Recent Results on Circumbinary Planets

Size: px
Start display at page:

Download "Recent Results on Circumbinary Planets"

Transcription

1 Recent Results on Circumbinary Planets Jerome A. Orosz with thanks to Bill Welsh, Don Short, Gur Windmiller, Dan Fabrycky, Josh Carter, Laurance Doyle, The Kepler EB and TTV Working Groups

2 Importance of binaries Detection methods Results published to date Summary

3 Importance of Binaries Binaries and higher-order multiple systems are common. Raghavan et al. (2010) found 54% ± 2% of nearby solar-type stars are single Many of the target stars in large surveys will be binaries

4 Importance of Binaries There are two classes of binaries with planets: S-type where the planet orbits one of the stars in a wide binary P-type or circumbinary where the planet both stars Several S-type systems are known, mainly from radial velocity surveys where the star with the RV variations has a resolved companion The first clear detections of circumbinary planets has come from the Kepler data

5 Detection Methods Use eclipse timing variations (ETVs): The binary system orbits the system center of mass (COM), resulting in a displacement along the line of sight Variations in the eclipse arrival times of order a few seconds or less might be expected in favorable situations Variations in the eclipse arrival times of order a few minutes might be expected in cases where there are dynamical interactions

6 Detection Methods Use eclipse timing variations (ETVs): Most claimed detections based on light travel time (LTT) effects have been controversial. The best case is NN Ser, where two planets with periods of 7.9 and 15.3 years can explain the ETVs

7 Detection Methods Use eclipse timing variations (ETVs): Most claimed detections based on light travel time (LTT) effects have been controversial. The best case is NN Ser, where two planets with periods of 7.9 and 15.3 years can explain the ETVs Note that the length of time over which the measurements have been made is about 15 years

8 Use transits: Detection Methods

9 If a planet passes in front of a star, the light is dimmed. The amount of dimming gives the radius ratio of planet to star.

10 Detection Methods Use transits: Borucki & Summers (1984) argued that one should look at eclipsing binaries (EBs) to find transiting planets: if the orbits are coplanar the probability of a transit is increased around an EB where the orbit is viewed close to edge-on Schneider & Chevreton (1990) and Deeg et al. (1994) showed that transits in a circumbinary system should have unique signatures

11 Detection Methods Use transits: Borucki & Summers (1984) argued that one should look at eclipsing binaries (EBs) to find transiting planets: if the orbits are coplanar the probability of a transit is increased around an EB where the orbit is viewed close to edge-on Schneider & Chevreton (1990) and Deeg et al. (1994) showed that transits in a circumbinary system should have unique signatures One should use caution, however

12 The Kepler Mission The Kepler spacecraft is in an Earth-trailing orbit, which allowed it to observe the same region of the sky nearly continuously for about 4 years Extremely precise photometry was obtained for nearly 200,000 stars, including about 3000 EBs

13 Here is KOI-28, which has periods of days and days Such a circumbinary configuration would be unstable, so this must be a blend of two EBs (e.g. two EBs landed on the same pixel)

14 This is KIC , which has periods of days and days A circumbinary configuration would be stable, so how do we tell if this is a blend?

15 In a triple system, the three bodies move about the system COM If the third body is planetary, the COM is essentially the binary COM Stellar eclipses, if the orbit is seen roughly edge on, occur at the stellar conjunctions At the time of the inferior conjunction of the planet, the stars are not necessarily along the same line-of-sight

16 The conjunction is when x=0 for the planet. Chances are the star is not at x=0, and the transits may be early or late relative to a linear ephemeris.

17 The deep events with the 40 day period in KIC do not show significant variations from a linear ephemeris, so they must be due to a blended EB

18 Here is Kepler-16. The orbital period is days. Note the extra transit in Q1.

19 Here is Kepler-16. The orbital period is days. Note the extra transit in Q1. Also in Q4.

20 Here is Kepler-16. The orbital period is days. Note the extra transit in Q1. Also in Q4. And in Q6

21 There are 7 such events through Q16, with a rough period of 221 days

22 There are transit timing variations (TTVs) of up to 6 days, which indicates that this is not a blend The dips are caused by the third body transits of the primary

23 We also see transits of the secondary star, which completely rules out a blended EB

24 We also see ETVs The primary O-C curve has a different slope than the secondary O-C curve, which in an indication the primary and secondary eclipse periods are different. In this case, the two periods differ by seconds

25 Each curve shows a periodicity of about 112 days, which is roughly half of the mean period of the transits.

26 The big arrow is how the planet pulls on the COM of the binary The small arrows are the tidal force the planet puts on the stars The m=2 tidal pattern rotates at the planet s orbital period, and every half an orbit the stars have to climb up and down the tidal potential

27 Their phases are successively delayed and advanced every period of the planet, so the observed effect is twice the planet s frequency

28 Here is an other example (Kepler-38). Note the transit duration variations

29 In general, the TTVs and the durations of circumbinary transits vary cyclically with the binary phase, which can be understood analytically

30 The transit duration depends on the radius of the star (or more precisely the length of the chord), and on the relative transverse velocities of the star and planet V planet = τ i = 2(R planet + R ) 1 b 2 i V planet + V 2πGM EB P planet 1/ 3 const V = M 2 M EB 2πGM EB P EB 1/ 3 esin ω+ sin(θ + ω) 1 e 2 In the above, e and ωare the eccentricity parameters for the binary, and b i is the impact parameter for the i th transit.

31 Near the phase of the primary eclipse, the planet and the star are moving in opposite directions, hence the transits are shorter Near the phase of the secondary eclipse, the planet and the star are moving in the same direction, hence the transits are longer

32 What We Have Learned So Far Given enough events, the transits of a circumbinary body will show large TTVs, which can rule out a blend The circumbinary body can transit both stars, and if the primary and secondary eclipses are not equal, the transits across the primary and secondary will likewise be unequal---this also rules out a blend Under certain conditions, the circumbinary body can perturb the binary, leading to observable effects

33 Details, Details Since the binary is not a point mass, the planet s orbit is not exactly Keplerian Since the planet may perturb one or both stars, their orbits may not be strictly Keplerian Given the above, the standard codes to model eclipsing binaries need to be modified to account for the gravitational interactions The first such code was devised by Josh Carter My ELC code has been modified to include the necessary dynamical effects

34 Details, Details The transit depths give you the ratio of the planet s radius to the stellar radius The eclipses give you the ratio of the stellar radii The radial velocity curve of at least one star is needed to establish the scale of the system If the scale of the system is known, the actual radii of the stars and the planet can be found If ETVs are observed, then mass of the planet can be found

35 Initial Discoveries Between October, 2012 and October, 2013 we announced the discovery of five EBs with circumbinary planets

36 In Kepler-16 the planet orbits outside the two stars. This is the first known transiting circumbinary planet.

37 Kepler 16 We have 7 primary transits observed with Kepler, plus one additional one from the ground. The planet s period is days

38 Kepler 16 The primary eclipses and secondary eclipses (which are total) are well fit. The EB period is days.

39 Kepler 16 The system is barely double-lined. The stellar masses are 0.68 and 0.20 solar masses. The planet s mass and radii are 90 and 8.5 (Earth units).

40 Kepler-16 The discovery of Kepler-16 showed that close-in circumbinary planets could exist around relatively short period binaries The planet orbits very close to the binary---if the orbital period were about 14% shorter, the system would be unstable The planetary orbit is about the size of the orbit of Venus However, since the primary is much less luminous than the Sun, Kepler-16b receives only 30% of the insolation the Earth does

41 We announced the discoveries of Kepler-34 (left) and Kepler-35 January of 2012

42 Kepler 34 Transits of both stars are evident. The planet s period is 289 days.

43 Kepler 34 The primary eclipses and secondary eclipses are well fit. The EB period is days, and the eccentricity is relatively large at e=0.52.

44 Kepler 34 The system is double-lined. The stellar masses are 1.05 and 1.02 solar masses. The planet s mass and radii are 53 and 8.8 (Earth units).

45 Kepler 35 Transits of both stars are evident. The planet s period is 132 days.

46 Kepler 35 The primary eclipses and secondary eclipses are well fit. The EB period is days.

47 Kepler 35 The system is double-lined. The stellar masses are 0.90 and 0.81 solar masses. The planet s mass and radii are 36 and 8.1 (Earth units).

48 Kepler-38 Image credit: Grace Mervin (SDSU)

49 Kepler 38 Transits of only the primary are evident. The planet s period is 106 days.

50 Kepler 38 The primary eclipses and the weak and total secondary eclipses are well fit. The EB period is days.

51 Kepler 38 The system is single-lined. The stellar masses are 1.05 and 0.26 solar masses. The planet s mass and radii are 69 and 4.4 (Earth units).

52 NASA/JPL-Caltech/T. Pyle We announced Kepler-47 in the Fall of It is the first circumbinary system with more than one planet.

53 Kepler 47 The first planet transited the primary 24 times. That planet s period is 49.5 days.

54 Kepler 47 The second planet transited the primary 6 times. That planet s period is 187 days.

55 Kepler 47 The third planet transited the primary 4 times. That planet s period is 303 days.

56 Kepler 47 The primary eclipses and the weak and total secondary eclipses are well fit. The EB period is 7.45 days.

57 Kepler 47 The system is single-lined. The stellar masses are 0.96 and 0.34 solar masses.

58 Kepler 47 The planetary masses are about 2, 19, and 3 Earth masses, and the planetary radii are about 3, 7, and 4.7 Earth radii. The densities are all less than ~0.4 g/cc.

59 Additional Systems Kepler-64 (aka Planet Hunters-1, Schwamb et al. 2013) Kepler-413 (Kostov et al. 2014) Kepler-453 (Welsh et al. 2015) Kepler-1647 (Kostov et al. 2016)

60 Kepler-453 Illustration copyright Mark Garlick

61 Kepler 453 Three transits of the primary are evident. The planet s period is 241 days.

62 Kepler 453 The primary eclipses and weak and total secondary eclipses are well fit. The EB period is days.

63 Kepler 453 The system is single-lined. The stellar masses are 0.94 and 0.94 solar masses. The planet s mass and radii are <16 and 6.2 (Earth units).

64 Kepler-1647

65 Brightness Primary Eclipse 20% loss Secondary Eclipse 15% loss Planet Transit 0.2% loss Time

66

67 Image: Billy Quarles Image: Lynette Cook Kepler-1647b has a mass and radius similar to that of Jupiter (all other transiting circumbinary planets are smaller than Saturn). The size of its orbit is more than twice as large as the orbits of the other known circumbinary planets. The period is about 1107 days.

68 The score so far: The Big Picture 11 planets in 9 eclipsing binaries published 2 more eclipsing binaries with a single planet each in the works The developing picture, based on all systems: The primary star masses range from 0.69 to 1.53 solar masses (Kepler-16, Kepler-64) The eccentricities of the binaries range from to (Kepler-47, Kepler-34) The periods of the binaries range from 7.49 to days (Kepler-47, Kepler-16)

69 The Big Picture The developing picture, based on all systems: The primary star masses range from 0.69 to 1.53 solar masses (Kepler-16, Kepler-64) The eccentricities of the binaries range from to (Kepler-47, Kepler-34) The periods of the binaries range from 7.49 to days (Kepler-47, Kepler-16) All systems are within a few degrees of being coplanar The stellar spin axis of Kepler-16 and Kepler-47 are roughly aligned with the orbital angular momentum

70 The Big Picture The developing picture, based on all systems: With three exceptions (two outer planets in Kepler- 47 and Kepler-1647), the planets orbit very close to the critical radius for stability

71 The Big Picture

72 The Big Picture The developing picture, based on all systems: With three exceptions (two outer planets in Kepler- 47 and Kepler-1647), the planets orbit very close to the critical radius for stability With one exception (Kepler-1647), all planets have radii much smaller than Jupiter (keep in mind larger planets are easier to detect owing to deeper transits)

73 The Big Picture

74 The Big Picture The developing picture, based on all systems: With three exceptions (two outer planets in Kepler- 47 and Kepler-1647), the planets orbit very close to the critical radius for stability With one exception (Kepler-1647), all planets have radii much smaller than Jupiter (keep in mind larger planets are easier to detect owing to deeper transits) With one exception (Kepler-1647), the planets with reliable measurements all have masses between Neptune s and Saturn s

75 The Big Picture

76 The Big Picture

77 The Big Picture The developing picture, based on all systems: The planet with the largest mass and radius (Kepler- 1647) has the orbit that is by far the largest---the other planets with lower mass orbit very near the stability limit Pierens & Nelson (2008) predicted such a tendancy, based on simulations of orbital evolution of planets in a circumbinary disk (Jupiter-mass planets tend to be unstable)

78 The Big Picture The developing picture, based on all systems: About half of the EBs in the Kepler sample have periods of a few days or less The shortest period circumbinary system has a period of 7.5 days (Kepler-47), and typical periods are 20 days or more Is this an observational bias? Short-period systems should have more transits, and should be easier to detect On the other hand, shorter-period systems tend to have more stellar activity and other complications

79 The Big Picture The developing picture, based on all systems: About half of the EBs in the Kepler sample have periods of a few days or less The shortest period circumbinary system has a period of 7.5 days (Kepler-47), and typical periods are 20 days or more Is this an observational bias? The apparent lack of planets around short-period binaries ay be related to the mechanism that removed the angular momentum from the stellar orbit and allowed the stars to orbit so closely

80 Questions? 問題

arxiv: v1 [astro-ph.ep] 28 Aug 2013

arxiv: v1 [astro-ph.ep] 28 Aug 2013 arxiv:1308.6328v1 [astro-ph.ep] 28 Aug 2013 Formation, detection, and characterization of extrasolar habitable planets Proceedings IAU Symposium No. 293, 2013 c 2013 International Astronomical Union Nader

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Physical Parameters of KID , a Low-Mass, Double- Lined Eclipsing Binary

Physical Parameters of KID , a Low-Mass, Double- Lined Eclipsing Binary Physical Parameters of KID 6131659, a Low-Mass, Double- Lined Eclipsing Binary Gideon Bass Jerome Orosz, William Welsh, Gur Windmiller, Trevor Gregg, Tara Fetherolf, Richard Wade, Samuel Quinn Paper available

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

What can be learned from the dynamics of packed planetary systems?

What can be learned from the dynamics of packed planetary systems? What can be learned from the dynamics of packed planetary systems? Rosemary Mardling Monash University University of Geneva some Kepler gravitational molecules... credit: Fabrycky :-) a stable pair of

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Planet Detection. Estimating f p

Planet Detection. Estimating f p Planet Detection Estimating f p Can We See Them? Not yet, but there are plans 3 recent claims, but planets very far from star, so some doubts Problem is separating planet light from star light Star is

More information

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! Kepler Spacecraft Can we believe this result? What techniques and data were used to derive this important result? 1 How to

More information

18 An Eclipsing Extrasolar Planet

18 An Eclipsing Extrasolar Planet Name: Date: 18 An Eclipsing Extrasolar Planet 18.1 Introduction One of the more recent new fields in astronomy is the search for (and discovery of) planets orbiting around stars other than our Sun, or

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France What is to expect from the transit method M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France Transit - method Occurrence: only if the planet orbital plane is close to

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

Astronomy 421. Lecture 8: Binary stars

Astronomy 421. Lecture 8: Binary stars Astronomy 421 Lecture 8: Binary stars 1 Key concepts: Binary types How to use binaries to determine stellar parameters The mass-luminosity relation 2 Binary stars So far, we ve looked at the basic physics

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Exoplanet False Positive Detection with Sub-meter Telescopes

Exoplanet False Positive Detection with Sub-meter Telescopes Exoplanet False Positive Detection with Sub-meter Telescopes Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Topics What are typical

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 The Big Picture Is

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Copyright Dennis

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

Hunting Habitable Shadows. Elizabeth Tasker

Hunting Habitable Shadows. Elizabeth Tasker Hunting Habitable Shadows Elizabeth Tasker Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune Saturn Earth Uranus Mercury Mars Jupiter Venus Neptune 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004

More information

Transit Timing Variations

Transit Timing Variations Transit Timing Variations Dan Fabrycky UCSC / UChicago Thanks to Michelson (/NExScI) and Hubble for support! Planet Detection Method ETVs! TTVs! Overview The dynamics that give rise to TTV Sensitivity

More information

In Our Galaxy, Far, Far Away

In Our Galaxy, Far, Far Away Non-fiction: In Our Galaxy, Far, Far Away In Our Galaxy, Far, Far Away NASA Announces the Discovery of a Planet That Orbits Two Stars, But There May Be More... In the film Star Wars: Episode IV A New Hope,

More information

The dynamics of extra-solar planets

The dynamics of extra-solar planets Institute for Advanced Study The dynamics of extra-solar planets Hanno Rein @ Franklin Institute, November 2011 Planet formation Planet formation Credit: NASA/JPL-Caltech/T. Pyle (SSC) Planet Migration

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets The Search for New Planets Key Ideas: Search for planets around other stars. Successful Search Techniques: Astrometric Wobble Doppler Wobble major discovery method Planetary Transits planets we can study

More information

Short-period planetary systems and their mysteries

Short-period planetary systems and their mysteries Short-period planetary systems and their mysteries Rosemary Mardling Monash Geneva 3 December 2014 Some open questions: gas giants How do hot jupiters arrive at their orbits? Are systems multiple systems

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

Search for & Characterizing Small Planets with NASA s Kepler Mission

Search for & Characterizing Small Planets with NASA s Kepler Mission Search for & Characterizing Small Planets with NASA s Kepler Mission Eric Ford University of Florida SAMSI Astrostatistics Workshop September 21, 2012 Image credit: NASA/ESA/StSci Golden Age for Planet

More information

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect

II. Results from Transiting Planets. 1. Global Properties 2. The Rossiter-McClaughlin Effect II. Results from Transiting Planets 1. Global Properties 2. The Rossiter-McClaughlin Effect Planet Radius Most transiting planets tend to be inflated. Approximately 68% of all transiting planets have radii

More information

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

As an extrasolar planet hunter, you can t afford to be timid or meek; you ve got

As an extrasolar planet hunter, you can t afford to be timid or meek; you ve got Discovering Worlds in Transit Astronomers are finally on the cusp of finding planets like ours. by Laurance R. Doyle, Hans Jörg Deeg, and Jon M. Jenkins As an extrasolar planet hunter, you can t afford

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY EXONEST The Exoplanetary Explorer Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY Kepler Mission The Kepler mission, launched in 2009, aims to explore the structure

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Conceptual Themes for the 2017 Sagan Summer Workshop

Conceptual Themes for the 2017 Sagan Summer Workshop Conceptual Themes for the 2017 Sagan Summer Workshop Authors: Jennifer C. Yee (SAO) & Calen B. Henderson (JPL) Theme 1: The Scale of the Einstein Ring Microlensing is most sensitive to planets near the

More information

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

More information

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University)

ECLIPSING BINARIES: THE ROYAL ROAD. John Southworth (Keele University) ECLIPSING BINARIES: THE ROYAL ROAD John Southworth (Keele University) Astrometric binaries: distant friends? William Herschel (1802) christened the term binary star Félix Savary (in 1827) established the

More information

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were

More information

Lecture 25: The Outer Planets

Lecture 25: The Outer Planets Lecture 25: The Outer Planets Neptune Uranus Pluto/Charon Uranus and three moons Neptune and two moons 1 The Outer Planets Uranus Discovered by William Herschel in 1781, who realized that this extended

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

Investigating the Solar System

Investigating the Solar System Investigating the Solar System This Workbook belongs to: Our Local Star: The Sun Location in The Solar System Interesting Facts 1. 2. 3. 4. Name of Star: THE SUN 5. Draw and Color your own Sun in the blank

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Physics Lab #10:! Stellar Parallax!

Physics Lab #10:! Stellar Parallax! opposite Physics 10293 Lab #10: Stellar Parallax Introduction Parallax is a distance determination technique that uses geometry to measure the distance to some object when other means (such as a ruler

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

Assignment 1. Due Jan. 31, 2017

Assignment 1. Due Jan. 31, 2017 Assignment 1 Due Jan. 31, 2017 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus Uranus and Neptune Uranus and Neptune are much smaller than Jupiter and Saturn, but still giants compared to Earth Both are worlds we know relatively little about Voyager 2 is the only spacecraft to visit

More information

The Problem. Until 1995, we only knew of one Solar System - our own

The Problem. Until 1995, we only knew of one Solar System - our own Extrasolar Planets Until 1995, we only knew of one Solar System - our own The Problem We had suspected for hundreds of years, and had confirmed as long ago as the 1800s that the stars were extremely distant

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Planets in other Star Systems

Planets in other Star Systems Planets in other Star Systems test out how planets are formed with more examples first extrasolar planet observed in 1995. In Jan 2000, 28 observed and now >3700 confirmed (3/2018). Many systems with 2

More information

Dynamical Tides in Binaries

Dynamical Tides in Binaries Dynamical Tides in Binaries I. Merging White Dwarf Binaries II. Kepler KOI-54 III. Hot Jupiter Systems Dong Lai Cornell University 4/5/2012, IAS, Princeton Equilibrium Tide M, R M Equilibrium Tide M, R

More information

The formation & evolution of solar systems

The formation & evolution of solar systems The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

More information

1 The Solar System. 1.1 a journey into our galaxy

1 The Solar System. 1.1 a journey into our galaxy 1 The Solar System Though Pluto, and the far-flung depths of the Solar System, is the focus of this book, it is essential that Pluto is placed in the context of the planetary system that it inhabits our

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-Planets A Search for Transiting Planets Around Cool stars J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-STARRS 1: 1.8m prototype telescope operated on Haleakala/Hawaii consortium of few

More information

Joseph Castro Mentor: Nader Haghighipour

Joseph Castro Mentor: Nader Haghighipour ON THE POSSIBILITY OF ADDITIONAL PLANETS IN THE γ CEPHEI BINARY-PLANETARY SYSTEM Joseph Castro Mentor: Nader Haghighipour ABSTRACT Results of the simulations of the dynamical stability of additional hypothetical

More information

Discovering Exoplanets Transiting Bright and Unusual Stars with K2

Discovering Exoplanets Transiting Bright and Unusual Stars with K2 Discovering Exoplanets Transiting Bright and Unusual Stars with K2 PhD Thesis Proposal, Department of Astronomy, Harvard University Andrew Vanderburg Advised by David Latham April 18, 2015 After four years

More information

Validation of Transiting Planet Candidates with BLENDER

Validation of Transiting Planet Candidates with BLENDER Validation of Transiting Planet Candidates with BLENDER Willie Torres Harvard-Smithsonian Center for Astrophysics Planet Validation Workshop, Marseille, 14 May 2013 2013 May 14 Planet Validation Workshop,

More information

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our » How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them. A very fit

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry Exoplanets Saturday Physics for Everyone Jon Thaler October 27, 2012 Credit: NASA/Kepler Mission/Dana Berry Outline What is an exoplanet? Why are they intereskng? How can we find them? Exolife?? The future...

More information

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

More information

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton. Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

More information

Astronomy 101 Lab: Hunt for Alien Worlds

Astronomy 101 Lab: Hunt for Alien Worlds Name: Astronomy 101 Lab: Hunt for Alien Worlds Be prepared to make calculations in today s lab. Laptops will also be used for part of the lab, but you aren t required to bring your own. Pre-Lab Assignment:

More information

Tidal Dissipation in Binaries

Tidal Dissipation in Binaries Tidal Dissipation in Binaries From Merging White Dwarfs to Exoplanetary Systems Dong Lai Cornell University March 14, 2013, Harvard ITC Colloquium Tidal Dissipation in Binaries I. Merging White Dwarf Binaries

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

TrES Exoplanets and False Positives: Finding the Needle in the Haystack

TrES Exoplanets and False Positives: Finding the Needle in the Haystack Transiting Extrasolar Planets Workshop ASP Conference Series, Vol. 366, 2007 C. Afonso, D. Weldrake and Th. Henning TrES Exoplanets and False Positives: Finding the Needle in the Haystack F. T. O Donovan

More information

Basics of Kepler and Newton. Orbits of the planets, moons,

Basics of Kepler and Newton. Orbits of the planets, moons, Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due on Tuesday, Jan. 19, 2016 Why are celestial motions and forces important? They explain the world around us.

More information

MS-ESS1-1 Earth's Place in the Universe

MS-ESS1-1 Earth's Place in the Universe MS-ESS1-1 Earth's Place in the Universe Students who demonstrate understanding can: MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses

More information

4 1 Extrasolar Planets

4 1 Extrasolar Planets Extrasolar Planets 4 1 Introduction 4 2 So far: have looked at planets around our Sun Physics question: Is our Solar System normal? = Are there planets around other stars? can then compare solar system

More information

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central

Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 1 The Copernican Revolution Lecture Presentation 1.0 Have you ever wondered about? Where are the stars during the day? What is the near

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information