Histone Tubulin Spindle Assembly Mitotic Surv Cell Adhesion Chromosome metab RAS Signal. Trasd. Description signal transduction development cell proliferation DNA replication transport DNA repair cell cycle chromosome organization and biogenesis nitrogen compound metabolism sister chromatid segregation

26 Comparing biological functionalities of our clusters (PPS) with the ones in Whitfield et al. Other DNA Repl. early DNA Repl. late Histone Tubulin Spindle Assembly Mitotic Surv Cell Adhesion Chromosome metab RAS Signal. Trasd. Description DNA metabolism cell cycle regulation of transcription, DNA-dependent cell proliferation sister chromatid segregation transport neurophysiological process

27 Conclusions The problem of clustering is complex, allowing for many feasible solutions to be investigated. Such complexity can be dealt with the help of visual and interactive tools together in addition to standard analytic techniques. Understanding of datasets such as HeLa cell, that is hard both in size and complexity, is greatly helped by visual inspection and data interaction.

Analyzing Microarray Time course Genome wide Data

Analyzing Microarray Time course Genome wide Data OR 779 Functional Data Analysis Course Project Analyzing Microarray Time course Genome wide Data Presented by Xin Zhao April 29, 2002 Cornell University Overview 1. Introduction Biological Background Biological

More information

Chapter 12: The Cell Cycle

Chapter 12: The Cell Cycle Name Period Chapter 12: The Cell Cycle Overview: 1. What are the three key roles of cell division? State each role, and give an example. Key Role Example 2. What is meant by the cell cycle? Concept 12.1

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO:

1 GO: regulation of cell size E-04 2 GO: negative regulation of cell growth GO: Table S2: The biological modulated by mir-5701 Sr. No Term Id 1 Term Name 2 Hit Gene Number 3 P-Value 4 1 GO:0008361 regulation of cell size 9 4.37E-04 2 GO:0030308 negative regulation of cell growth 8

More information

Discovering modules in expression profiles using a network

Discovering modules in expression profiles using a network Discovering modules in expression profiles using a network Igor Ulitsky 1 2 Protein-protein interactions (PPIs) Low throughput measurements: accurate, scarce High throughput: more abundant, noisy Large,

More information

Chapter 11: The Continuity of Life: Cellular Reproduction

Chapter 11: The Continuity of Life: Cellular Reproduction Chapter 11: The Continuity of Life: Cellular Reproduction Chapter 11: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of

More information

Fuzzy Clustering of Gene Expression Data

Fuzzy Clustering of Gene Expression Data Fuzzy Clustering of Gene Data Matthias E. Futschik and Nikola K. Kasabov Department of Information Science, University of Otago P.O. Box 56, Dunedin, New Zealand email: mfutschik@infoscience.otago.ac.nz,

More information

CHAPTER 12 - THE CELL CYCLE (pgs )

CHAPTER 12 - THE CELL CYCLE (pgs ) CHAPTER 12 - THE CELL CYCLE (pgs. 228-245) CHAPTER SEVEN TARGETS I. Describe the importance of mitosis in single-celled and multi-cellular organisms. II. Explain the organization of DNA molecules and their

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

Xiaosi Zhang. A thesis submitted to the graduate faculty. in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Xiaosi Zhang. A thesis submitted to the graduate faculty. in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE GENE EXPRESSION PATTERN ANALYSIS Xiaosi Zhang A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Bioinformatics and Computational

More information

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction? Chapter 11: The Continuity of Life: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of Each Daughter Cell: 1) Necessary genomic

More information

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell.

Chapter 12: The Cell Cycle. 2. What is the meaning of genome? Compare your genome to that of a prokaryotic cell. Name: AP Bio Chapter 12: The Cell Cycle 12.1 Cell division results in genetically identical daughter cells 1. What is meant by the cell cycle? 2. What is the meaning of genome? Compare your genome to that

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Chapter 9 Active Reading Guide The Cell Cycle

Chapter 9 Active Reading Guide The Cell Cycle Name: AP Biology Mr. Croft Chapter 9 Active Reading Guide The Cell Cycle 1. Give an example of the three key roles of cell division. Key Role Reproduction Example Growth and Development Tissue Renewal

More information

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase.

A. Incorrect! The Cell Cycle contains 4 distinct phases: (1) G 1, (2) S Phase, (3) G 2 and (4) M Phase. Molecular Cell Biology - Problem Drill 21: Cell Cycle and Cell Death Question No. 1 of 10 1. Which of the following statements about the cell cycle is correct? Question #1 (A) The Cell Cycle contains 3

More information

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders 1. Clearly explain the difference between the following: a) chromosomes and chromatin

More information

Guided Notes Unit 4: Cellular Reproduction

Guided Notes Unit 4: Cellular Reproduction Name: Date: Block: Chapter 5: Cell Growth and Division I. Background Guided Notes Unit 4: Cellular Reproduction a. "Where a cell exists, there must have been a preexisting cell..." - Rudolf Virchow b.

More information

S1 Gene ontology (GO) analysis of the network alignment results

S1 Gene ontology (GO) analysis of the network alignment results 1 Supplementary Material for Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model Hyundoo Jeong 1, Xiaoning Qian 1 and

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA Unit Four: Cell Cycle, Mitosis and Meiosis I. Concept Review A. Why is carbon often called the building block of life? B. List the four major macromolecules. C. Complete the chart below. Monomer Polymer

More information

A Few Terms: When and where do you want your cells to divide?

A Few Terms: When and where do you want your cells to divide? Today: - Lab 4 Debrief - Mitosis - Lunch -Meiosis Other: Blood Drive Today! TIME: 11:00am 1:00pm + 2:00pm 5:00pm PLACE: Baxter Events Center Thinking About Mitosis When and where do you want your cells

More information

Cell Division. Mitosis 11/8/2016

Cell Division. Mitosis 11/8/2016 Cell division consists of two phases, nuclear division followed by cytokinesis. Nuclear division divides the genetic material in the nucleus, while cytokinesis divides the cytoplasm. There are two kinds

More information

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Understand how a simple biochemical oscillator can drive the

More information

Outline for today s lecture (Ch. 13)

Outline for today s lecture (Ch. 13) Outline for today s lecture (Ch. 13) Sexual and asexual life cycles Meiosis Origins of Genetic Variation Independent assortment Crossing over ( recombination ) Heredity Transmission of traits between generations

More information

CELL REPRODUCTION. Mitotic M phase Mitosis. Chromosomes divide. Cytokinesis. Cytoplasm and cell membrane divide. Chromosomes as Packaged Genes

CELL REPRODUCTION. Mitotic M phase Mitosis. Chromosomes divide. Cytokinesis. Cytoplasm and cell membrane divide. Chromosomes as Packaged Genes CELL REPRODUCTION Kimberly Lozano Biology 490 Spring 2010 CELL CYCLE Interphase G1: Growth (1) New organelles form within the cell. S: Synthesis Cell duplicates its DNA. G2: Growth (2) Cell prepares for

More information

Analysis and Simulation of Biological Systems

Analysis and Simulation of Biological Systems Analysis and Simulation of Biological Systems Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro,

More information

Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis

Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis Title Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis Author list Yu Han 1, Huihua Wan 1, Tangren Cheng 1, Jia Wang 1, Weiru Yang 1, Huitang Pan 1* & Qixiang

More information

Differential Modeling for Cancer Microarray Data

Differential Modeling for Cancer Microarray Data Differential Modeling for Cancer Microarray Data Omar Odibat Department of Computer Science Feb, 01, 2011 1 Outline Introduction Cancer Microarray data Problem Definition Differential analysis Existing

More information

Bacterial Genetics & Operons

Bacterial Genetics & Operons Bacterial Genetics & Operons The Bacterial Genome Because bacteria have simple genomes, they are used most often in molecular genetics studies Most of what we know about bacterial genetics comes from the

More information

Introduction to clustering methods for gene expression data analysis

Introduction to clustering methods for gene expression data analysis Introduction to clustering methods for gene expression data analysis Giorgio Valentini e-mail: valentini@dsi.unimi.it Outline Levels of analysis of DNA microarray data Clustering methods for functional

More information

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Systems Biology-Models and Approaches Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA. Taxonomy Study external

More information

The Cell Cycle. Chapter 12

The Cell Cycle. Chapter 12 The Cell Cycle Chapter 12 Why are cells small? As cells get bigger they don t work as well WHY? Difficulties Larger Cells Have: More demands on its DNA Less efficient in moving nutrients/waste across its

More information

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE COURSE OUTLINE 1 COURSE GENERAL INFORMATION 1 Course Title & Course Code Molecular Biology: 2 Credit (Contact hour) 3 (2+1+0) 3 Title(s) of program(s) within which the subject is taught. Preparatory Program

More information

Virginia Western Community College BIO 101 General Biology I

Virginia Western Community College BIO 101 General Biology I BIO 101 General Biology I Prerequisites Successful completion of MTE 1, 2, 3, 4, and 5; and a placement recommendation for ENG 111, co-enrollment in ENF 3/ENG 111, or successful completion of all developmental

More information

Topographic Independent Component Analysis of Gene Expression Time Series Data

Topographic Independent Component Analysis of Gene Expression Time Series Data Topographic Independent Component Analysis of Gene Expression Time Series Data Sookjeong Kim and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and XY in males.

A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and XY in males. Multiple Choice Use the following information for questions 1-3. A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and

More information

Cell Reproduction. Objectives

Cell Reproduction. Objectives Cell Reproduction Lecture 10 Objectives At the end of this series of lectures you should be able to: Define terms. Describe the functions of cellular reproduction. Compare the parent offspring relationship

More information

New properties emerge at successive levels of biological organization.

New properties emerge at successive levels of biological organization. THEMES IN THE STUDY OF LIFE New properties emerge at successive levels of biological organization. The cell is an organism s basic unit of structure and function. (generalized animal, plant, and bacterial

More information

IDENTIFYING BIOLOGICAL PATHWAYS VIA PHASE DECOMPOSITION AND PROFILE EXTRACTION

IDENTIFYING BIOLOGICAL PATHWAYS VIA PHASE DECOMPOSITION AND PROFILE EXTRACTION IDENTIFYING BIOLOGICAL PATHWAYS VIA PHASE DECOMPOSITION AND PROFILE EXTRACTION 2691 Yi Zhang and Zhidong Deng * Department of Computer Science, Tsinghua University Beijing, 100084, China * Email: michael@tsinghua.edu.cn

More information

10.2 The Process of Cell Division

10.2 The Process of Cell Division 10.2 The Process of Cell Division Lesson Objectives Describe the role of chromosomes in cell division. Name the main events of the cell cycle. Describe what happens during the four phases of mitosis. Describe

More information

2015 FALL FINAL REVIEW

2015 FALL FINAL REVIEW 2015 FALL FINAL REVIEW Biomolecules & Enzymes Illustrate table and fill in parts missing 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Class XI Chapter 10 Cell Cycle and Cell Division Biology

Class XI Chapter 10 Cell Cycle and Cell Division Biology Question 1: What is the average cell cycle span for a mammalian cell? The average cell cycle span for a mammalian cell is approximately 24 hours. Question 2: Distinguish cytokinesis from karyokinesis.

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Why do we have to cut our hair, nails, and lawn all the time?

Why do we have to cut our hair, nails, and lawn all the time? Chapter 5 Cell Reproduction Mitosis Think about this Why do we have to cut our hair, nails, and lawn all the time? EQ: Why is cell division necessary for the growth & development of living organisms? Section

More information

3.a.2- Cell Cycle and Meiosis

3.a.2- Cell Cycle and Meiosis Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. 3.a.2- Cell Cycle and Meiosis EU 3.A: Heritable information provides for continuity of life.

More information

BIOLOGY LTF DIAGNOSTIC TEST MEIOSIS & MENDELIAN GENETICS

BIOLOGY LTF DIAGNOSTIC TEST MEIOSIS & MENDELIAN GENETICS 016064 BIOLOGY LTF DIAGNOSTIC TEST MEIOSIS & MENDELIAN GENETICS TEST CODE: 016064 Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions.

More information

Biology I Fall Semester Exam Review 2014

Biology I Fall Semester Exam Review 2014 Biology I Fall Semester Exam Review 2014 Biomolecules and Enzymes (Chapter 2) 8 questions Macromolecules, Biomolecules, Organic Compunds Elements *From the Periodic Table of Elements Subunits Monomers,

More information

CELL CYCLE UNIT GUIDE- Due January 19, 2016

CELL CYCLE UNIT GUIDE- Due January 19, 2016 CELL CYCLE UNIT GUIDE- Due January 19, 2016 Monday Tuesday Wednesday Thursday Friday January 4- No School 5-Cell Cycle/Mitosis 6-Cell Cycle/ Mitosis 7-Mitosis 8-Meiosis Reading Check Quiz #1 sections 5.1-5.5

More information

Number of questions TEK (Learning Target) Biomolecules & Enzymes

Number of questions TEK (Learning Target) Biomolecules & Enzymes Unit Biomolecules & Enzymes Number of questions TEK (Learning Target) on Exam 8 questions 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Lecture #13 10/3 Dr. Wormington

Lecture #13 10/3 Dr. Wormington Lecture #13 10/3 Dr. Wormington The Molecular "Logic" of the Cell Cycle Recap 1. Cdks generally present throughout cell cycle but are inactive w/o cyclin subunits. 2. Cyclin subunits synthesized in discrete

More information

Learning Objectives Chapter 8

Learning Objectives Chapter 8 Learning Objectives Chapter 8 Brief overview of prokaryotic cell replication The three main phases of eukaryotic cell division: Interphase, M phase, C phase Interphase is broken down into three sub-phases

More information

AP* Biology Prep Course

AP* Biology Prep Course AP* Biology Prep Course SYLLABUS Welcome to the FlinnPREP AP* Biology Online Prep Course! Your enrollment in this course is your first step toward a 5 on the AP* Biology exam. FlinnPREP covers fundamental

More information

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook

More information

AP Biology - Cell cycle / division

AP Biology - Cell cycle / division AP Biology - Cell cycle / division Quiz Directions 1. During which stage does DNA replication occur? A. Prophase B. Metaphase C. Anaphase D. none of these 2. At what phase in the cell cycle does DNA replication

More information

Cellular Division. copyright cmassengale

Cellular Division. copyright cmassengale Cellular Division 1 Cell Division All cells are derived from pre- existing cells New cells are produced for growth and to replace damaged or old cells Differs in prokaryotes (bacteria) and eukaryotes (protists,

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes.

Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Big Idea 3: Living systems store, retrieve, transmit, and respond to information essential to life processes. Enduring understanding 3.A: Heritable information provides for continuity of life. Essential

More information

Principles of Genetics

Principles of Genetics Principles of Genetics Snustad, D ISBN-13: 9780470903599 Table of Contents C H A P T E R 1 The Science of Genetics 1 An Invitation 2 Three Great Milestones in Genetics 2 DNA as the Genetic Material 6 Genetics

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-10

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-10 Chapter-10 CELL CYCLE AND CELL DIVISION POINTS TO REMEMBER Cell cycle : The sequence of events by which a cell duplicates its genome, synthesis the other constitutents of the cell and eventually divides

More information

Biology Chapter 10 Test: Sexual Reproduction and Genetics

Biology Chapter 10 Test: Sexual Reproduction and Genetics Class: Date: Biology Chapter 10 Test: Sexual Reproduction and Genetics True/False Indicate whether the statement is true or false. 1. A gamete has one-half the number of chromosomes of a regular body cell.

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design VCE BIOLOGY 2006 2014 Relationship between the key knowledge and key skills of the 2000 2005 Study Design and the 2006 2014 Study Design The following table provides a comparison of the key knowledge (and

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Texas Biology Standards Review. Houghton Mifflin Harcourt Publishing Company 26 A T

Texas Biology Standards Review. Houghton Mifflin Harcourt Publishing Company 26 A T 2.B.6. 1 Which of the following statements best describes the structure of DN? wo strands of proteins are held together by sugar molecules, nitrogen bases, and phosphate groups. B wo strands composed of

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Molecular Biology: from sequence analysis to signal processing. University of Sao Paulo. Junior Barrera

Molecular Biology: from sequence analysis to signal processing. University of Sao Paulo. Junior Barrera Molecular Biology: from sequence analysis to signal processing Junior Barrera University of Sao Paulo Layout Introduction Knowledge evolution in Genetics Data acquisition Data Analysis A system for genetic

More information

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total)

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 12 The Cell Cycle Unit 5: Cell Division and Development Guided

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Describe the process of cell division in prokaryotic cells. The Cell Cycle

Describe the process of cell division in prokaryotic cells. The Cell Cycle The Cell Cycle Objective # 1 In this topic we will examine the cell cycle, the series of changes that a cell goes through from one division to the next. We will pay particular attention to how the genetic

More information

2. is the period of growth and development for a cell. 3. During interphase, most cells go through three stages rapid growth and

2. is the period of growth and development for a cell. 3. During interphase, most cells go through three stages rapid growth and Chapter 5 Lesson 1- General Lesson Outline Directions: Use the words below to fill in the outline of the text from lesson one. If the word is used more than once, it is followed by the number of times

More information

MGC New Life Christian Academy

MGC New Life Christian Academy A. Meiosis Main Idea: Meiosis produces haploid gametes. Key Concept: Asexual reproduction involves one parent and produces offspring that are genetically identical to each other and to the parent. Sexual

More information

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why?

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why? The Cell Cycles Mitosis and Meiosis Essential question: How do cells reproduce and why? Objectives Section 10.1 Explain why cells divide in terms of growth and cell size Review - Types of Cell Division

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Estimating Biological Function Distribution of Yeast Using Gene Expression Data

Estimating Biological Function Distribution of Yeast Using Gene Expression Data Journal of Image and Graphics, Volume 2, No.2, December 2 Estimating Distribution of Yeast Using Gene Expression Data Julie Ann A. Salido Aklan State University, College of Industrial Technology, Kalibo,

More information

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis 4. Sexual Life

More information

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science

Gene Ontology. Shifra Ben-Dor. Weizmann Institute of Science Gene Ontology Shifra Ben-Dor Weizmann Institute of Science Outline of Session What is GO (Gene Ontology)? What tools do we use to work with it? Combination of GO with other analyses What is Ontology? 1700s

More information

Mitosis Verses Meiosis

Mitosis Verses Meiosis Mitosis Verses Meiosis Name LT: I can compare mitosis and meiosis using various resources. Standards: 4.1b, 4.1c Visit the following links: https://www.youtube.com/watch?v=f-ldpgefahi https://www.youtube.com/watch?v=vzdmg7ke69g

More information

Class XI Chapter 10 Cell Cycle and Cell Division Biology

Class XI Chapter 10 Cell Cycle and Cell Division Biology Question 1: What is the average cell cycle span for a mammalian cell? The average cell cycle span for a mammalian cell is approximately 24 hours. Question 2: Distinguish cytokinesis from karyokinesis.

More information

Cellular Reproduction = Cell Division. Passes on Genes from Cells to Cells Reproduction of Organisms

Cellular Reproduction = Cell Division. Passes on Genes from Cells to Cells Reproduction of Organisms Cellular Reproduction = Cell Division Passes on Genes from Cells to Cells Reproduction of Organisms Genes DNA Chromatin fiber Chromosomes Fig. 9.6 Genes, the segments of DNA, are part of chromatin fiber

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide Name: Period: Date: AP Bio Module 6: Bacterial Genetics and Operons, Student Learning Guide Getting started. Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get

More information

CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS

CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS Cell cycle It is a series of events that takes place in a cell, leading to the formation of two daughter cells from a single mother cell.

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Cell Division (Outline)

Cell Division (Outline) Cell Division (Outline) 1. Overview of purpose and roles. Comparison of prokaryotic and eukaryotic chromosomes and relation between organelles and cell division. 2. Eukaryotic cell reproduction: asexual

More information

Name Class Date. Term Definition How I m Going to Remember the Meaning

Name Class Date. Term Definition How I m Going to Remember the Meaning 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

Question 1: What is the average cell cycle span for a mammalian cell? The average cell cycle span for a mammalian cell is approximately 24 hours. Question 2: Distinguish cytokinesis from karyokinesis.

More information

AP Biology Fall Semester Set 1

AP Biology Fall Semester Set 1 1. During which stage does DNA replication occur? A. Prophase B. Metaphase C. Anaphase D. none of these 2. At what phase in the cell cycle does DNA replication occur? A. G1 B. S C. G2 D. M 3. Which of

More information

Big Idea 3B Basic Review. 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d.

Big Idea 3B Basic Review. 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d. Big Idea 3B Basic Review 1. Which disease is the result of uncontrolled cell division? a. Sickle-cell anemia b. Alzheimer s c. Chicken Pox d. Cancer 2. Cancer cells do not exhibit, which can lead to the

More information

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP Dynamical Modeling in Biology: a semiotic perspective Junior Barrera BIOINFO-USP Layout Introduction Dynamical Systems System Families System Identification Genetic networks design Cell Cycle Modeling

More information

Biology Semester Review

Biology Semester Review Chapter 1 The Science of Biology Biology Semester Review 1 1 What is Science? One goal of science is to provide natural explanations for events in the natural world. Science also aims to use those explanations

More information

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis

Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis Chapter 6: Cell Growth and Reproduction Lesson 6.1: The Cell Cycle and Mitosis No matter the type of cell, all cells come from preexisting cells through the process of cell division. The cell may be the

More information