Planet Detection. Estimating f p

Size: px
Start display at page:

Transcription

1 Planet Detection Estimating f p

2 Can We See Them? Not yet, but there are plans 3 recent claims, but planets very far from star, so some doubts Problem is separating planet light from star light Star is 10 9 times brighter in visible light Only 10 6 times brighter in infrared

3 Planet is Much Fainter than Star

4 Indirect Detection Wobbling star Detect effect of planet on star (both orbit around center of mass) M 1 M 2 M 1 M 2 M 1 M 2 Large planet will make a star wobble M = 1 M 2 M >> 1 M 2 In plane of sky observe position shift Along our line of sight Observe Doppler Shift

5 Star and Planet Orbit Center of Mass

6 The Astrometric Technique Measure stellar position (angle) accurately - see wobble compared to more distant stars How far does the star wobble? M * Center of mass M pl R * M R = pl r * M * We measure angle; for small angles, r Θ = R * D in radians so Θ = M pl r 1 D M * D Θ R * Big planet, big orbit small star, close to sun Current limit: 1 mas = 10-3 arcsec = degrees = radians e.g. M = M, M = M, D = 15 ly Θ = 1 mas pl Jupiter *

7 1 mas -1 mas The Sun as viewed from 10 pc (~30 ly)

8 30 ly

9 The Spectroscopic Method Relies on Doppler Effect Motion of star towards and away from us Almost all planets around other stars found by this method so far

10 Light is a wave The Doppler Shift wavelength (λ) moving star wavelength seen by BLUESHIFT λ observed λ emitted = 1 + v c wavelength seen by REDSHIFT Doppler Shift Magnitude and direction of velocity But only along line-of-sight

11 The Spectroscopic Technique Measure velocity, not position, of star Use spectrometer to get Doppler Shift of spectral line light shift λ Shift V M pl * 1/2 1/2 M * r Big planet, small orbit Small star Distance doesn t matter (except for brightness) Edge - On

12

13 30 ly

14 What We Can Learn 1. There is a planet (If not a mistake) 2. The orbital period (P) (The time for pattern to repeat) 3. The orbital radius r 3 M * P 2 (Kepler s Third Law) 4. Lower limit to planet mass ( M planet ) Conservation of momentum Mpl > M V P * * 2π r = if we see orbit edge-on > if tilted

15 Comparison of Search Methods Advantages Astrometric Big Planet Big Orbit Small Star Nearby Star Spectroscopic Big Planet Small Orbit Small Star -- Edge-on Orbit

16 100 Stars M pl (in Jupiter Masses) Astrometric Technique (1 mas) Jupiter Saturn (at ~ 15 ly) Spectroscopic Technique ( m s -1 ) Separate Stars Orbital Radius (AU)

17 Other Methods Transits: Planet passes in front of a star planet star us Only about 0.5% of stars with planets will line up Light from star Time transit First planet found with this method in January 2003; 9 detected as of January 2006 Microlensing: Light from more distant star is focused by gravity of nearer star passing in front us nearer star distant star Fortuitous alignment brightens Three planets found this way as of January 2006 light from distant star planet

18 Planets from the Transit Method OGLE-TR-10 Light curve Star field, shows star

19 Planet Detected by Microlensing Sharp spike indicates second lens. Mass of second lens only 8 x 10 5 as massive as star. Most likely mass of planet is 5.5 M earth and separation from star is 2.6 AU. Most likely star is low mass (0.22 M sun ). This method can detect very low mass planets, but they are onetime events. Cannot follow up. OGLE 2005-BLG-235Lb, announced 1/25/06

20 Current Statistics (Jan. 2007) Based on Extrasolar Planets Encyclopedia Planets in 171 systems 21 with multiple planets Most planets in one system is 4 (55 Cancri) Least massive M = M Jup = 7 M earth (Gliese 876) Claim of 5.5 M earth (Microlens 1/25/06)

21 Implications of New Planets Planets more massive than Jupiter can form around stars like the Sun. Large Planets can form much closer to a star than Jupiter (or move there) Does this mean we are unusual and our ideas about other planetary systems are just solar system chauvinism? Not necessarily. The ones found so far are the easy ones. (Big planets close to a star) Now there are many more with lower masses than higher masses. Too early to say that we are unusual.

22 Number of planets for different masses

23 Estimating f p Maximum? f p ~ 1 All young stars may have disks Binaries? Can have disks, but planet formation? Even if form planets, orbits may not be stable If reject binaries, f p < 0.3

24 Estimating f p Minimum? Based on success rate of searches (n found /n searched ) Estimates now up to 5% (f p > 0.05) Note larger than 0.02 given in book Extrapolate trends to finding Smaller planets, larger orbits, Estimates range from 0.11 to 0.25 Allowed range: f p = 0.05 to 1.0 Explain your choice! Include/exclude binaries?

25

26

27 Artist s conception of the view from the outmost planet of three in Upsilon Andromedae Copyright Lynette Cook used with permission

28 Artist s conception of Transit of HD Copyright Lynette Cook used with permission

29 Artist s conception of 47 U ma view from Moon of the Second Planet Copyright Lynette Cook used with permission

30 Future Prospects Direct detection (and study) of Earth-like planets ~ 2015 Terrestrial Planet Finder (TPF) Darwin (Europe) Astrometric Method GAIA ~ 2012 M J Planets out to 600 ly. Further Spectroscopic Searches Transits Kepler (~ 2008) Monitor 100,000 stars for 4 years Hundreds of Terrestrial Planets

31 Direct Detection in Future Terrestrial Planet Finder (TPF)/Darwin TPF-C Visible light coronagraph (~2014) TPF-I Infrared interferometer (~2020) Goal is to detect earth-mass planets And to see what gases in atmosphere Suitable for life?

32 TPF Concepts TPF-I Infrared Interferometer (2020) TPF-C Visible light coronagraph (2014)

33 Spectroscopy of atmosphere

34

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

Planets are plentiful

Extra-Solar Planets Planets are plentiful The first planet orbiting another Sun-like star was discovered in 1995. We now know of 209 (Feb 07). Including several stars with more than one planet - true planetary

4 1 Extrasolar Planets

Extrasolar Planets 4 1 Introduction 4 2 So far: have looked at planets around our Sun Physics question: Is our Solar System normal? = Are there planets around other stars? can then compare solar system

Planet Detection. AST 105 Intro Astronomy The Solar System

Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

2010 Pearson Education, Inc.

Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

13 - EXTRASOLAR PLANETS

NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ EXTRASOLAR PLANETS? DO PLANETS ORBIT AROUND OTHER STARS? WE WOULD

Planets and Brown Dwarfs

Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

Searching for Other Worlds

Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

Why is it hard to detect planets around other stars?

Extrasolar planets Why is it hard to detect planets around other stars? Planets are small and low in mass Planets are faint The angular separation between planets and their stars is tiny Why is it hard

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

II Planet Finding.

II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them. A very fit

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

18 An Eclipsing Extrasolar Planet

Name: Date: 18 An Eclipsing Extrasolar Planet 18.1 Introduction One of the more recent new fields in astronomy is the search for (and discovery of) planets orbiting around stars other than our Sun, or

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets

The Search for New Planets Key Ideas: Search for planets around other stars. Successful Search Techniques: Astrometric Wobble Doppler Wobble major discovery method Planetary Transits planets we can study

Extra Solar Planetary Systems and Habitable Zones

Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

The Problem. Until 1995, we only knew of one Solar System - our own

Extrasolar Planets Until 1995, we only knew of one Solar System - our own The Problem We had suspected for hundreds of years, and had confirmed as long ago as the 1800s that the stars were extremely distant

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

Observations of extrasolar planets

Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

Searching for Earth-Like Planets:

Searching for Earth-Like Planets: NASA s Terrestrial Planet Finder Space Telescope Robert J. Vanderbei January 11, 2004 Amateur Astronomers Association of Princeton Peyton Hall, Princeton University Page

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

Class 15 Formation of the Solar System

Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

Observations of Extrasolar Planets

Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

Gravitational microlensing. Exoplanets Microlensing and Transit methods

Gravitational microlensing Exoplanets Microlensing and s Planets and Astrobiology (2016-2017) G. Vladilo May take place when a star-planet system crosses the visual of a background star, as a result of

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

Astronomy 210 Midterm #2

Astronomy 210 Midterm #2 This Class (Lecture 27): Birth of the Solar System II Next Class: Exam!!!! 2 nd Hour Exam on Friday!!! Review Session on Thursday 12-1:30 in room 236 Solar Observing starts on

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

8. Solar System Origins

8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes

Astronomy 421. Lecture 8: Binary stars

Astronomy 421 Lecture 8: Binary stars 1 Key concepts: Binary types How to use binaries to determine stellar parameters The mass-luminosity relation 2 Binary stars So far, we ve looked at the basic physics

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

From measuring and classifying the stars to understanding their physics

From measuring and classifying the stars to understanding their physics What we can measure directly: Surface temperature and color Spectrum Apparent magnitude or intensity Diameter of a few nearby stars

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

There are 4 x stars in the Galaxy

ExtraSolar Planets Our solar system consists of 1 Star 4 Jovian planets (+ icy moons) 4 Terrestrial planets The asteroid belt (minor planets) The Kuiper belt (dwarf planets, plutinos and TNOs) The Oort

Detecting Extra Solar Planets

Detecting Extra Solar Planets The Extrasolar Planet Count Currently, 288 stars have been discovered to have planets. Some of these have more than one, so a total of 380 planets have been discovered as

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

The formation & evolution of solar systems

The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

Chapter 11 Surveying the Stars

Chapter 11 Surveying the Stars Luminosity Luminosity: Rate of energy emitted by star every second. Apparent brightness (flux): Amount of energy passing through every second per unit area. Luninosity =

Young Solar-like Systems

Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS Rosa M. Ros Technical University of Catalonia, Barcelona (Spain) Abstract When in 1610 Galileo Galilei looked at Jupiter with the use of his telescope, he saw

The Cosmic Distance Ladder (Mário Santos) What is it? A way to calculate distances to objects very far away based on the measured distances to nearby objects: 1. Start with the distance to the Sun (1 AU)

Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

Finding Extrasolar Planets. I

ExtraSolar Planets Finding Extrasolar Planets. I Direct Searches Direct searches are difficult because stars are so bright. How Bright are Planets? Planets shine by reflected light. The amount reflected

Planets Around Other Stars Extrasolar Planet Detection Methods. February, 2006

Planets Around Other Stars Extrasolar Planet Detection Methods February, 2006 Distribution of this File Extrasolar_planet_detection.ppt This Powerpoint presentation was put together for the purpose of

TPS. How many Exoplanets have been discovered to date? A B C D

TPS How many Exoplanets have been discovered to date? A. 1-10 B. 11-100 C. 101-500 D. 501-1000 ExoPlanets Objectives What are Exoplanets How do we find Exoplanets How do Exoplanets compare to our solar

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

Indirect Methods: gravitational perturbation of the stellar motion Exoplanets The reflex motion of the star is proportional to M p /M * This introduces an observational bias that favours the detection

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

A star is at a distance of 1.3 parsecs, what is its parallax?

Stars Spectral lines from stars Binaries and the masses of stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram A star

V. Astronomy Section

EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

Properties of the Solar System

Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

AST2000 Lecture Notes

AST2000 Lecture Notes Part 1C Extrasolar planets Questions to ponder before the lecture 1. Why is it only during recent years that we have started to detect planets orbiting stars outside our solar system?

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

Using Gravity to Measure the Mass of a Star

STScI Newsletter Vol. 34 Issue 02 Using Gravity to Measure the Mass of a Star Abstract Kailash C. Sahu, ksahu[at]stsci.edu In a reprise of the famous 1919 solar eclipse experiment that confirmed Einstein's

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

Wobbling Stars: The Search for Extra Terrestrial Planets

Name: Partner(s): 1101 or 3310: Desk # Date: Purpose Wobbling Stars: The Search for Extra Terrestrial Planets Describe the Doppler effect for sound and light Explain the relationships between the pitch,

Extrasolar Transiting Planets: Detection and False Positive Rejection

4 Harvard-Smithsonian Center for Astrophysics Extrasolar Transiting Planets: Detection and False Positive Rejection Willie Torres Harvard-Smithsonian Center for Astrophysics Young Planetary Systems Workshop

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

Direct imaging of extra-solar planets

Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

Modern Astronomy Review #1

Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

15.1 Properties of Stars

Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we measure

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life?

The Habitability of Worlds Lecture 31 NASA: The Visible Earth In-Class Question 1) Do you think that there are planets outside the solar which would be habitable for human life? a) 1 (yes, definitely)

Lab #5. Searching for Extrasolar Planets

Lab #5 Searching for Extrasolar Planets Introduction Since the beginning of recorded history, humans have wondered whether we are alone in the Universe. Recently, Astronomers have begun to make significant

Other planetary systems

Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

Transiting Hot Jupiters near the Galactic Center

National Aeronautics and Space Administration Transiting Hot Jupiters near the Galactic Center Kailash C. Sahu Taken from: Hubble 2006 Science Year in Review The full contents of this book include more

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly):

Astronomy 101 12 December, 2016 Introduction to Astronomy: The Solar System Final exam Practice questions for Unit V Name (written legibly): Honor Pledge: On my honor, I have neither given nor received

a. 0.5 AU b. 5 AU c. 50 AU d.* AU e AU

1 AST104 Sp04: WELCOME TO EXAM 1 Multiple Choice Questions: Mark the best answer choice. Read all answer choices before making selection. (No credit given when multiple answers are marked.) 1. A galaxy

Useful Formulas and Values

Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes