Basics of Kepler and Newton. Orbits of the planets, moons,
|
|
- Sophie Marsh
- 4 years ago
- Views:
Transcription
1 Basics of Kepler and Newton Orbits of the planets, moons,
2 Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws
3 Recall: The Copernican Model Postulated planets orbit Sun, not Earth Worked out correct order of planets from Sun Realized planets near Sun move fastest Accurately measured distances of planets from Sun, and orbital periods
4 Telescopic observations of the phases of Venus confirm the heliocentric model Geocentric Heliocentric Always crescent Full range of phases
5
6 Tycho Brahe (b.1546) Collected most accurate observations of planetary motions to date. Found Copernican model still did not agree with data.
7 Kepler (b.1571) Hired as an assistant by Tycho to interpret observations of planetary motion.
8 Kepler s Three Laws I. Orbits of planets are ellipses with sun at one focus
9 Kepler s Three Laws II Line from planet to sun sweeps out equal areas in equal intervals of time
10 Kepler s Three Laws III Planet s orbital period squared is proportional to its average distance from sun cubed: P 2 = a 3 P is period in years a is average distance in AU
11 Newton (b.1642) Mathematician and physicist. Developed Laws of mechanics and gravity, and invented calculus, to explain planetary motion
12 Newton s Laws of Motion I An object at rest continues so or in uniform motion continues so unless acted upon by some (net) force The momentum of an object remains constant unless it experiences an external force Principle of Inertia
13 Newton s Laws of Motion II A body s change of motion is proportional to the force acting on it, and in the direction of the force. F = ma=m(dv/dt)=(dp/dt) Where m is mass of body, and a its acceleration (any change in speed or direction), v is velocity, p is momentum, mv
14 Newton s Laws of Motion III When a body exerts a force on a 2 nd body, the 2 nd body exerts an equal but oppositely directed force on the 1 st body Action Reaction F 12 =-F 21
15 Laws applied to planetary motion First law says there must be a force acting on the planets Newton realized that force must be gravity, that inverse-square-law forces lead to elliptical orbits
16 Gravity Same force that causes an apple to fall to Earth causes the Moon to orbit the Earth Law of Gravity: gravitational force between two masses M and m separated by distance R is F = -G M m / R 2 G is a constant number (6.67 x Nm 2 /kg 2 = 6.67 x 10-8 (cgs))
17 Kepler s Laws explained Using only Laws of Mechanics and Gravity (and the calculus), Newton could derive Kepler s three laws. Kepler discovered them, but Newton understood them.
18 Earth-Moon Orbital and Dynamical System
19 The Earth: basic facts. Average distance from Sun = 1 AU Perihelion = AU Aphelion = AU pretty low e Orbital period = 1 year (by definition) Tilt of axis = 23.5 degrees Rotation period = 23 hr, 56 min Temperature range K Teeming with life
20 Seasons: Due to Tilt of Earth s Axis
21
22
23 Why does the tilt cause seasons? Tilt causes the sun to remain lower in the sky in winter When the sun is low in the sky, less heat is supplied per unit area of Earth s surface Tilt causes winter days to be much shorter than summer days The shorter the day, the less heating by the Sun
24 Summer, Winter Path of Sun Summer Winter
25 Cause of the Seasons Entirely due to tilt of Earth s rotation axis It does NOT occur because the Earth is closer to the sun in Summer! Orbital ellipticity has very little to do with seasons! Eccentricity can account for only couple of % change in irradiation too little to explain seasons
26 Tides Gravitational pull of moon and Sun stretches Earth, and produces tidal bulges. bulge
27 Tidal bulge leads Moon
28 Effects of tides Keeps Moon in synchronous rotation Moon always has same side facing Earth Increases orbital angular momentum of Moon Increases Earth-Moon distance by 4 cm/year Moon s orbital period also increasing Slows rotation of Earth Day was much shorter in past Day will be much longer in future Eventually, one side of Earth will be locked towards Moon, with a day lasting 50 present Earth days Tides exchange spin and orbital angular momenta of celestial bodies
29 Earth and Moon
30 Each phase is visible only at certain times and certain directions in sky Phases of Moon
31 Lunar eclipse: Moon is shadowed by Earth In umbra, get total eclipse In penumbra, get partial eclipse
32 Solar Eclipses Our view of Sun is blocked by Moon Only a small part of Earth sees solar eclipse (not to scale)
33 Solar eclipse sequence Partial phase starts Totality
34 Fortunate coincidence in angular sizes of sun and and moon allows us to see sun s atmosphere during total solar eclipse.
7.4 Universal Gravitation
Circular Motion Velocity is a vector quantity, which means that it involves both speed (magnitude) and direction. Therefore an object traveling at a constant speed can still accelerate if the direction
Gravitation and the Waltz of the Planets
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
Gravitation and the Waltz of the Planets. Chapter Four
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
Gravitation and the Motion of the Planets
Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around
Unit 2: Celestial Mechanics
Unit 2: Celestial Mechanics The position of the Earth Ptolemy (90 168 AD) Made tables that allowed a user to locate the position of a planet at any past, present, or future date. In order to maintain circular
Chapter 3 The Cycles of the Moon
Chapter 3 The Cycles of the Moon Goals: To understand the phases of the moon To understand how the moon affects tides To understand lunar and solar eclipses To learn some of the history associated with
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Test 1 Review Chapter 1 Our place in the universe
Test 1 Review Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons Formulas will be projected on the screen You can use
Introduction To Modern Astronomy I
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
lightyears observable universe astronomical unit po- laris perihelion Milky Way
1 Chapter 1 Astronomical distances are so large we typically measure distances in lightyears: the distance light can travel in one year, or 9.46 10 12 km or 9, 600, 000, 000, 000 km. Looking into the sky
4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe
How do we describe motion?
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves $ speed = distance!#"units
The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture
Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 2014 Pearson Education, Inc. Making Sense of the Universe: Understanding
Most of the time during full and new phases, the Moon lies above or below the Sun in the sky.
6/16 Eclipses: We don t have eclipses every month because the plane of the Moon s orbit about the Earth is different from the plane the ecliptic, the Earth s orbital plane about the Sun. The planes of
ASTR-1010: Astronomy I Course Notes Section III
ASTR-1010: Astronomy I Course Notes Section III Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use
Equation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central
Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from
Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.
Position 3 None - it is always above the horizon. N E W S Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Imaginary plane No; the Earth blocks the view. Star A at position
Kepler, Newton, and laws of motion
Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.2-2.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy
Intro to Astronomy. Looking at Our Space Neighborhood
Intro to Astronomy Looking at Our Space Neighborhood Astronomy: The Original Science Ancient cultures used the movement of stars, planets and the moon to mark time Astronomy: the study of the universe
4.1 Describing Motion
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning: How do we describe motion? How is mass different from weight? How do we describe
5. Universal Laws of Motion
5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)
Chapter 3: Cycles of the Sky
Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting
How do we describe motion?
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different
How do we describe motion?
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves example: speed of
Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1
Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain
a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU
1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy
18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.
Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope
Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws
Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University - Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial
9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force
The Four Fundamental Forces of Nature 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force The Universe is made of matter Gravity the force of attraction between matter
1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system.
1. The bar graph below shows one planetary characteristic, identified as X, plotted for the planets of our solar system. Which characteristic of the planets in our solar system is represented by X? A)
9/13/ Describing Motion: Examples from Everyday Life. Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity
9/13/17 Lecture Outline 4.1 Describing Motion: Examples from Everyday Life Chapter 4: Making Sense of the Universe Understanding Motion, Energy, and Gravity Our goals for learning: How do we describe motion?
PHYS 155 Introductory Astronomy
PHYS 155 Introductory Astronomy - observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory - Exam - Tuesday March 20, - Review Monday 6:30-9pm, PB 38 Marek Krasnansky
Orbital Mechanics. CTLA Earth & Environmental Science
Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM
The Main Point. Phases and Motions of the Moon. Lecture #5: Earth, Moon, & Sky II. Lunar Phases and Motions. Tides. Eclipses.
Lecture #5: Earth, Moon, & Sky II Lunar Phases and Motions. Tides. Eclipses. The Main Point The Moon s size and orbit lead to many interesting phenomena: changing phases, tides, and eclipses. Astro 102/104
Topic 10: Earth in Space Workbook Chapters 10 and 11
Topic 10: Earth in Space Workbook Chapters 10 and 11 We can imagine all the celestial objects seen from Earth the sun, stars, the Milky way, and planets as being positioned on a celestial sphere. Earth
Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury
Lecture 19: The Moon & Mercury The Moon & Mercury The Moon and Mercury are similar in some ways They both have: Heavily cratered Dark colored surfaces No atmosphere No water They also have some interesting
Occam s Razor: William of Occam, 1340(!)
Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.1-3.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,
Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?
Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric
The History of Astronomy. Please pick up your assigned transmitter.
The History of Astronomy Please pick up your assigned transmitter. When did mankind first become interested in the science of astronomy? 1. With the advent of modern computer technology (mid-20 th century)
a. 0.1 AU b. 10 AU c light years d light years
1 AST104 Sp2006: EXAM 1 Multiple Choice Questions: Mark the best answer choice on the bubble form. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1.
Spacecraft Dynamics and Control
Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know
Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler
Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial
Earth Science Lesson Plan Quarter 4, Week 5, Day 1
Earth Science Lesson Plan Quarter 4, Week 5, Day 1 Outcomes for Today Standard Focus: Earth Sciences 1.d students know the evidence indicating that the planets are much closer to Earth than are the stars
Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3)
Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3) Copernicus (empirical observations) Kepler (mathematical concepts) Galileo (application to Jupiter s moons) Newton (Gravity
Announcements. Topics To Be Covered in this Lecture
Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2
Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:
Motions of the Planets ( Wanderers ) Planets move on celestial sphere - change RA, Dec each night - five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week: - named after 7
Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points)
Exam #1 Study Guide (Note this is not all the information you need to know for the test, these are just SOME of the main points) Moon Phases Moon is always ½ illuminated by the Sun, and the sunlit side
2010 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Some of the topics we will explore: How do we describe motion? (Speed,
2.1 Patterns in the Night Sky
2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?
Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws
Eclipses and Forces Jan 21, 2004 1) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws Review Lots of motion The Moon revolves around the Earth Eclipses Solar Lunar the Sun, Earth and Moon must all be
Chapter 22 Exam Study Guide
Chapter 22 Exam Study Guide Name: Hour: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Write the letter that best answers the question or completes
Agenda Announce: 4.1 Describing Motion. Tests. How do we describe motion?
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Agenda Announce: Stony Brook talk this Friday on Precision Cosmology Project Part I due in one week before class: one paragraph
Planetary Orbits: Kepler s Laws 1/18/07
Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_206-2 The first homework due Jan 25 (available for
Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12
GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation
Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.
Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation
PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites
The Earth, Moon, and Sky. Lecture 5 1/31/2017
The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity
History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period
PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation
Astronomy 1143 Quiz 1 Review
Astronomy 1143 Quiz 1 Review Prof. Pradhan September 7, 2017 I What is Science? 1. Explain the difference between astronomy and astrology. Astrology: nonscience using zodiac sign to predict the future/personality
Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields
Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q Sun-Earth-Moon System https://vimeo.com/16015937
Introduction To Modern Astronomy II
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
PHYS 160 Astronomy Test #1 Name Answer Key Test Version A
PHYS 160 Astronomy Test #1 Name Answer Key Test Version A True False Multiple Choice 1. T 1. C 2. F 2. B 3. T 3. A 4. T 4. E 5. T 5. B 6. F 6. A 7. F 7. A 8. T 8. D 9. F 9. D 10. F 10. B 11. B 12. D Definitions
Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than
Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.
Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!
Johannes Kepler (1571-1630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle
Physical Science. Chapter 22 The Earth in Space. Earth s Rotation
Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis
Physical Science. Chapter 22 The Earth in Space
Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis
Earth Science, 13e Tarbuck & Lutgens
Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical
The Earth & its good friend, the Moon. SNC1D7 - Space
The Earth & its good friend, the Moon SNC1D7 - Space Key Questions! What causes... day and night? the seasons? the tides? What are eclipses? Let s eat some space oreos! How do we know the Earth is round?
Planetary Mechanics:
Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the
Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.
Astronomy, PART 2 Vocabulary Aphelion Asteroid Astronomical Unit Comet Constellation Crater Eccentricity Eclipse Equinox Geocentric model Gravitation Heliocentric model Inertia Jovian Perihelion Revolution
Gravity and the Laws of Motion
Gravity and the Laws of Motion Mass Mass is the amount of stuff (matter) in an object. Measured in grams (kg, mg, cg, etc.) Mass will not change unless matter is added or taken away. Weight Weight is the
AST Section 2: Test 1
AST1002 - Section 2: Test 1 Date: 10/06/2009 Name: Equations: c = λ f, λ peak = Question 1: A star with a declination of +40.0 degrees will be 1. east of the vernal equinox. 2. west of the vernal equinox.
Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4
Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11
Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space. https://saturn.jpl.nasa.gov/mission/grand-finale/overview/
Adios Cassini! Crashed into Saturn 9/15/17 after 20 years in space https://saturn.jpl.nasa.gov/mission/grand-finale/overview/ Laws of Motion Conservation Laws Gravity tides Today Why are astronauts weightless
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION
Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 1 The Copernican Revolution Lecture Presentation 1.0 Have you ever wondered about? Where are the stars during the day? What is the near
Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe
1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the
PHYS 160 Astronomy Test #1 Fall 2017 Version B
PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,
3) During retrograde motion a planet appears to be A) dimmer than usual. B) the same brightness as usual C) brighter than usual.
Descriptive Astronomy (ASTR 108) Exam 1 B February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the
1) Kepler's third law allows us to find the average distance to a planet from observing its period of rotation on its axis.
Descriptive Astronomy (ASTR 108) Exam 1 A February 17, 2010 Name: In each of the following multiple choice questions, select the best possible answer. In the line on the scan sheet corresponding to the
2) The number one million can be expressed in scientific notation as: (c) a) b) 10 3 c) 10 6 d)
Astronomy Phys 181 Midterm Examination Choose the best answer from the choices provided. 1) What is the range of values that the coordinate Declination can have? (a) a) -90 to +90 degrees b) 0 to 360 degrees
AST 105. Introduction to Astronomy: The Solar System. Announcement: First Midterm this Thursday 02/25
AST 105 Introduction to Astronomy: The Solar System Announcement: First Midterm this Thursday 02/25 REVIEW Newton s 3 Laws of Motion 1. An object moves at constant velocity if there is no net force acting
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2012 Pearson Education, Inc.
Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1 4.1 Describing Motion: Examples from Everyday Life Our goals for learning: How do we describe motion? How is mass different
How big is the Universe and where are we in it?
Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab
Today. Laws of Motion. Conservation Laws. Gravity. tides
Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized
Lecture: October 1, 2010
Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on
4. Gravitation & Planetary Motion. Mars Motion: 2005 to 2006
4. Gravitation & Planetary Motion Geocentric models of ancient times Heliocentric model of Copernicus Telescopic observations of Galileo Galilei Systematic observations of Tycho Brahe Three planetary laws
Chapter 3 Cycles of the Moon
Chapter 3 Cycles of the Moon Guidepost In the previous chapter, you studied the cycle of day and night and the cycle of the seasons. Now you are ready to study the brightest object in the night sky. The
Astronomy I Exam I Sample Name: Read each question carefully, and choose the best answer.
Name: Read each question carefully, and choose the best answer. 1. During a night in Schuylkill Haven, most of the stars in the sky (A) are stationary through the night. (B) the actual motion depends upon
cosmogony geocentric heliocentric How the Greeks modeled the heavens
Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes
Astronomy Section 2 Solar System Test
is really cool! 1. The diagram below shows one model of a portion of the universe. Astronomy Section 2 Solar System Test 4. Which arrangement of the Sun, the Moon, and Earth results in the highest high
Making Sense of the Universe: Understanding Motion, Energy, and Gravity Pearson Education, Inc.
Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life Our goals for learning: How do we describe motion? How is mass different from weight?
Investigations in Earth and Space Science Semester Review: Unit 1 and Unit 2
IESS Unit 1: Solar Energy & Fluid Circulation Review Directions: Write the answer to each question in the box to the right of the question. Fold your paper along the line and use this as a review sheet!
Midterm 1. - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) ** bring long green SCANTRON 882 E short answer questions (show work)
Midterm 1 - Covers Ch. 1, 2, 3, 4, & 5 (HW 1, 2, 3, & 4) - 20 multiple choice/fill-in the blank ** bring long green SCANTRON 882 E - 10 short answer questions (show work) - formula sheet will be included
D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified
ASTRONOMY 1 EXAM 1 Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) 1 Solar System G 7. aphelion N 14. eccentricity M 2. Planet E 8. apparent visual magnitude R 15. empirical Q 3. Star P 9.
Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009
Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.
Copernican Revolution. ~1500 to ~1700
~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected
Chapter 13: universal gravitation
Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent
1. Which of the following correctly lists our cosmic address from small to large?
1. Which of the following correctly lists our cosmic address from small to large? (a) Earth, solar system, Milky Way Galaxy, Local Group, Local Super Cluster, universe (b) Earth, solar system, Milky Way
Name Period Date Earth and Space Science. Solar System Review
Name Period Date Earth and Space Science Solar System Review 1. is the spinning a planetary object on its axis. 2. is the backward motion of planets. 3. The is a unit less number between 0 and 1 that describes
The Heliocentric Model of Copernicus
Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior