Bax, Bak and beyond mitochondrial performance in apoptosis

Size: px
Start display at page:

Download "Bax, Bak and beyond mitochondrial performance in apoptosis"

Transcription

1 STATE-OF-THE-ART REVIEW Bax, Bak and beyond mitochondrial performance in apoptosis Aida Pe~na-Blanco 1 and Ana J. Garcıa-Saez 1,2 1 Interfaculty Institute of Biochemistry, T ubingen University, Germany 2 Max-Planck Institute for Intelligent Systems, Stuttgart, Germany Keywords apoptosis; BAK; BAX; BCL-2 family; DRP1; mitochondria; mitochondrial outer membrane permeabilization Correspondence A. J. Garcıa-Saez, Interfaculty Institute of Biochemistry, T ubingen University, Hoppe- Seyler-Straße 4, Tübingen, Germany Fax: Tel: ana.garcia@uni-tuebingen.de (Received 2 June 2017, revised 12 July 2017, accepted 26 July 2017) doi: /febs Bax and Bak are members of the Bcl-2 family and core regulators of the intrinsic pathway of apoptosis. Upon apoptotic stimuli, they are activated and oligomerize at the mitochondrial outer membrane (MOM) to mediate its permeabilization, which is considered a key step in apoptosis. However, the molecular mechanism underlying Bax and Bak function has remained a key question in the field. Here, we review recent structural and biophysical evidence that has changed our understanding of how Bax and Bak promote MOM permeabilization. We also discuss how the spatial regulation of Bcl-2 family preference for binding partners contributes to regulate Bax and Bak activation. Finally, we consider the contribution of mitochondrial composition, dynamics and interaction with other organelles to apoptosis commitment. A new perspective is emerging, in which the control of apoptosis by Bax and Bak goes beyond them and is highly influenced by additional mitochondrial components. Introduction Apoptosis is an essential programmed cell death pathway, since it is indispensable for tissue homeostasis, embryonic development and immunity. Importantly, deregulated apoptosis has a major role in tumor development, neurodegenerative disorders, and autoimmune diseases [1 3]. Due to its biological relevance and therapeutic applications, apoptosis has been extensively studied during the last three decades. In vertebrates, the Bcl-2 family of proteins controls and regulates the intrinsic or mitochondrial apoptotic pathway. This pathway promotes mitochondrial outer membrane permeabilization (MOMP). MOMP allows the release of proapoptotic factors like cytochrome c and SMAC/DIABLO from the mitochondria into the cytosol to activate the caspase cascade. MOMP is usually considered the point of no return in the apoptotic pathway. After MOMP, caspase activation takes place often within minutes, leading to cell death [4,5]. The Bcl-2 family comprises at least 18 members that are classified into three groups according to their function in apoptosis and the number of Bcl-2 homology (BH) domains they possess [6,7]: (a) the antiapoptotic or prosurvival Bcl-2 proteins (Bcl-2, Bcl-xL, Bcl-w, Mcl1, and A1), which contain four BH domains BH1- BH4 and suppress cell death by binding and inhibiting the proapoptotic Bcl-2 proteins; (b) the proapoptotic effector proteins Bax and Bak, which present BH1- BH4 and directly promote MOMP; and (c) the BH-3 only proteins, which, except Bid, only contain a highly conserved BH3 domain and are very heterogeneous. They have evolved to sense cellular stress and initiate apoptosis. The BH3-only proteins can be further Abbreviations AFM, atomic force microscopy; BH, Bcl-2 homology; Drp1, dynamin-related protein 1; IMS, intermembrane space; Mfn2, mitofusin 2; MOM, mitochondrial outer membrane; MOMP, mitochondrial outer membrane permeabilization; OPA1, optic atrophy The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

2 A. Pe~na-Blanco and A. J. Garcıa-Saez Bax/Bak and mitochondria in apoptosis classified as direct activators if they directly interact and activate Bax and Bak or sensitizers if they bind antiapoptotic proteins and displace the direct activators from them. [4]. In order to control apoptosis, the Bcl-2 proteins interact with each other and generate a complex interaction network. Thereby, their interplay determines whether a cell lives or dies. The main action of the Bcl-2 proteins occurs at the mitochondria. In healthy cells, Bax and Bak shuttle between cytosol and mitochondrial outer membrane (MOM) with different rates [8 10]. Under apoptotic conditions, Bax and Bak are activated and accumulate at the MOM, where they oligomerize and mediate MOMP, which leads to the release of proapoptotic factors, such as cytochrome c [11,12]. In addition, Bax/Bak regulation by antiapoptotic proteins and BH3-only proteins also takes place at the MOM [12,13]. However, mitochondria are not simple spectators of the function of the Bcl-2 proteins, but they also play an active role in the control of apoptosis. Mitochondrial composition, dynamics, and interactions with other organelles have been shown to impact on the commitment to cell death, although the molecular mechanisms remain poorly defined [14 16]. This suggests that the complexity of the regulation of apoptosis by the Bcl-2 proteins goes beyond the family. Here, we review the recent findings regarding Bax and Bak activation, dimerization and oligomerization to form apoptotic pores at the MOM. We also consider how additional players are involved in the function of Bax and Bak to mediate MOMP. Concretely, we discuss the interplay of Bax and Bak with the rest of the Bcl-2 family and, in addition, we draw attention to mitochondria as the crucial target for apoptosis commitment. Bax and Bak transition into killers How are Bax and Bak activated to promote MOMP? Under normal conditions, Bax is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by Bcl-xL, which avoids accumulation of toxic Bax levels at the MOM [8]. In this inactive soluble form, Bax has a globular structure comprising nine a helices arranged around a central hydrophobic core composed by helices a2 a5 [17] (Fig. 1A). This structural organization delimits a hydrophobic groove. Importantly, Bax hydrophobic groove accommodates the transmembrane domain of the C-terminal helix a9, maintaining its soluble conformation [17]. Nevertheless, experiments in cells using F oster resonance energy transfer indicated that the C-terminal helix a9 is exposed to the cellular environment, which may facilitate the dynamic equilibrium of Bax between the cytosol and the mitochondria or its binding to other Bcl-2 proteins [18]. It has been long considered that inactive cytosolic Bax exists only as a monomer. However, a recent study has reported that Bax also has an inactive dimer conformation arranged by the N-terminal region of one monomer and the C-terminal region of the other, which includes helix a9 [19]. This autoinhibited dimeric form dissociates to Bax monomers that can be inserted at the MOM upon activation, suggesting a novel Bax activation step and an increased complexity in the regulation of apoptosis. In contrast, in healthy conditions, Bak is mainly mitochondrial with its transmembrane domain (a9) spanning the MOM [20] and presents only a small cytosolic fraction due to retrotranslocation [9]. There is so far no evidence whether inactive Bak could also be found as a dimer in any of the environments. At the membrane, its C-terminal region may not be available for dimerization since it is already inserted in the lipid bilayer. Whether the minor soluble fraction is also able to form autoinhibited dimers remains to be shown. The potential interplay between retrotranslocation and the autoinhibitory mechanism of Bax, and maybe Bak, is another open question. During apoptosis, numerous conformational changes must occur in Bax and Bak to be able to permeabilize the MOM (Fig. 1B). Upon cytotoxic stress, Bax accumulates at the mitochondria [12] and becomes activated by interaction with BH3-only proteins. Two binding sites have been reported for Bax: (a) the rear activation site (helices a1 a6) on the opposite side of the hydrophobic groove, which has been identified by NMR studies using full-length Bax and a stapled Bim- BH3 peptide [21,22], (b) and the canonical hydrophobic groove, which has been solved using crystal structures of truncated versions of Bax in complex with Bid-BH3 peptide and detergents [23]. Interactions of BH3-only proteins with the rear activation site promote the displacement of the loop between helices a1 and a2, which leads to the mobilization of Bax transmembrane domain from the hydrophobic groove and allows Bax insertion into the membrane [11,22] (Fig. 1B). Activator BH3-only proteins can also bind the canonical hydrophobic groove, which leads to the displacement to the cytosol of the N-terminal region preceding helix a1 and the rearrangement of the a2/ BH3 domain. This allows the transient exposure of the BH3 domain, a crucial step for Bax dimerization [23,24]. Therefore, activator BH3-only proteins The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies 417

3 Bax/Bak and mitochondria in apoptosis A. Pe~na-Blanco and A. J. Garcıa-Saez Fig. 1. Bax activation, oligomerization and pore formation at the MOM. (A) Globular Bax is represented using its ribbon visualization (PDB: 1F16): helix a1 (pink), helix a2 (red), helix a3 (orange), helix a4 (yellow), helix a5 (green), helix a6 (blue), helix a7 (cyan), helix a8 (purple), and helix a9 (gray). The transmembrane C-terminal region of the helix a9 is located at the hydrophobic groove, which is composed by helices a2 a5. (B) Proteins are illustrated in their surface representation. Bax (cyan) has a soluble, globular conformation when it is inactive. Upon binding to activator BH3-only proteins (orange), the helix a9 is displaced from the hydrophobic groove, which allows Bax insertion in the membrane. Further rearrangements involve the separation into a dimerization (a2 a5) and a piercing (a6 a9) domain, according to the domain classification in [23,34,35], which allows the exposure of the BH3 domain. The BH3 domain is required for dimerization via BH3-ingroove interaction with another Bax molecule (yellow). Further oligomerization is based on the assembly of dimer units, although the oligomerization interface, in case there is a defined one, still remains unclear. Active Bax dimer topography at the membrane to form a pore is only represented here by the helices a2 a6, where the helix a6 of each monomer lies on the surface of opposite leaflets of the membrane and the dimerization domain (a2 a5) is located at the rim of the pore. It still remains to be elusive whether oligomerization precedes pore formation, if both events occur simultaneously or if only dimerization is sufficient for the opening of the pore. Figure adapted from [48]. (C) Ribbon representation of helices a2 a6 of active Bax dimer at the membrane according to the clamp-like model using the same color code as in A (adapted from [35]). Helices a6 of each monomer are parallel and lay on opposite leaflets of the membrane, whereas helices a2 a5 are placed at the pore edge. promote a stepwise, bimodal activation, in which first Bax is inserted and then the BH3 domain is exposed [24]. According to the kiss-and-run model [25,26], BH3-only proteins only bind transiently to Bax, as they are displaced by the exposed Bax BH3 domain during oligomerization. In the case of Bak, the canonical hydrophobic groove was proposed as the only activation site for activator BH3-only proteins [27,28], but a recent study reported that helix 6 of Bak also participates in the activation by BH3-only proteins [29]. The a1 a2 loop has been identified as an additional activation site in Bak and mitochondrial Bax triggered by generated monoclonal antibodies [30]. This opens exciting possibilities because, although BH3-only proteins do not bind the a1 a2 loop, other Bax/Bak activators may use this novel activation site to promote MOMP. In summary, the molecular mechanism that regulates Bax and Bak initial activation requires the insertion of Bax helix a9 in the membrane and the exposure of the Bax/Bak BH3 domain in order to allow self-assembly with other Bax and Bak molecules. Bax and Bak dimers and higher order oligomers at the mitochondria A number of studies have recently shed new light on the molecular mechanism that regulates Bax and Bak assembly at the membrane. Bax inserts in the bilayer as a monomer [31], but it self-assembles very quickly into higher order oligomers. Interestingly, active Bax exists in the membrane as a mixture of species based on dimer units [31]. Bak also forms dimers before further oligomerization [32] and interdimer interfaces are more labile to detergents than intradimer interactions [33], suggesting an assembly based on dimers units also for Bak. The structural reorganization that drives 418 The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

4 A. Pe~na-Blanco and A. J. Garcıa-Saez Bax/Bak and mitochondria in apoptosis transition from monomer to dimer requires the separation of the dimerization domain (a2 a5) from piercing domain (a6 a8) in Bax and Bak [23,34,35]. This rearrangement allows the transient exposure of their BH3 domain [23,34]. To form dimers, the BH3 domain of a Bax (or Bak) molecule binds to the canonical groove of another Bax (or Bak) molecule, generating a novel symmetric dimer. This process is known as BH3-in-groove interaction [23,36 39]. Based on this, dimers would be the fundamental unit for the conversion of Bax and Bak into killers. However, the structural mechanism that mediates homodimers association into higher order oligomers remains to be defined. Different studies have identified several sites at helices a1, a3, a5, a6, and a9 where Bax and Bak oligomerize [32,39 43]. Recently, cysteine labeling and linkage analysis of full-length Bak in mitochondria suggested that Bak assembly into higher order oligomers proceeded via dimers association in a disordered and lipid-mediated fashion, with no dominant dimer dimer interface that mediates higher order oligomers formation [33]. This result is attractive, because it is consistent with the identification of several dimer association sites found in the literature. Still, several open questions remain. For example, how is the size of oligomers regulated? Bax and Bak seem to participate in combined oligomers [33,37,44], but how are they arranged in these assemblies? Are there additional proteins or lipids in Bax/Bak oligomers? Pore formation by Bax and Bak: from structural insights to macromolecular organization The main action of the executors Bax and Bak is the disruption of the MOM to allow the release of proapoptotic factors to the cytosol. The nature of the pore formed by Bax and Bak at the MOM has been a long-standing question in the apoptotic field. Now, there is increasing evidence supporting a toroidal pore model. A toroidal pore is characterized by the fusion of the outer and inner bilayer leaflets to form a continuous surface at the edge of the pore, which is formed by both lipids and proteins [45]. Spontaneous pore opening in lipid bilayers is very unlikely, but the probability increases when there is a stress at the membrane that increases the membrane tension, for example the accumulation of proteins in one leaflet of the membrane [46]. After a certain membrane tension threshold, a pore opens. In a toroidal pore, the lipids at the rim of the pore bend to avoid the exposure of their hydrophobic acyl chains to the aqueous environment, which creates a high membrane curvature at the pore edge [47]. This high membrane curvature has an energy cost and causes tension (known as line tension because it depends on the pore diameter) that tends to close the pore. The open pore state can therefore be stabilized by decreasing the line tension, which can be achieved by reducing the energy cost of the rim structure with the presence of proteins [6,48]. A recent study using atomic force microscopy (AFM) of full-length Bax on supported lipid membranes showed for the first time that oligomeric full-length Bax is able to reduce the line tension at the edge of the pore, which promotes pore stabilization [49]. During previous years, indirect evidence using artificial membranes had hinted a toroidal pore for Bax. Helix a5 from Bax had been found to decrease the line tension at the pore edge and to form stable pores [50 53]. In addition, Bax pores are tunable in size and can be regulated by protein density at the membrane [54]. Cryoelectron microscopy of liposomes permeabilized by Bax and Bak resulted in large openings [55]. Importantly, the application of novel biophysical approaches in the characterization of Bax and Bak pores have allowed the visualization of Bax pores in artificial membranes and in the mitochondria of apoptotic cells [56,57]. Superresolution microscopy of Bax tagged with GFP revealed the presence of Bax lines, rings and arcs at the MOM in a wide range of sizes [56,57] (Fig. 2A). In addition, data using AFM on supported bilayers (Fig. 2B), electron microscopy of outer membrane vesicles and lipid nanodiscs containing Bax have also supported the formation of toroidal Bax pores without full protein coverage of the pore rim [56,58,59]. However, there is lack of evidence for such pores in the case of Bak. A study using single molecule localization of Bak clusters in situ has determined that Bak protein density is uniform among clusters, although cluster size at apoptotic mitochondria is highly heterogeneous [60]. In this scenario, visualization of Bak pores and characterization of Bak structures in apoptotic cells will be necessary to complete our understanding of MOMP by Bax and Bak. It has been suggested that Bax and Bak could associate as homodimers or heterodimers at the MOM [33,37,44], but further research is needed to confirm whether they cooperate to form a pore. There are several structural models to explain how Bax and Bak are arranged at the mitochondria to form a toroidal pore. In the long-standing umbrella model, helices a5 and a6 were proposed to insert as a hairpin into the MOM [61]. However, this model seems to be incompatible with current data on Bax and Bak activation, which shows that only helix a6 is The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies 419

5 Bax/Bak and mitochondria in apoptosis A. Pe~na-Blanco and A. J. Garcıa-Saez A C B D has been also used to study Bak disposition at the membrane in relation to a lipidic pore. According to this model, BH3-in-groove homodimers are juxtaposed via the a3/a5 interface, which locates on the curved surface of the pore, although its exact location remains unknown. Helices a6 a8 tether the BH3-in-groove region to the a9 helices, which are located at the flat region of the membrane around the lipidic pore [42]. Interestingly, one feature that arises at all length scales of active Bax and Bak organization in the membrane is flexibility: in its structural arrangement beyond helix 6, in the poorly defined mixture of multimeric species based on dimer units and in the size and shape distribution in the macromolecular assemblies in the membrane. To fully understand how Bax and Bak work, it will be critical to find out how this structural plasticity is relevant for function. Fig. 2. Bax rings and arcs in apoptotic cells and supported lipid bilayers. (A B) Superresolution microscopy images of a GFP-Bax ring (A) and arc (B) in apoptotic cells. Scale bar, 100 nm. Figure obtained from [56]. (C D) Atomic force spectroscopy of fulllength Bax on supported lipid bilayers shows the presence of Bax rings (C) and arcs (D) on the membrane. Scale bar, 50 nm. Reproduced, with permission from [48]. shallowly inserted at the membrane [62]. In a later proposed in-plane model, helices a4 and a5 create an aromatic planar surface on the membrane [62], which might increase membrane tension via local curvature stress, leading to pores at the MOM. In this model, the helices a9 are embedded into the lipid bilayer and helices a5 and a6 are only partially inserted. The disposition of Bax and Bak domains with respect to a membrane pore remains unclear in this model. The clamp model, based on double electron electron resonance of active full-length Bax inserted in liposomes, proposes that Bax dimers embrace the edge of the membrane pore thanks to the opening of the hairpin formed by helices a5 and a6 [35] (Fig. 1C). In this clamp-like conformation, the amphipathic helix a6 of each monomer lies on the surface of opposite leaflets of the membrane and the dimerization or latch domain (helices a2 a5) is located at the rim of the pore (Fig. 1B). However, the arrangement of the dynamic C-terminal region of the protein including the respective orientation of helices a9 in the remains unsolved. The clamp model provides a very attractive explanation for how Bax molecules arrange in the context of the MOM pore and stabilize the highly curved membrane structure at the rim. Double electron electron resonance Control of Bax and Bak activity by the Bcl-2 network Interplay among Bcl-2 proteins: models of interaction Bcl-2 proteins form a complex and intricate interaction network, with multiple, parallel interactions in solution and in membranes, whose outcome establishes a threshold or switch for Bax/Bak activation and apoptosis commitment [6]. Traditionally, several models have been proposed to explain the interplay of Bcl-2 proteins in the regulation of apoptosis. The neutralization model (or derepressor ) [63 65] proposes that in apoptosis BH3-only proteins bind and neutralize antiapoptotic Bcl-2 proteins, which displaces and releases constitutive active Bax and Bak from their inhibitory complex with the antiapoptotic Bcl-2 family proteins. The direct activation model [66 68] suggests that, although the subset of sensitizer BH3-only proteins neutralizes the antiapoptotic Bcl-2 homologs, the direct activator BH3-only s are necessary to directly bind and activate Bax and Bak. Here, the antiapoptotic proteins mainly inhibit the direct activators, whereas the sensitizers restrain the antiapoptotic proteins. The embedded together model [69,70] considers that the antiapoptotic proteins inhibit both direct activators and Bax and Bak, while pointing out the importance of the membrane for Bcl-2 family protein/ protein interactions. Later, the unified model combined previous ideas [71] (Fig. 3A) and ranked the efficiency of the interactions: antiapoptotic proteins inhibit apoptosis by sequestering the direct activators (MODE1) or the 420 The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

6 A. Pe~na-Blanco and A. J. Garcıa-Saez Bax/Bak and mitochondria in apoptosis executors Bax and Bak (MODE2), with MODE1 being less efficient than MODE2. At low stress levels, direct activators are inhibited by MODE1 inhibition, whereas in high stress levels there is an increase of unbound direct activators and apoptosis can only be prevented by MODE2 inhibition [71]. Beside these, the steady-state retrotranslocation of Bax from the MOM back to the cytosol mediated by Bcl-xL constitutes an additional inhibitory mechanism that is usually incorporated as MODE 0 [8 10]. The fast Bax retrotranslocation to the cytosol mediated by Bcl-xL avoids Bax accumulation at the mitochondria and ensues cell survival. Finally, the recent interconnected hierarchical model [72] (Fig. 3B) established a sequence of events for the execution of apoptosis. It proposes bimodal mechanisms for the stepwise inhibition of antiapoptotic Bcl-2 family proteins and activation of Bax/Bak by BH3-only proteins, as well as for the neutralization of BH3-only proteins and executioners Bax/Bak by antiapoptotic Bcl-2 proteins. Interestingly, Bax and Bak could be autoactivated when antiapoptotic proteins were downregulated in the absence of direct activators [72]. In agreement with this, genetic deletion of all Bcl-2 proteins and reintroduction of Bax alone was sufficient to induce MOMP [73], which suggested that Bax and Bak do not require activation by BH3-only proteins, although unknown activation factors may be involved in this process. Despite their increasing complexity, these models still fail to describe how the Bcl-2 family regulates apoptosis commitment in a general way. The interplay between positive and negative regulators, together with competing back and forward feeding mechanisms yields a highly intricate signaling network with emergent properties that go beyond the sum of the individual components. In this scenario, a systems approach that provides quantitative understanding of the relative affinities between Bcl-2 proteins in solution and in the membrane environment and incorporates them into a mathematical framework is likely necessary to describe appropriately how Bcl-2 proteins regulate MOMP and make accurate predictions upon system perturbations. A number of attempts have been made to build computational models for the mitochondrial pathway of apoptosis [74]. Some of these models provided information about the events that follow MOMP, such as the caspase signaling pathway [75,76]. High-speed livecell imaging was used to measure the spatial onset of MOMP and allowed the mathematical modeling of MOMP dynamics and pore formation kinetics [77]. In addition, single-cell measurements of Bax translocation were used to model Bax localization and oligomerization in relation to MOMP induction [78]. However, a key handicap in these approaches is the lack of quantitative experimental data for the model parameters. Recently, the quantitative analysis of a minimal Bcl-2 family proteins interactome reconstituted in vitro that considered complexes in solution and in membranes has made a step in this direction and is the basis for the integrated model shown in Fig. 3C [79]. The hierarchy of Bcl-2 family of proteins interactions depended on the environment: membrane association redefined the pattern of complexes formed by Bax, cbid, and Bcl-xL. While Bcl-xL and cbid bound both in solution and in membranes, the complex was stabilized in the lipid environment. In contrast, Bcl-xL bound to Bax only in the membrane and only in the absence of cbid. This indicated that in presence of all three proteins, the inhibitory association of Bcl-xL and cbid dominated over the other heterocomplexes. In this chemically controlled system, Bax could spontaneously activate with a positive feedback mechanism at physiological temperature. The rate of activation was significantly increased by presence of cbid, as expected for a catalyst. Interestingly, Bax could also recruit Bcl-xL to membranes, which was sufficient to retrotranslocate Bax back to solution in absence of other cellular components. The advantage of such approach is that it allows increasing the complexity of the network stepwise and systematically by adding additional components or post-translational modifications. On the other hand, comparable quantitative information in the cellular context will be key to improve the construction of a model that better resembles the physiological conditions of the cell. Modulation of apoptosis by the BH3-only proteins With the exception of Bid, BH3-only proteins are intrinsically disordered proteins whose BH3 domain folds into an amphipathic helix upon binding to Bcl-2 homologs [80]. They have evolved to sense cellular stress and to promote apoptosis by binding to the hydrophobic groove of antiapoptotic proteins in order to restrain their activity and, in the case of direct activators, also to that of Bax and Bak to activate them [68,81]. Subtle differences in the BH3 domains of the BH3-only proteins determine the specificity and affinity for their antiapoptotic partners and their regulatory role in apoptosis. The interactions of the BH3-only proteins tbid, Bad and Bim with the antiapoptotic proteins Bcl-2 and Bcl-xL were measured in live cells using fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer [82]. This study showed that tbid and Bad interact through their BH3 domain with both Bcl-2 and Bcl-xL, whereas Bim The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies 421

7 Bax/Bak and mitochondria in apoptosis A. Pe~na-Blanco and A. J. Garcıa-Saez Fig. 3. Models of the interactions of the Bcl-2 family of proteins. (A) The unified model proposes two modes of regulation by the antiapoptotic proteins. One involves the inhibition of the direct activators BH3-only proteins, preventing them from activating Bax and Bak. The other suggests a direct inhibition of the executors Bax and Bak. Although both inhibitory effects happen in the cell, inhibition of MOMP by the antiapoptotic proteins via sequestering Bax and Bak is more efficient. (B) The interconnected hierarchical model considers the order of the events in the regulation of apoptosis by the Bcl-2 family. The antiapoptotic proteins sequester first the direct activators BH3-only proteins and then the executors Bax and Bak in order to prevent apoptosis. Both the activator and the sensitizer BH3-only proteins inhibit the antiapoptotic proteins to promote cell death. In addition, when antiapoptotic proteins are downregulated in the absence of direct activators, Bax and Bak can be autoactivated. (C) The integrated model based on quantitative data of Bax, Bid and Bcl-xL interactions highlights the role of the membrane in the interactions of the Bcl-2 family of proteins. cbid inhibition by Bcl-xL can take place in the cytosol or the membrane, with the latter more stable. Only in the absence of cbid, Bcl-xL can inhibit Bax at the membrane, suggesting that Bcl-xL/ cbid interaction is dominant. In addition, Bax at the membrane recruits Bcl-xL from the cytosol, which promotes Bax retrotranslocation from the mitochondria to the cytosol (dashed lines). In order to promote apoptosis, Bax can spontaneously activate (blue dashed lines), although its activation is significantly enhanced by cbid. binding via its BH3 domain was not so evident. However, some experimental conditions, such as protein overexpression or cell type, among others, could be the reason of the different response of Bim. There is an interest in the mechanism of peptides derived from BH3 domains because they are the basis for the design of BH3 mimetic molecules, which have been recently approved for their use in therapy [2,83]. So far, quantification of affinities between antiapoptotic Bcl-2 members and BH3 peptides had been done in solution [81,84]. However, the membrane environment is a key element in the interaction of Bcl-2 family proteins [11,69,85]. A comparison of the affinities of tbid and Bcl-xL in the membrane and in solution using fluorescence correlation spectroscopy demonstrated the importance of the lipid environment in promoting their association. Two recent studies using isolated mitochondria or artificial membranes have provided quantification of the interactions between BH3-only proteins or peptides and Bcl-2 homologs in the membrane. One of them has compared the ability of BH3 peptides to dissociate the cbid/bcl-xl complex in solution and in membranes [86]. The BH3 peptides from Hrk, Bid, Bim, and Bad were the most efficient to disrupt this complex in the membrane, whereas all of them, except Noxa and Bmf, had a comparable activity in solution. In the second study, Bid chimeras were generated by replacing the BH3 domain of Bid with that of other BH3-only proteins. All Bid chimeras, except those derived of Noxa and Bad, were able to activate both Bax and Bak in isolated mitochondria, suggesting that most of them could act as direct activators under certain conditions [87]. Further studies are thus required to reconsider the actual classification of the BH3-only proteins into direct activators or sensitizers and their specificity for Bax and 422 The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

8 A. Pe~na-Blanco and A. J. Garcıa-Saez Bax/Bak and mitochondria in apoptosis Bak activation. Although in this study, BH3-only proteins had no preference for Bax or Bak, evidence in cells indicated that Bak is preferentially activated by Bid and Bax by Bim [88]. These differences remain an issue that still needs to be clarified. Bok, an enigmatic member of the Bcl-2 family Bax and Bak are the two accepted executors of the Bcl-2 family, as cells lacking both these proteins are resistant to most apoptotic stimuli [89]. Bok, however, which is a family member with high homology to Bax and Bak, has a more mysterious role. It is predominantly found at the Golgi and endoplasmic reticulum (ER) membranes [90], although a fraction of Bok may also localize at the MOM or the ER-mitochondria contact sites [91]. Recent studies have suggested that Bok induces MOMP in the absence of Bax and Bak [91,92]. Llambi et al. have shown that Bok is a proapoptotic effector that is constitutively active, independently of Bid or Bcl-xL, and whose action is regulated by the ER-associated degradation pathway. This is at odds with biophysical experiments of Bok in liposomes showing that it has pore forming activity unaffected by Bcl-xL but enhanced by cbid [93]. While Bok formed large and stable pores with features of toroidal pores, it was unable to release cytochrome c from Bax / Bak / isolated mitochondria [93]. These discrepancies may be due to differences in the truncated recombinant proteins used in the studies or to the presence in mitochondria of unknown negative regulatory factors. Further studies regarding Bok structure, membrane activity and Bok interaction partners will help to elucidate the biological function of this enigmatic member of the Bcl-2 family. The role of mitochondria in the regulation of Bax and Bak function Mitochondria play an active role in apoptosis. First, most Bcl-2 family protein/protein interactions take place at mitochondria. Second, Bax and Bak form toroidal pores composed by proteins and lipids at the MOM, suggesting that mitochondrial composition participates in pore formation. Third, a crucial step in apoptosis execution is the release of intermembrane space (IMS) proteins to the cytosol, such as SMAC/ DIABLO and cytochrome c. The former requires a proteolytic maturation by the protease PARL at the IMS in order to exert its proapototic function [94], whereas the latter is trapped in the mitochondrial cristae, indicating that mitochondrial reorganization is required before cytochrome c can be released into the cytosol [95]. Four, Bax/Bak-induced MOMP in the absence of caspases triggers the release of mitochondrial DNA, which activates the cgas/sting DNAsensing pathway, leading to the production of type I interferons and causing a proinflammatory type of cell death [96,97]. Therefore, it is likely that mitochondrial architecture, lipid composition and protein constitution are key elements in the complex regulation of apoptosis. It is well known that Bax and Bak colocalize in specific mitochondrial apoptotic foci upon activation [98]. But what are the properties and composition of these foci that make them so attractive for the effectors of the Bcl-2 family? Bax and Bak collaboration with the mitochondria dynamics machinery during apoptosis Besides Bak, so far it is known that Bax colocalizes with the GTPases Dynamin-related protein 1 (Drp1) and mitofusin 2 (Mfn2) [99] at discrete mitochondrial foci during apoptosis. Drp1 is necessary for mitochondrial fission, while Mfn2, together with Mfn1, is a regulator of MOM fusion. In healthy conditions, Drp1 shuttles between cytosol and mitochondria, but upon apoptosis it accumulates in stable foci at the MOM to promote mitochondrial fission, which happens close in time and space to MOMP [100]. To make things more complicated, Drp1-promoted mitochondrial fission occurs at the contact sites between ER and mitochondria [16], via a mechanism in which the ER tubules preconstrict mitochondria, leading to the recruitment and oligomerization of Drp1 at the fission sites. These contact sites also play a key role in other physiological functions, such as lipid and calcium transfer between the two organelles [101], which also play a role in apoptosis. Since mitochondria undergo drastic fragmentation during apoptosis, the interplay between mitochondrial dynamics and apoptosis has been investigated. However, opposite lines of evidence exist regarding the role of Drp1 in the kinetics of apoptosis: in some reports inhibition of mitochondrial fission or enhancement of fusion delay apoptosis [100,102], whereas others indicate that Drp1 and division has no or little impact on the kinetics of MOMP [ ]. Although the role of mitochondrial fission in apoptosis still remains controversial, it is accepted that Drp1 is not required for Bax and Bak activation and foci formation at the mitochondria [99,106] but that the absence of Drp1 delays cytochrome c release [57,103, 104,107]. These observations suggest that Drp1 acts downstream of Bax/Bak activation, but upstream of cytochrome c release. The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies 423

9 Bax/Bak and mitochondria in apoptosis A. Pe~na-Blanco and A. J. Garcıa-Saez While cytochrome c release is delayed in the absence of Drp1, Smac/Diablo release remains unaffected [103,105], which supports a role for Drp1 in the regulation of cytochrome c release. In healthy cells, cytochrome c is located within the IMS, trapped inside the mitochondria cristae [95]. Cristae junctions open and fuse in apoptosis, allowing the complete release of cytochrome c in a process known as cristae remodeling [95,108]. Optic atrophy 1 (OPA1), a GTPase responsible for the fusion of the mitochondrial inner membrane, controls cristae remodeling by preventing the widening of the cristae junctions [109]. OPA1 oligomers form a molecular barrier between adjacent cristae and their disassembly allows the opening of the cristae, which leads to the complete release of cytochrome c. Interestingly, a recent study has revealed that Drp1 affects cristae remodeling and cytochrome c release through its adaptors MiD49/51 and independently of OPA1 disassembly [110]. Previously, Drp1 was also linked to cristae remodeling mediated by an ER-Bik (a BH3-only protein) mechanism [108]. As a result, current evidence suggests a dual role for Drp1 during apoptosis, with participation in both mitochondrial fission and cristae remodeling, specifically promoted via MiD49/51 adaptors. How these processes are coupled and how they relate to Bax and Bak function still remain elusive. In an elegant study, Prudent et al. recently reconciled some open questions about the participation of Drp1, Bax and Bak in MOMP. This study suggested the presence of Drp1 platforms at the ER-mitochondria contact sites during apoptosis [111]. Drp1 is SUMOylated by MAPL during apoptosis, which stabilizes Drp1 oligomers at sites of mitochondrial constriction and fission [111,112]. MAPL function is downstream of Bax and Bak activation and oligomerization, but upstream of cytochrome c release, indicating that the formation of stable platforms is not required for the initiation of Bax/Bak pore structures but still participates in MOMP (Fig. 4). The authors proposed that stabilized ER-mitochondria contact sites in apoptosis provide a platform for calcium and lipid flux from the ER to the mitochondria, which promotes cristae remodeling [15,108,111]. Additional proteins may have similar or regulatory functions in these foci and further research is required to shed light into their composition and structure. We speculate that macromolecular complexes at the ER-mitochondria contact sites may coordinate the activity of Bax, Bak and Drp1 during apoptosis with the manifold mitochondrial alterations in apoptosis [113], including release of proapoptotic factors to the cytosol. But what marks the position of these mitochondrial foci? Are mitochondrial lipids or membrane curvature enough to promote Bax and Bak oligomerization, or are other cellular components required? Impact of mitochondrial lipid composition on Bax/Bak activity It has long been believed that mitochondrial lipids play a role in the activity of Bcl-2 family proteins. Cardiolipin, which mostly localizes at the MIM and is key for MOM/MIM contact sites, promotes tbidmediated Bax activation and formation of large pores in liposomes [ ]. However, Bax is still able to oligomerize and induce cytochrome c release in mitochondria without cardiolipin [117], which brings the role of this lipid in apoptosis into question. Cardiolipin has been also proposed to act as tbid receptor [118]. Yet, due to the low levels of cardiolipin at the MOM, other studies suggested that MOM proteins, such as MTCH2, take over the role of cardiolipin in recruiting tbid in cells [119]. As a result, the role of cardiolipin in apoptosis regulation still remains under debate. Other discussed lipids in apoptosis are ceramides, which accumulate at mitochondria during cell death [120]. Ceramides are synthesized at the ER through the sphingomyelin pathway, consistent with an essential function of the ER-mitochondria contact sites in lipid transfer [101]. Increased levels of ceramides in mitochondria promote Bax activation [ ] and, in turn, Bak activates ceramide synthesis [124,125]. In addition, two metabolites of the ceramide pathway, sphingosine-1-phosphate and hexadecenal, cooperate to promote Bak and Bax mediated MOMP, respectively [126]. Furthermore, a recent study has demonstrated that the inhibition of ceramide synthesis by the antiapoptotic protein Bcl2-L13 (also known as Bclrambo) prevents cell death [127]. Not only the lipid composition but also mitochondrial membrane curvature and size have been proposed as regulators of MOMP. A recent study using as artificial membranes vesicles of different sizes and isolated mitochondria proposed that small vesicles with high curvature prevent Bax helix a9 insertion and execution of MOMP [128]. However, it remains to be clarified how curved membranes with packing defects would restrict protein insertion and whether mitochondrial size has a functional relevance in the cell. Nevertheless, Bax seems to have the ability to stabilize highly curved structures [129] and the formation of hemifusion intermediates by Drp1 has been shown to enhance Bax oligomerization and activity in cell-free systems [130]. This may suggest that the formation of highly curved 424 The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

10 A. Pe~na-Blanco and A. J. Garcıa-Saez Bax/Bak and mitochondria in apoptosis Fig. 4. Stable platforms at the ER-mitochondria contact sites to mediate cytochrome c release during apoptosis. (A) Upon apoptotic stimuli, Bax and Bak are activated and form foci at the MOM. It is still unclear what marks the localization of active Bax and Bak at the mitochondria. One possibility is that mitochondrial constrictions mediated by the ER tubules may be sufficient to promote Bax/Bak oligomerization, although other still unknown cellular components could also regulate this event. In this situation, OPA1 oligomers prevent cytochrome c release by forming a molecular barrier between adjacent cristae that impedes cristae remodeling. (B) After Bax/Bak activation, Drp1 is recruited to ER-mediated preconstricted mitochondria where it oligomerizes and further constricts the mitochondria. (C) Drp1 is SUMOylated by MAPL during apoptosis, which stabilizes Drp1 oligomers at sites of mitochondrial constriction and fission. This generates Drp1 stable platforms at the ER-mitochondria contact sites during apoptosis (highlighted inside the blue sphere) that are relevant for calcium and lipid transfer between both organelles. As a result of calcium transfer, OPA1 oligomers disassemble and cytochrome c is released. The Drp1 adaptors MiD49/51 are involved in Drp1 cristae remodeling activity. membranes by Drp1, rather than mitochondrial fission, is involved in Bax oligomerization. Given that Bax oligomerization occurs in the absence of Drp1, other mediators of membrane curvature could also be implicated in this process. One possibility could be that local mitochondrial constriction mediated by the ER tubules might promote Bax/Bak oligomerization, although such hypothesis still needs verification. Concluding remarks Our knowledge about Bax and Bak has increased during the last years thanks to the application of novel structural and biophysical techniques. Bax pores at the MOM have been visualized and we understand better the molecular basis for their assembly and structural conversion into killers at mitochondria. Accumulating evidence supports that not only Bax and Bak activity, but also additional mitochondrial components contribute to MOMP execution. In relation to this, the formation of large protein and lipid assemblies at discrete foci that correlate with ER-mitochondria contact sites provides a very attractive explanation for coordination of the multiple alterations that mitochondria undergo during apoptosis. However, the composition and architecture of such macromolecular complexes remains to be defined. Another fascinating question is what marks Bax/Bak oligomerization at specific foci and whether their oligomerization is the only requisite for pore formation or other cellular elements are needed. We envision coming years of exciting research to achieve major progress in our understanding of the role of mitochondria in apoptosis. Acknowledgements The authors thank Dr. Katia Cosentino and Dr. Uris Ros for careful reading of the manuscript and help with figure preparation. The Garcıa-Saez laboratory is funded by the European Research Council (ERC-2012-StG ), the Deutsche Forschungsgemeinschaft (FOR 2036), and the University of T ubingen. Author contributions AP-B and AJG-S conceived and wrote the manuscript. References 1 Czabotar PE, Lessene G, Strasser A & Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15, Delbridge AR, Grabow S, Strasser A & Vaux DL (2016) Thirty years of BCL-2: translating cell death The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies 425

11 Bax/Bak and mitochondria in apoptosis A. Pe~na-Blanco and A. J. Garcıa-Saez discoveries into novel cancer therapies. Nat Rev Cancer 16, Strasser A, Cory S & Adams JM (2011) Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30, Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ & Green DR (2010) The BCL-2 family reunion. Mol Cell 37, Tait SW & Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11, Garcia-Saez AJ (2012) The secrets of the Bcl-2 family. Cell Death Differ 19, Youle RJ & Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9, Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N & Youle RJ (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, Todt F, Cakir Z, Reichenbach F, Emschermann F, Lauterwasser J, Kaiser A, Ichim G, Tait SW, Frank S, Langer HF et al. (2015) Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J 34, Schellenberg B, Wang P, Keeble JA, Rodriguez- Enriquez R, Walker S, Owens TW, Foster F, Tanianis-Hughes J, Brennan K, Streuli CH et al. (2013) Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 49, Lovell JF, Billen LP, Bindner S, Shamas-Din A, Fradin C, Leber B & Andrews DW (2008) Membrane binding by tbid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, Hsu YT, Wolter KG & Youle RJ (1997) Cytosol-tomembrane redistribution of Bax and Bcl-XL during apoptosis. Proc Natl Acad Sci USA 94, Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B & Andrews DW (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J, 25, Martinou JC & Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21, Prudent J & McBride HM (2017) The mitochondriaendoplasmic reticulum contact sites: a signalling platform for cell death. Curr Opin Cell Biol 47, Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J & Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334, Suzuki M, Youle RJ & Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, Gahl RF, He Y, Yu S & Tjandra N (2014) Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. J Biol Chem 289, Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Almo SS, Cheng EH et al. (2016) An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell 63, Griffiths GJ, Dubrez L, Morgan CP, Jones NA, Whitehouse J, Corfe BM, Dive C & Hickman JA (1999) Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J Cell Biol 144, Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N et al. (2008) BAX activation is initiated at a novel interaction site. Nature 455, Gavathiotis E, Reyna DE, Davis ML, Bird GH & Walensky LD (2010) BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 40, Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ et al. (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ & Cheng EH (2009) Stepwise activation of BAX and BAK by tbid, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36, Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB & Korsmeyer SJ (2000) tbid, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, Eskes R, Desagher S, Antonsson B & Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20, Leshchiner ES, Braun CR, Bird GH & Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci USA 110, E963 E Dai H, Smith A, Meng XW, Schneider PA, Pang YP & Kaufmann SH (2011) Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol 194, Li MX, Tan IKL, Ma SB, Hockings C, Kratina T, Dengler MA, Alsop AE, Kluck RM & Dewson G (2017) BAK alpha6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proc Natl Acad Sci USA 114, The FEBS Journal 285 (2018) ª 2017 Federation of European Biochemical Societies

Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes

Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes DOI 10.1007/s10495-007-0746-4 Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes Brian Leber Jialing Lin David W. Andrews Published online: 15 February

More information

Biochimica et Biophysica Acta

Biochimica et Biophysica Acta Biochimica et Biophysica Acta 1843 (2014) 2100 2113 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review Regulating cell death

More information

Apoptosis was formally described and named

Apoptosis was formally described and named Mechanisms of Action of Bcl-2 Family Proteins Aisha Shamas-Din 1, Justin Kale 1, Brian Leber 1,2, and David W. Andrews 1 1 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton,

More information

EXPLORING THE PRO-APOPTOTIC FUNCTION OF BIM

EXPLORING THE PRO-APOPTOTIC FUNCTION OF BIM EXPLORING THE PRO-APOPTOTIC FUNCTION OF BIM EXPLORING THE PRO-APOPTOTIC FUNCTION OF BIM BY XIAOKE CHI, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements

More information

http://cwp.embo.org/w09-13/index.html Roads to Ruin is s o t p o ap healthy cell autophagic cell death ne cr os is Thanks to Seamus Martin! Evolution of apoptosis signalling cascades Inhibitor Adopted

More information

Cell Death & Trophic Factors II. Steven McLoon Department of Neuroscience University of Minnesota

Cell Death & Trophic Factors II. Steven McLoon Department of Neuroscience University of Minnesota Cell Death & Trophic Factors II Steven McLoon Department of Neuroscience University of Minnesota 1 Remember? Neurotrophins are cell survival factors that neurons get from their target cells! There is a

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

IAPs. Structure of BIR2 Zn finger domain from XIAP

IAPs. Structure of BIR2 Zn finger domain from XIAP IAPs The only known endogenous caspase inhibitors are members of a second family of proteins identified by apoptosis research, the IAP (inhibitor of apoptosis proteins) family. IAPs were originally described

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Lecture 6 - Intracellular compartments and transport I

Lecture 6 - Intracellular compartments and transport I 01.26.11 Lecture 6 - Intracellular compartments and transport I Intracellular transport and compartments 1. Protein sorting: How proteins get to their appropriate destinations within the cell 2. Vesicular

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

Apoptosis EXTRA REQUIREMETS

Apoptosis EXTRA REQUIREMETS Apoptosis Introduction (SLIDE 1) Organisms develop from a single cell, and in doing so an anatomy has to be created. This process not only involves the creation of new cells, but also the removal of cells

More information

Apoptosis: embedded in membranes Christian Bogner 1, Brian Leber 1,2 and David W Andrews 1

Apoptosis: embedded in membranes Christian Bogner 1, Brian Leber 1,2 and David W Andrews 1 Available online at www.sciencedirect.com Apoptosis: embedded in membranes Christian Bogner 1, Brian Leber 1,2 and David W Andrews 1 Many different signals for cell death converge on outer mitochondrial

More information

Programmed Cell Death

Programmed Cell Death Programmed Cell Death Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id What is apoptosis? a normal component of the development

More information

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins

13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins 13-3. Synthesis-Secretory pathway: Sort lumenal proteins, Secrete proteins, Sort membrane proteins Molecular sorting: specific budding, vesicular transport, fusion 1. Why is this important? A. Form and

More information

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION I. Aksan 1, M. Sen 2, M. K. Araz 3, and M. L. Kurnaz 3 1 School of Biological Sciences, University of Manchester,

More information

Dissecting the Mechanisms of Direct Activation for Proapoptotic BAK and BAX

Dissecting the Mechanisms of Direct Activation for Proapoptotic BAK and BAX Dissecting the Mechanisms of Direct Activation for Proapoptotic BAK and BAX The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Protein Sorting, Intracellular Trafficking, and Vesicular Transport

Protein Sorting, Intracellular Trafficking, and Vesicular Transport Protein Sorting, Intracellular Trafficking, and Vesicular Transport Noemi Polgar, Ph.D. Department of Anatomy, Biochemistry and Physiology Email: polgar@hawaii.edu Phone: 692-1422 Outline Part 1- Trafficking

More information

Control of mitochondrial permeability by Bcl-2 family members

Control of mitochondrial permeability by Bcl-2 family members Biochimica et Biophysica Acta 1644 (2004) 107 113 www.bba-direct.com Review Control of mitochondrial permeability by Bcl-2 family members Juanita C. Sharpe 1, Damien Arnoult, Richard J. Youle* Biochemistry

More information

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor Structure, Volume 22 Supplemental Information The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor Oliver C. Losón, Raymond Liu, Michael E. Rome, Shuxia Meng, Jens T. Kaiser, Shu-ou Shan,

More information

A C-terminus Mitochondrial-localization Region and BH3 Domain of Puma are Required for Apoptotic Function

A C-terminus Mitochondrial-localization Region and BH3 Domain of Puma are Required for Apoptotic Function Western University Scholarship@Western Electronic Thesis and Dissertation Repository May 2013 A C-terminus Mitochondrial-localization Region and BH3 Domain of Puma are Required for Apoptotic Function Liz

More information

M i t o c h o n d r i a

M i t o c h o n d r i a M i t o c h o n d r i a Dr. Diala Abu-Hassan School of Medicine dr.abuhassand@gmail.com Mitochondria Function: generation of metabolic energy in eukaryotic cells Generation of ATP from the breakdown of

More information

Monte Carlo study elucidates the type 1/type 2 choice in apoptotic death signaling in normal and cancer cells

Monte Carlo study elucidates the type 1/type 2 choice in apoptotic death signaling in normal and cancer cells Cells 2013, 2, 1-x manuscripts; doi:10.3390/cells20x000x OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Article Monte Carlo study elucidates the type 1/type 2 choice in apoptotic death signaling

More information

Scale in the biological world

Scale in the biological world Scale in the biological world 2 A cell seen by TEM 3 4 From living cells to atoms 5 Compartmentalisation in the cell: internal membranes and the cytosol 6 The Origin of mitochondria: The endosymbion hypothesis

More information

Model Worksheet Teacher Key

Model Worksheet Teacher Key Introduction Despite the complexity of life on Earth, the most important large molecules found in all living things (biomolecules) can be classified into only four main categories: carbohydrates, lipids,

More information

APOPTOSIS REGULATOR BCL-2

APOPTOSIS REGULATOR BCL-2 Papers on Anthropology Apoptosis regulator XXII, 2013, BCL-2 pp. 63 67 P. Hussar, M. Žuravskaja, M. Kärner APOPTOSIS REGULATOR BCL-2 Piret Hussar 1, Maria Žuravskaja 2, Martin Kärner 2 1 Institute of Anatomy,

More information

Apoptosis in Mammalian Cells

Apoptosis in Mammalian Cells Apoptosis in Mammalian Cells 7.16 2-10-05 Apoptosis is an important factor in many human diseases Cancer malignant cells evade death by suppressing apoptosis (too little apoptosis) Stroke damaged neurons

More information

Drosophila Apoptosis and the Regulation of the Caspase Cascade

Drosophila Apoptosis and the Regulation of the Caspase Cascade Drosophila Apoptosis and the Regulation of the Caspase Cascade Kate Stafford March 18, 2005 Abstract The caspase cascade in Drosophila is controlled primarily by DIAP1 (Drosophila inhibitor of apoptosis),

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

Cells to Tissues. Peter Takizawa Department of Cell Biology

Cells to Tissues. Peter Takizawa Department of Cell Biology Cells to Tissues Peter Takizawa Department of Cell Biology From one cell to ensembles of cells. Multicellular organisms require individual cells to work together in functional groups. This means cells

More information

Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 *

Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 * Published: 01 April 2015 2015 Faculty of 1000 Ltd Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 * Addresses: 1 Walter and Eliza Hall Institute of Medical Research,

More information

Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 *

Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 * Published: 01 April 2015 2015 Faculty of 1000 Ltd Mitochondria and apoptosis: emerging concepts Mark Xiang Li 1,2 and Grant Dewson 1,2 * Addresses: 1 Walter and Eliza Hall Institute of Medical Research,

More information

What are mitochondria?

What are mitochondria? What are mitochondria? What are mitochondria? An intracellular organelle. There are 100 to 1000s of mitochondria/cell. Most mitochondria come from the mother. Mitochondria have their own DNA Mitochondria

More information

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019

Visual pigments. Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 Visual pigments Neuroscience, Biochemistry Dr. Mamoun Ahram Third year, 2019 References Webvision: The Organization of the Retina and Visual System (http://www.ncbi.nlm.nih.gov/books/nbk11522/#a 127) The

More information

Apoptosis: Death Comes for the Cell

Apoptosis: Death Comes for the Cell Apoptosis: Death Comes for the Cell Joe W. Ramos joeramos@hawaii.edu From Ingmar Bergman s The Seventh Seal 1 2 Mutations in proteins that regulate cell proliferation, survival and death can contribute

More information

Transmembrane Domains (TMDs) of ABC transporters

Transmembrane Domains (TMDs) of ABC transporters Transmembrane Domains (TMDs) of ABC transporters Most ABC transporters contain heterodimeric TMDs (e.g. HisMQ, MalFG) TMDs show only limited sequence homology (high diversity) High degree of conservation

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

Chapter 12: Intracellular sorting

Chapter 12: Intracellular sorting Chapter 12: Intracellular sorting Principles of intracellular sorting Principles of intracellular sorting Cells have many distinct compartments (What are they? What do they do?) Specific mechanisms are

More information

Cytochrome c, cytochrome b 5 and electron transfer

Cytochrome c, cytochrome b 5 and electron transfer Cytochrome c, cytochrome b 5 and electron transfer Covalent bonds Cytochrome c is a major player in membrane associated electron transport systems in bacteria and mitochondria. Cytochrome c has two axial

More information

Ligand Binding and Membrane Insertion Compete with Oligomerization of the BclXL Apoptotic Repressor

Ligand Binding and Membrane Insertion Compete with Oligomerization of the BclXL Apoptotic Repressor doi:10.1016/j.jmb.2011.12.015 J. Mol. Biol. (2012) 416, 57 77 Contents lists available at www.sciencedirect.com Journal of Molecular Biology journal homepage: http://ees.elsevier.com.jmb Ligand Binding

More information

Stepwise Activation of BAX and BAK by tbid, BIM, and PUMA Initiates Mitochondrial Apoptosis

Stepwise Activation of BAX and BAK by tbid, BIM, and PUMA Initiates Mitochondrial Apoptosis Article Stepwise Activation of BAX and BAK by tbid, BIM, and PUMA Initiates Mitochondrial Apoptosis Hyungjin Kim, 1 Ho-Chou Tu, 1 Decheng Ren, 1 Osamu Takeuchi, 3 John R. Jeffers, 4 Gerard P. Zambetti,

More information

Name: TF: Section Time: LS1a ICE 5. Practice ICE Version B

Name: TF: Section Time: LS1a ICE 5. Practice ICE Version B Name: TF: Section Time: LS1a ICE 5 Practice ICE Version B 1. (8 points) In addition to ion channels, certain small molecules can modulate membrane potential. a. (4 points) DNP ( 2,4-dinitrophenol ), as

More information

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation

Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Sig2GRN: A Software Tool Linking Signaling Pathway with Gene Regulatory Network for Dynamic Simulation Authors: Fan Zhang, Runsheng Liu and Jie Zheng Presented by: Fan Wu School of Computer Science and

More information

CELB40060 Membrane Trafficking in Animal Cells. Prof. Jeremy C. Simpson. Lecture 2 COPII and export from the ER

CELB40060 Membrane Trafficking in Animal Cells. Prof. Jeremy C. Simpson. Lecture 2 COPII and export from the ER CELB40060 Membrane Trafficking in Animal Cells Prof. Jeremy C. Simpson Lecture 2 COPII and export from the ER Today s lecture... The COPII coat - localisation and subunits Formation of the COPII coat at

More information

arxiv: v1 [q-bio.mn] 20 Dec 2012

arxiv: v1 [q-bio.mn] 20 Dec 2012 Boolean network-based model of the Bcl-2 family mediated MOMP regulation Tomas Tokar, Zdenko Turcan, Jozef Ulicny Department of Biophysics, University of P. J. Safarik, Jesenna 5, 040 01, Kosice, Slovakia

More information

Tuesday 9/6/2018 Mike Mueckler

Tuesday 9/6/2018 Mike Mueckler Tuesday 9/6/2018 Mike Mueckler mmueckler@wustl.edu Intracellular Targeting of Nascent Polypeptides Mitochondria are the Sites of Oxidative ATP Production Sugars Triglycerides Figure 14-10 Molecular Biology

More information

Modeling heterogeneous responsiveness of intrinsic apoptosis pathway

Modeling heterogeneous responsiveness of intrinsic apoptosis pathway Ooi and Ma BMC Systems Biology 213, 7:65 http://www.biomedcentral.com/1752-59/7/65 RESEARCH ARTICLE OpenAccess Modeling heterogeneous responsiveness of intrinsic apoptosis pathway Hsu Kiang Ooi and Lan

More information

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005 Gene regulation I Biochemistry 302 Bob Kelm February 25, 2005 Principles of gene regulation (cellular versus molecular level) Extracellular signals Chemical (e.g. hormones, growth factors) Environmental

More information

BA, BSc, and MSc Degree Examinations

BA, BSc, and MSc Degree Examinations Examination Candidate Number: Desk Number: BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17991 Supplementary Discussion Structural comparison with E. coli EmrE The DMT superfamily includes a wide variety of transporters with 4-10 TM segments 1. Since the subfamilies of the

More information

Mechanisms. Cell Death. Carol M. Troy, MD PhD August 24, 2009 PHENOMENOLOGY OF CELL DEATH I. DEVELOPMENT 8/20/2009

Mechanisms. Cell Death. Carol M. Troy, MD PhD August 24, 2009 PHENOMENOLOGY OF CELL DEATH I. DEVELOPMENT 8/20/2009 Mechanisms of Cell Death Carol M. Troy, MD PhD August 24, 2009 PHENOMENOLOGY OF CELL DEATH I. DEVELOPMENT A. MORPHOGENESIS: SCULPTING/SHAPING STRUCTURES CREATION OF CAVITIES AND TUBES FUSION OF TISSUE

More information

Review. Membrane proteins. Membrane transport

Review. Membrane proteins. Membrane transport Quiz 1 For problem set 11 Q1, you need the equation for the average lateral distance transversed (s) of a molecule in the membrane with respect to the diffusion constant (D) and time (t). s = (4 D t) 1/2

More information

SEPTEMBER 10, 2010 VOLUME 285 NUMBER 37 JOURNAL OF BIOLOGICAL CHEMISTRY 28749

SEPTEMBER 10, 2010 VOLUME 285 NUMBER 37 JOURNAL OF BIOLOGICAL CHEMISTRY 28749 THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 37, pp. 28749 28763, September 10, 2010 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Bcl-2 and Bax Interact

More information

Zool 3200: Cell Biology Exam 5 4/27/15

Zool 3200: Cell Biology Exam 5 4/27/15 Name: Trask Zool 3200: Cell Biology Exam 5 4/27/15 Answer each of the following short answer questions in the space provided, giving explanations when asked to do so. Circle the correct answer or answers

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

Bio 3411, Fall 2006, Lecture 19-Cell Death.

Bio 3411, Fall 2006, Lecture 19-Cell Death. Types of Cell Death Questions : Apoptosis (Programmed Cell Death) : Cell-Autonomous Stereotypic Rapid Clean (dead cells eaten) Necrosis : Not Self-Initiated Not Stereotypic Can Be Slow Messy (injury can

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

4) Please cite Dagda et al J Biol Chem 284: , for any publications or presentations resulting from use or modification of the macro.

4) Please cite Dagda et al J Biol Chem 284: , for any publications or presentations resulting from use or modification of the macro. Supplement Figure S1. Algorithmic quantification of mitochondrial morphology in SH- SY5Y cells treated with known fission/fusion mediators. Parental SH-SY5Y cells were transiently transfected with an empty

More information

Dynamical Systems Analysis of Mitochondrial BAK Activation Kinetics Predicts Resistance to BH3 Domains

Dynamical Systems Analysis of Mitochondrial BAK Activation Kinetics Predicts Resistance to BH3 Domains Dynamical Systems Analysis of Mitochondrial BAK Activation Kinetics Predicts Resistance to BH3 Domains Claire Grills 1, Nyree Crawford 2, Alex Chacko 2, Patrick G. Johnston 2,3, Francesca O Rourke 1,2,

More information

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises six Orai subunits, each with identical amino acid sequences

More information

Lecture 7 Cell Biolog y ٢٢٢ ١

Lecture 7 Cell Biolog y ٢٢٢ ١ Lecture 7 ١ Mitochondria ٢ Mitochondria Mitochondria are the energy factories of the cells. The energy currency for the work that animals must do is the energy-rich molecule adenosine triphosphate (ATP).

More information

purpose of this Chapter is to highlight some problems that will likely provide new

purpose of this Chapter is to highlight some problems that will likely provide new 119 Chapter 6 Future Directions Besides our contributions discussed in previous chapters to the problem of developmental pattern formation, this work has also brought new questions that remain unanswered.

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Way to impose membrane curvature

Way to impose membrane curvature Way to impose membrane curvature Sar1 reticulons? clathrin and other vesicle coats dynamin BAR domains McMahon, 2005 The ER is continuous with the nuclear envelope and contains tubules and sheets Gia Voeltz

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Importance of Protein sorting. A clue from plastid development

Importance of Protein sorting. A clue from plastid development Importance of Protein sorting Cell organization depend on sorting proteins to their right destination. Cell functions depend on sorting proteins to their right destination. Examples: A. Energy production

More information

Model Worksheet Student Handout

Model Worksheet Student Handout Introduction Despite the complexity of life on Earth, the most important large molecules found in all living things (biomolecules) can be classified into only four main categories: carbohydrates, lipids,

More information

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed.

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed. Macromolecular Processes 20. Protein Folding Composed of 50 500 amino acids linked in 1D sequence by the polypeptide backbone The amino acid physical and chemical properties of the 20 amino acids dictate

More information

Conclusions. The experimental studies presented in this thesis provide the first molecular insights

Conclusions. The experimental studies presented in this thesis provide the first molecular insights C h a p t e r 5 Conclusions 5.1 Summary The experimental studies presented in this thesis provide the first molecular insights into the cellular processes of assembly, and aggregation of neural crest and

More information

Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death

Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death John G. Albeck 1[, John M. Burke 1,2[, Sabrina L. Spencer 1,3, Douglas A. Lauffenburger 2,3, Peter K. Sorger 1,2* PLoS BIOLOGY

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

Mechanisms of Cell Death

Mechanisms of Cell Death Mechanisms of Cell Death CELL DEATH AND FORMATION OF THE SEMICIRCULAR CANALS Carol M. Troy, MD PhD August 24, 2009 FROM: Fekete et al., Development 124: 2451 (1997) PHENOMENOLOGY OF CELL DEATH I. DEVELOPMENT

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Protein Sorting. By: Jarod, Tyler, and Tu

Protein Sorting. By: Jarod, Tyler, and Tu Protein Sorting By: Jarod, Tyler, and Tu Definition Organizing of proteins Organelles Nucleus Ribosomes Endoplasmic Reticulum Golgi Apparatus/Vesicles How do they know where to go? Amino Acid Sequence

More information

The ubiquitin-proteasome-system

The ubiquitin-proteasome-system Repository of the Max Delbrück Center for Molecular Medicine (MDC) Berlin (Germany) http://edoc.mdc-berlin.de/13359/ The ubiquitin-proteasome-system Sommer, Thomas; Wolf, Dieter H. NOTICE: this is the

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Differential retrotranslocation of mitochondrial Bax and Bak

Differential retrotranslocation of mitochondrial Bax and Bak Article Differential retrotranslocation of mitochondrial Bax and Franziska Todt 1,2,3,, Zeynep akir 1,3,, Frank Reichenbach 1,2,3,, Frederic Emschermann 4,5, Joachim Lauterwasser 1,3, Andrea Kaiser 1,

More information

Analysis and Simulation of Biological Systems

Analysis and Simulation of Biological Systems Analysis and Simulation of Biological Systems Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro,

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

The Caspase System: a potential role in muscle proteolysis and meat quality? Tim Parr

The Caspase System: a potential role in muscle proteolysis and meat quality? Tim Parr The Caspase System: a potential role in muscle proteolysis and meat quality? Tim Parr Caroline Kemp, Ron Bardsley,, Peter Buttery Division of Nutritional Sciences, School of Biosciences, University of

More information

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules Why Do Cells Communicate? Regulation Cells need to control cellular processes In multicellular organism, cells signaling pathways coordinate the activities within individual cells that support the function

More information

Introduction: actin and myosin

Introduction: actin and myosin Introduction: actin and myosin Actin Myosin Myosin V and actin 375 residues Found in all eukaryotes Polymeric Forms track for myosin Many other cellular functions 36 nm pseudo-helical repeat Catalytic

More information

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 30, 2014 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Translocation through the endoplasmic reticulum membrane. Institute of Biochemistry Benoît Kornmann

Translocation through the endoplasmic reticulum membrane. Institute of Biochemistry Benoît Kornmann Translocation through the endoplasmic reticulum membrane Institute of Biochemistry Benoît Kornmann Endomembrane system Protein sorting Permeable to proteins but not to ions IgG tetramer (16 nm) Fully hydrated

More information

Biology Teach Yourself Series Topic 2: Cells

Biology Teach Yourself Series Topic 2: Cells Biology Teach Yourself Series Topic 2: Cells A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2013 Page 1 of 14 Contents Cells... 3 Prokaryotic

More information

e e = expected individuals with observed genotype Unit 1- Intro to AP and Taxonomy

e e = expected individuals with observed genotype Unit 1- Intro to AP and Taxonomy Unit 1- Intro to AP and Taxonomy 1. The Galapagos Islands were extremely important to Darwin and the Theory of Evolution. Darwin discovered many organisms and scientific ideas that were instrumental to

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2647 Figure S1 Other Rab GTPases do not co-localize with the ER. a, Cos-7 cells cotransfected with an ER luminal marker (either KDEL-venus or mch-kdel) and mch-tagged human Rab5 (mch-rab5,

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

Initiation of translation in eukaryotic cells:connecting the head and tail

Initiation of translation in eukaryotic cells:connecting the head and tail Initiation of translation in eukaryotic cells:connecting the head and tail GCCRCCAUGG 1: Multiple initiation factors with distinct biochemical roles (linking, tethering, recruiting, and scanning) 2: 5

More information

CHAPTER 2 THE CHEMICAL BASIS OF LIFE

CHAPTER 2 THE CHEMICAL BASIS OF LIFE CHAPTER 2 THE CHEMICAL BASIS OF LIFE CHAPTER OVERVIEW This chapter introduces very basic concepts of chemistry, emphasizing the structure of atoms and how they combine (form bonds). The types of bonds,

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA Unit Four: Cell Cycle, Mitosis and Meiosis I. Concept Review A. Why is carbon often called the building block of life? B. List the four major macromolecules. C. Complete the chart below. Monomer Polymer

More information

Rex-Family Repressor/NADH Complex

Rex-Family Repressor/NADH Complex Kasey Royer Michelle Lukosi Rex-Family Repressor/NADH Complex Part A The biological sensing protein that we selected is the Rex-family repressor/nadh complex. We chose this sensor because it is a calcium

More information

Isothermal experiments characterize time-dependent aggregation and unfolding

Isothermal experiments characterize time-dependent aggregation and unfolding 1 Energy Isothermal experiments characterize time-dependent aggregation and unfolding Technical ote Introduction Kinetic measurements have, for decades, given protein scientists insight into the mechanisms

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information