Microcontrollers and Interfacing

Size: px
Start display at page:

Download "Microcontrollers and Interfacing"

Transcription

1 Microcontrollers and Interfacing Week 04 Environmental sensing: light and temperature College of Information Science and Engineering Ritsumeikan University 1

2 series and parallel circuits series circuit: The current through every component in a series circuit is the same. The voltage across a series circuit is the sum of the voltages across the individual components. 5V GND parallel circuit: 5V i x X Y i x = i y = i = V/R = 5/(r x + r y ) v i y 0V i v = IR = i r y = 5 (i r x ) The voltage across every component in a parallel circuit is the same. The current flowing through a parallel circuit is the sum of the currents flowing in the individual components. i x 5V GND i 5V 5V X Y i y 0V 0V i i x = V/R = 5/r x i y = V/R = 5/r y i = i x + i y 2

3 analogue input: creating a variable voltage a potentiometer is a resistor with a variable tap two terminals connect to either end of the resistor another terminal connects to a wiper the wiper can move between the two other terminals wiper 5V to generate a variable voltage connect the potentiometer between 0 V and 5 V the wiper provides the output voltage variable voltage analogue input GND A0 3

4 analogue input: creating a variable voltage bottom view the middle pin of the potentiometer connects to A0 4

5 analogue input: reading the voltage level void loop() { //... int value = analogread(a0); // float percent = (float)value * (100f / 1023f); float voltage = (float)value * (5f / 1023f); //... } a useful function: void loop() { int in; //... int out = map(in, inlo, inhi, outlo, outhi); //... } maps the in value from the range [inlo...inhi] to the range [outlo...outhi] 5

6 environmental sensing: measuring light level a photocell is a resistor whose resistance depends on light level 50kΩ R = high 1kΩ R = low light-dependent resistor more light less resistance how do we turn a changing resistance into a changing voltage? hint: compare with potentiometer (variable resistor) 6

7 photocell plus resistor = light-dependent voltage divider a photocell can act as one half of a potential divider like a potentiometer, but only one side changes resistance 7

8 photocell resistance is inversely proportional to light level note the spread of possible values at the high-resistance end 8

9 light sensor values are unpredictable several unknowns, including: what is the minimum input voltage? what is the maximum input voltage? we can make our program auto-ranging (or self-calibrating ) remember minimum and maximum values re-map the input to a fixed range (e.g., 0 to 100%) using map() to do this makes it very easy map(value, frommin, frommax, tomin, tomax) maps value from the input range [frommin, frommax] to the output range [tomin, tomax] 9

10 light sensor software int low = 1023; int high = 0; void loop(void) { int value = analogread(a0); if (value <= low ) low = value - 1; if (value >= high) high = value + 1; value = map(value, low, high, 0, 100); Serial.println(value); delay(250); } why are the two global variables initialised with the values shown? 10

11 environmental sensing: measuring temperature in 1994, measuring temperature suddenly became very easy... LM35 Precision Centigrade Temperature Sensors General Description The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external aged in hermetic TO-46 transistor p LM35C, LM35CA, and LM35D are al plastic TO-92 transistor package. The L able in an 8-lead surface mount small ou plastic TO-220 package. Features n Calibrated directly in Celsius 11(Centi

12 NS Package Number H03H LM35 converts temperature to voltage level TO-92 Plastic Package very low self-heating, less than 0.1 C in still air. The LM35 is rated to operate over a 55 to +150 C temperature range, while the LM35C is rated for a 40 to +110 C range ( 10 with improved accuracy). The LM35 series is available pack- Typical Applications S DS rder Number LM35CZ, LM35CAZ or LM35DZ NS Package Number Z03A DS FIGURE 1. Basic Centigrade Temperature Sensor (+2 C to +150 C) you can simply replace your potentiometer in last week s circuit with the LM35 be very careful to connect it correctly, or it will explode the +V S pin must go to the 5 V supply the V OUT pin connects to A0 (and GND connects to GND, obviously) your analogue input program from last week will work unmodified 12

13 temperature sensor software LM35 data sheet specifies its output as 0 V + 10 mv/ C what is the value of analogread(a0) at room temperature? what is the value of analogread(a0) at 10 C higher? we can reuse the analogue input software but output will be an integer between 0 and 1023, representing input voltage use the map() function to convert input voltage level to millivolts, and to convert millivolts to degrees, or to convert input voltage level to degrees 13

LM34 - Precision Fahrenheit Temperature Sensor

LM34 - Precision Fahrenheit Temperature Sensor - Precision Fahrenheit Temperature Sensor Features Typical Application Calibrated directly in degrees Fahrenheit Linear +10.0 mv/ F scale factor 1.0 F accuracy guaranteed (at +77 F) Parametric Table Supply

More information

LM35 Precision Centigrade Temperature Sensors

LM35 Precision Centigrade Temperature Sensors LM35 Precision Centigrade Temperature Sensors General Description The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade)

More information

LM35 Precision Centigrade Temperature Sensors

LM35 Precision Centigrade Temperature Sensors LM35 Precision Centigrade Temperature Sensors General Description The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade)

More information

LM34 LM34A LM34C LM34CA LM34D Precision Fahrenheit Temperature Sensors

LM34 LM34A LM34C LM34CA LM34D Precision Fahrenheit Temperature Sensors LM34 LM34A LM34C LM34CA LM34D Precision Fahrenheit Temperature Sensors General Description The LM34 series are precision integrated-circuit temperature sensors whose output voltage is linearly proportional

More information

Designing a Thermostat Worksheet

Designing a Thermostat Worksheet Designing a Thermostat Worksheet Most of us have a thermostat in our homes to control heating and cooling systems of our home. These important devices help us save energy by automatically turning off energy

More information

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors General Description The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal

More information

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K 10K Community College of Allegheny County Unit 9 Page #1 Thermocouples +12V Thermocouple Junction Vin Copper Wire Constantan Wire + - 3 2 741 7 4 1 5-12V 6 V Vout R1 = 1K Rf = 100K Engineers are not expected

More information

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors General Description The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal

More information

LM135 LM235 LM335 LM135A LM235A LM335A Precision Temperature Sensors

LM135 LM235 LM335 LM135A LM235A LM335A Precision Temperature Sensors LM135 LM235 LM335 LM135A LM235A LM335A Precision Temperature Sensors General Description The LM135 series are precision easily-calibrated integrated circuit temperature sensors Operating as a 2-terminal

More information

LM34 Precision Fahrenheit Temperature Sensors

LM34 Precision Fahrenheit Temperature Sensors 1 Precision Fahrenheit Temperature Sensors 1 Features 3 Description 1 Calibrated Directly in Degrees Fahrenheit The series devices are precision integratedcircuit temperature sensors, whose output voltage

More information

LM35 Precision Centigrade Temperature Sensors

LM35 Precision Centigrade Temperature Sensors Precision Centigrade Temperature Sensors General Description Typical Applications The series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

LM /LM /LM Micropower Voltage Reference Diode

LM /LM /LM Micropower Voltage Reference Diode LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode General Description The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a 10 µa

More information

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 22 Contents Initial Problem Statement 2 Narrative

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC06 74HC/HCT/HCU/HCMOS ogic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

The IK642B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal mode.

The IK642B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal mode. TECHNICAL DATA INTERAL- and WIPE/WASH WIPER CONTROL IC IK642B The IK642B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal

More information

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture No. # 08 Temperature Indicator Design Using Op-amp Today,

More information

MAE106 Homework 2 - Solution DC Motors & Intro to the frequency domain

MAE106 Homework 2 - Solution DC Motors & Intro to the frequency domain MAE06 Homework 2 - Solution DC Motors & Intro to the frequency domain University of California, Irvine Department of Mechanical and Aerospace Engineering Problem You are given the circuit shown in Figure.

More information

LM /LM /LM Micropower Voltage Reference Diode

LM /LM /LM Micropower Voltage Reference Diode LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode General Description The LM185-2.5/LM285-2.5/LM385-2.5 are micropower 2-terminal band-gap voltage regulator diodes. Operating over a 20 µa

More information

Technical Documents LM35. +V S (4 V to 20 V)

Technical Documents LM35. +V S (4 V to 20 V) 1 Product Folder Sample & Buy Technical Documents Tools & Software Support & Community 1 Features 1 Calibrated Directly in Celsius (Centigrade) Linear 10-mV/ Scale Factor 0.5 Ensured Accuracy (at 25) Rated

More information

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2 Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

LM50 SOT-23 Single-Supply Centigrade Temperature Sensor

LM50 SOT-23 Single-Supply Centigrade Temperature Sensor SOT-23 Single-Supply Centigrade Temperature Sensor General Description The LM50 is a precision integrated-circuit temperature sensor that can sense a 40 C to +125 C temperature range using a single positive

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

UC Berkeley, EECS Department EECS 40/42/100 Lab LAB2: Electronic Scale UID:

UC Berkeley, EECS Department EECS 40/42/100 Lab LAB2: Electronic Scale UID: UC Berkeley, EECS Department EECS 40/42/100 Lab LAB2: Electronic Scale UID: B. E. Boser 1 Enter the names and SIDs for you and your lab partner into the boxes below. Name 1 SID 1 Name 2 SID 2 Strain Gages

More information

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 13 Contents Initial Problem Statement 2 Narrative

More information

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation Introduction Due to their low cost and ease of use, thermocouples are still a popular means for making temperature measurements up

More information

5-V Low Drop Voltage Regulator TLE 4290

5-V Low Drop Voltage Regulator TLE 4290 5-V Low Drop Voltage Regulator TLE 429 Features Output voltage 5 V ± 2% Very low current consumption 45 ma current capability Power Good Feature Very low-drop voltage Short-circuit-proof Reverse polarity

More information

5-V Low Drop Fixed Voltage Regulator TLE

5-V Low Drop Fixed Voltage Regulator TLE 5-V Low Drop Fixed Voltage Regulator TLE 427-2 Features Output voltage tolerance ±2% 65 ma output current capability Low-drop voltage Reset functionality Adjustable reset time Suitable for use in automotive

More information

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS EE 2201 PRELAB 5B BIPOLAR JUNTION TRANSISTOR (BJT) FUNDAMENTALS P1. β Meter The circuit of Figure P51 can be used to measure the current gain β of the BJT. Determine values for resistors R1 and R2 to meet

More information

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08 AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08 Introduction The HAH1BVW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications

More information

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah

CHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah CHAPTER 5 BRIDGES AND THEIR APPLICATION Resistance Measurements 1 RESISTANCE MEASUREMENTS Conventional Ways of Measuring Resistance:- 1) Using a Ohmmeter Convenient but inaccurate, requires calibration

More information

5-V Low Drop Fixed Voltage Regulator TLE 4279

5-V Low Drop Fixed Voltage Regulator TLE 4279 5-V Low Drop Fixed Voltage Regulator TLE 4279 Features Output voltage tolerance ±2% 15 ma current capability Very low current consumption Early warning Reset output low down to V Q = 1 V Overtemperature

More information

Dual Low Dropout Voltage Regulator

Dual Low Dropout Voltage Regulator Dual Low Dropout Voltage Regulator TLE 4473 GV55-2 Features Stand-by output 190 ma; 5 V ± 2% Main output: 300 ma, 5 V tracked to the stand-by output Low quiescent current consumption Disable function separately

More information

Simple calibration for ceramic sensing elements using an ME651

Simple calibration for ceramic sensing elements using an ME651 Simple calibration for ceramic sensing elements using an ME651 This article describes in detail a simple electronic circuit based on a suitable IC and few external components to amplify and to calibrate

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

More information

5-V Low Drop Fixed Voltage Regulator TLE 4299

5-V Low Drop Fixed Voltage Regulator TLE 4299 5-V Low Drop Fixed Voltage Regulator TLE 4299 Features Output voltage 5 V ± 2% 150 ma Output current Extreme low current consumption typical 65 µa in ON state Inhibit function: Below 1 µa current consumption

More information

5-V Low Drop Fixed Voltage Regulator TLE 4275

5-V Low Drop Fixed Voltage Regulator TLE 4275 5-V Low Drop Fixed Voltage Regulator TLE 4275 Features Output voltage 5 V ± 2% Very low current consumption Power-on and undervoltage reset Reset low down to V Q = 1 V Very low-drop voltage Short-circuit-proof

More information

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing

ECE2019 Sensors, Circuits, and Systems A2015. Lab #2: Temperature Sensing ECE2019 Sensors, Circuits, and Systems A2015 Lab #2: Temperature Sensing Introduction This lab investigates the use of a resistor as a temperature sensor. Using the temperature-sensitive resistance as

More information

HIGH SPEED TRANSISTOR OPTOCOUPLERS

HIGH SPEED TRANSISTOR OPTOCOUPLERS SINGLECHANNEL: PACKAGE SCHEMATIC N/C V CC + V CC V F + V F 7 V B _ 7 V 0 _ V O _ V 0 V F N/C 4 5 GND + 4 5 GND,,, Pin 7 is not connected in Part Number / DESCRIPTION The /, / and / optocouplers consist

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet - Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save

More information

. DIRECTLY CALIBRATED IN o K. . 1 o C INITIAL ACCURACY. . OPERATES FROM 450µA TO 5mA .LESS THAN 1Ω DYNAMIC IMPEDANCE LM135 LM235-LM335,A

. DIRECTLY CALIBRATED IN o K. . 1 o C INITIAL ACCURACY. . OPERATES FROM 450µA TO 5mA .LESS THAN 1Ω DYNAMIC IMPEDANCE LM135 LM235-LM335,A . DIRECTLY CALIBRATED IN o K. INITIAL ACCURACY. OPERATES FROM 50µA TO 5mA.LESS THAN Ω DYNAMIC IMPEDANCE -,A PRECISION TEMPERATURE SENSORS Z TO9 (Plastic Package DESCRIPTION The,, are precision temperature

More information

Errors in Electrical Measurements

Errors in Electrical Measurements 1 Errors in Electrical Measurements Systematic error every times you measure e.g. loading or insertion of the measurement instrument Meter error scaling (inaccurate marking), pointer bending, friction,

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC 16-BIT CONSTANT CURRENT LED SINK DRIVER DESCRIPTION The UTC L16B45 is designed for LED displays. UTC L16B45 contains a serial buffer and data latches

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

THE HALL EFFECT. Theory

THE HALL EFFECT. Theory THE HALL EFFECT Theory For a charge moving in a magnetic field, it experiences a force acting at right angles to both its direction and the direction of the magnetic field H. Hence in a semiconductor,

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

THERMOCOUPLE CHARACTERISTICS TRAINER

THERMOCOUPLE CHARACTERISTICS TRAINER THERMOCOUPLE CHARACTERISTICS TRAINER (Model No : ) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

Note-A-Rific: Kirchhoff s

Note-A-Rific: Kirchhoff s Note-A-Rific: Kirchhoff s We sometimes encounter a circuit that is too complicated for simple analysis. Maybe there is a mix of series and parallel, or more than one power source. To deal with such complicated

More information

5-V Low-Drop Fixed Voltage Regulator TLE 4269

5-V Low-Drop Fixed Voltage Regulator TLE 4269 5-V Low-Drop Fixed Voltage Regulator TLE 4269 Features Output voltage tolerance ±2 % 15 ma current capability Very low current consumption Early warning Reset output low down to V Q = 1 V Overtemperature

More information

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook INTEGRATED CIRCUITS Triple 3-Input AND gate 1991 Feb 08 IC05 Data Handbook TYPE TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT (TOTAL) 5.5ns 1.3mA PIN CONFIGURATION 1A 1 1B 2 14 13 V CC 1C ORDERING INFORMATION

More information

Laplace Transform in Circuit Analysis

Laplace Transform in Circuit Analysis Laplace Transform in Circuit Analysis Laplace Transforms The Laplace transform* is a technique for analyzing linear time-invariant systems such as electrical circuits It provides an alternative functional

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Harnessing the Power of Arduino for the Advanced Lab

Harnessing the Power of Arduino for the Advanced Lab P P Herbert Jaeger + Harnessing the Power of Arduino for the Advanced Lab (Final Version) ALPhA Immersion Workshop July 27 29, 2017 Department of Physics Indiana University Purdue University Ft. Wayne,

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

c. VH: Heating voltage between the collector and emitter.

c. VH: Heating voltage between the collector and emitter. TERMAL IMPEDANCE MEASUREMENTS FOR INSULATED GATE BIPOLAR TRANSISTORS (DELTA GATE-EMITTER ON VOLTAGE METOD) 1. Purpose. The purpose of this test method is to measure the thermal impedance of the IGBT under

More information

NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator

NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator Description: The NTE74LS181 is an arithmetic logic unit (ALU)/function generator in a 24 Lead DIP type package that has the complexity

More information

LM60B LM60C 2 7V SOT-23 Temperature Sensor

LM60B LM60C 2 7V SOT-23 Temperature Sensor LM60B LM60C 2 7V SOT-23 Temperature Sensor General Description The LM60 is a precision integrated-circuit temperature sensor that can sense a b40 C toa125 C temperature range while operating from a single

More information

I2 C Compatible Digital Potentiometers AD5241/AD5242

I2 C Compatible Digital Potentiometers AD5241/AD5242 a Preliminary Technical ata FEATURES Position Potentiometer Replacement 0K, 00K, M, Ohm Internal Power ON Mid-Scale Preset +. to +.V Single-Supply; ±.V ual-supply Operation I C Compatible Interface APPLICATIONS

More information

Physics Tutorial - Currents and Circuits

Physics Tutorial - Currents and Circuits Question 1: Ion Channels Physics Tutorial - Currents and Circuits The biochemistry that takes place inside cells depends on various elements that are dissolved in water as ions. The ions enter cells through

More information

INTEGRATED CIRCUITS. 74LV688 8-bit magnitude comparator. Product specification Supersedes data of 1997 May 15 IC24 Data Handbook.

INTEGRATED CIRCUITS. 74LV688 8-bit magnitude comparator. Product specification Supersedes data of 1997 May 15 IC24 Data Handbook. INTEGRATED CIRCUITS Supersedes data of 1997 May 15 IC24 Data Handbook 1998 Jun 23 FEATURES Wide operating voltage: 1.0 to 5.5V Optimized for low voltage applications: 1.0V to 3.6V Accepts TTL input levels

More information

Temperature Measurements

Temperature Measurements Engineering 80 Spring 2015 Temperature Measurements SOURCE: http://www.eng.hmc.edu/newe80/pdfs/vishaythermdatasheet.pdf SOURCE: http://elcodis.com/photos/19/51/195143/to-92-3_standardbody to-226_straightlead.jpg

More information

STRAIN GAUGE MEASUREMENT

STRAIN GAUGE MEASUREMENT STRAIN GAUGE MEASUREMENT INTRODUCTION There are many possible ways of measuring strain gauges using a Datascan. All methods measure the change in resistance of the gauge within a bridge circuit and the

More information

Smartec Pressure Sensor (bridge output)

Smartec Pressure Sensor (bridge output) DATASHEET Pressure sensor family 1/5 Smartec Pressure Sensor (bridge output) Features * Commercial grade * DIP version for high volume production * Gauge or absolute pressure * Resistive bridge technology

More information

DATA SHEET. HEF4067B MSI 16-channel analogue multiplexer/demultiplexer. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF4067B MSI 16-channel analogue multiplexer/demultiplexer. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

MIL-STD-750D METHOD THERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METHOD)

MIL-STD-750D METHOD THERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METHOD) TERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METOD) 1. Purpose. The purpose of this test method is to measure the thermal resistance of the MESFET under

More information

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section

Hiro Shimoyama 1 Charge of an Electron. Name ID Signature. Partners. Date Section Hiro Shimoyama 1 harge of an Electron Name ID Signature Partners Date Section Exercise caution when you turn on the power supply. If the circuit is implemented wrongly, some of elements will be burned.

More information

Chapter 7. Chapter 7

Chapter 7. Chapter 7 Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important

More information

Energy. E d. Energy Power = time. E t P = E t = P

Energy. E d. Energy Power = time. E t P = E t = P Energy Forms of energy Energy can never be created or destroyed. It can only be transformed from one type to another (or other types). here are many different forms of energy: Kinetic (movement) Energy

More information

Kirchhoff's Laws and Maximum Power Transfer

Kirchhoff's Laws and Maximum Power Transfer German Jordanian University (GJU) Electrical Circuits Laboratory Section Experiment Kirchhoff's Laws and Maximum Power Transfer Post lab Report Mahmood Hisham Shubbak / / 8 Objectives: To learn KVL and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 22.07/6.07 Introduction to Electronics, Signals and Measurement Spring 2006 Lab6. Resistor Networks 2. Experiment. Power rating of resistors. Power rating is a very

More information

INTEGRATED CIRCUITS. 74LV00 Quad 2-input NAND gate. Product specification Supersedes data of 1998 Apr 13 IC24 Data Handbook.

INTEGRATED CIRCUITS. 74LV00 Quad 2-input NAND gate. Product specification Supersedes data of 1998 Apr 13 IC24 Data Handbook. INTEGRATED CIRCUITS Supersedes data of 1998 Apr 13 IC24 Data Handbook 1998 Apr 20 FEATURES Wide operating voltage: 1.0 to 5.5 V Optimized for low voltage applications: 1.0 to 3.6 V Accepts TTL input levels

More information

1μA Ultra-Tiny Shunt Voltage Reference

1μA Ultra-Tiny Shunt Voltage Reference EVALUATION KIT AVAILABLE MAX6069 General Description The MAX6069 ultra-low-power shunt references are ideal for space-critical and low-power applications. They are offered in a 4-bump wafer-level package

More information

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state

74HC574; 74HCT574. Octal D-type flip-flop; positive edge-trigger; 3-state Rev. 7 4 March 2016 Product data sheet 1. General description 2. Features and benefits 3. Ordering information The is an 8-bit positive-edge triggered D-type flip-flop with 3-state outputs. The device

More information

AND8149/D. Understanding and Using the NCV1124 VR Sensor Interface APPLICATION NOTE

AND8149/D. Understanding and Using the NCV1124 VR Sensor Interface APPLICATION NOTE Understanding and Using the VR Sensor Interface APPLICATION NOTE The offers a dual channel low component count interface solution for ground referenced variable reluctance sensors. The product is easy

More information

Lab 5a: Magnetic Levitation (Week 1)

Lab 5a: Magnetic Levitation (Week 1) ME C134 / EE C128 Fall 2017 Lab 5a Lab 5a: Magnetic Levitation (Week 1) Magnetism, as you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators. Dave

More information

Low Drop Voltage Regulator TLE 4295

Low Drop Voltage Regulator TLE 4295 Low Drop Voltage Regulator TLE 4295 Features Four versions: 2.6 V, 3.0 V, 3.3 V, 5.0 V tolerance ±4% Very low drop voltage Output current: 30 ma Power fail output Low quiescent current consumption Wide

More information

Objective: To study P, PI, and PID temperature controller for an oven and compare their performance. Name of the apparatus Range Quantity

Objective: To study P, PI, and PID temperature controller for an oven and compare their performance. Name of the apparatus Range Quantity Objective: To study P, PI, and PID temperature controller for an oven and compare their. Apparatus Used: Name of the apparatus Range Quantity 1. Temperature Controller System 1 PID Kp (0-10) Kd(0-20) Ki(0-0.02)

More information

SAMPLE EXAMINATION PAPER

SAMPLE EXAMINATION PAPER IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

DAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017

DAC10* PRODUCT PAGE QUICK LINKS Last Content Update: 02/23/2017 * PRODUCT PAGE QUICK LINKS Last Content Update: 0/3/07 COMPARABLE PARTS View a parametric search of comparable parts. DOCUMENTATION Data Sheet : 0-Bit Current-Out DAC Data Sheet REFERENCE MATERIALS Solutions

More information

HIGH SPEED TRANSISTOR OPTOCOUPLERS

HIGH SPEED TRANSISTOR OPTOCOUPLERS DESCRIPTION The HCPL05XX, and HCPL04XX optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor housed in a compact pin small outline package. A separate connection

More information

DP Tap Digital Potentiometer (DP)

DP Tap Digital Potentiometer (DP) 00-Tap Digital Potentiometer () Description The is a single digital potentiometer() designed as an electronic replacement for mechanical potentiometers. Ideal adjustments on high volume production lines,

More information

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset

NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset NTE74HC109 Integrated Circuit TTL High Speed CMOS, Dual J K Positive Edge Triggered Flip Flop w/set & Reset Description: The NTE74HC109 is a dual J K flip flip with set and reset in a 16 Lead plastic DIP

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET F a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Infmation The IC6 74HC/HCT/HCU/HCMOS

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

UNIVERSITY F P RTLAND Sch l f Engineering

UNIVERSITY F P RTLAND Sch l f Engineering UNIVERSITY F P RTLAND Sch l f Engineering EE271-Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems - p. 1 of 5 - Electrical

More information

PGA309 Programmable Sensor Signal Conditioner. Bringing Linearity to a Non-Linear Pressure Sensor World

PGA309 Programmable Sensor Signal Conditioner. Bringing Linearity to a Non-Linear Pressure Sensor World PGA309 Programmable Sensor Signal Conditioner Bringing Linearity to a Non-Linear Pressure Sensor World Typical Wheatstone Bridge Pressure Sensor Bridge Resistance is Symmetrical Pressure Sensor Terminology

More information

5 V/10 V Low Drop Voltage Regulator TLE 4266

5 V/10 V Low Drop Voltage Regulator TLE 4266 5 /1 Low Drop oltage Regulator TLE 266 Features Output voltage 5 or 1 Output voltage tolerance ±2% 12 ma current capability ery low current consumption Low-drop voltage Overtemperature protection Reverse

More information

Simultaneous equations for circuit analysis

Simultaneous equations for circuit analysis Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Low Power Quint Exclusive OR/NOR Gate

Low Power Quint Exclusive OR/NOR Gate 100307 Low Power Quint Exclusive OR/NOR Gate General Description The 100307 is monolithic quint exclusive-or/nor gate. The Function output is the wire-or of all five exclusive-or outputs. All inputs have

More information

INTEGRATED CIRCUITS. 74LV273 Octal D-type flip-flop with reset; positive-edge trigger. Product specification 1997 Apr 07 IC24 Data Handbook

INTEGRATED CIRCUITS. 74LV273 Octal D-type flip-flop with reset; positive-edge trigger. Product specification 1997 Apr 07 IC24 Data Handbook INTEGRATED CIRCUITS Octal D-type flip-flop with reset; positive-edge trigger 1997 Apr 07 IC24 Data Handbook FEATURES Wide operating voltage: 1.0 to 5.5V Optimized for Low Voltage applications: 1.0 to 3.6V

More information

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test Name... Set... Don.... manner~ man makptb Winchester College Physics 3rd year Revision Test Electrical Circuits Common Time 2011 Mark multiple choice answers with a cross (X) using the box below. I A B

More information

5V/400mA Low Drop Voltage ILE4275 TECHNICAL DATA

5V/400mA Low Drop Voltage ILE4275 TECHNICAL DATA TECHNICAL DATA 5V/400mA Low Drop Voltage ILE4275 is integrated circuits of voltage regulator 5V/400 ma with low-drop voltage. The IC of voltage regulator 5V/400 ma are purposed to supply DC voltage 5V

More information