Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K

Size: px
Start display at page:

Download "Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K"

Transcription

1 10K Community College of Allegheny County Unit 9 Page #1 Thermocouples +12V Thermocouple Junction Vin Copper Wire Constantan Wire V 6 V Vout R1 = 1K Rf = 100K Engineers are not expected to know everything at all times. The job requires them to learn over time, and to revise each effort repeatedly in a never-ending effort to learn and adapt to changing requirements. When you accept this, you will no longer fear the unknown. Instead, you will have confidence to identify & understand what you do not know, while never assuming that everything is fine, easy or perfect. Revised: Dan Wolf, 5/6/2018

2 Community College of Allegheny County Unit 9 Page #2 OBJECTIVES: Understanding Thermocouples Using the Arduino for Thermocouple temperature measurement. DELIVERABLES THAT YOU MUST SUBMIT 1. Tables 1, 2 (plus equations and comments) 2. Experiment #3 Schematic and summary 3. Practice Problems On-Line Reading Material for Thermocouples: Required: a) b) c) _1.pdf Optional: a) b) Thermocouple Tables: c) 9/thermocouples/ INTRODUCTION TO THERMOCOUPLES: When two different metallic materials are in contact, a voltage will be generated that depends on the temperature difference between the junction and the rest of the conductors. Typically, induced voltages will be between 1 and 70 µv/ C for standard metal combinations. This effect is known as the Seebeck effect in honor of the Estonian physicist, Thomas Seebeck.

3 Community College of Allegheny County Unit 9 Page #3 A thermocouple consists of two wires of dissimilar metals joined together at one end, called the measurement ("hot") junction. The other end, where the wires are not joined, is connected to the signal conditioning circuitry traces, typically made of copper. This junction between the thermocouple metals and the copper traces is called the reference ("cold") junction. Note that the reference junction temperature must be known to get an accurate absolute temperature reading (reference junction compensation). Thermocouple types include Types R, S, K, E, T, and J with each type made from two different metals providing each with a unique temperature range, Coefficient (uv/ C), and Sensitivity. We will work with the Type K (Chromel/Alumel) thermocouple which is the most common, providing the widest temperature range (-200 to 1300 C) with an accuracy of ± 2.2 C% or ±.75%. EQUIPMENT REQUIRED: 1. Type K Thermocouple 2. Arduino Uno, power supply, cable, and USB Hub. 3. AdaFruit AD8495 Shield for the Arduino Op-Amp IC 5. 1KΩ resister KΩ resister 7. 10KΩ, 10-turn potentiometer 8. Digital Voltmeter 9. Oscilloscope 10. Thermometer, ice and water

4 Community College of Allegheny County Unit 9 Page #4 Experiment #1 Thermocouple Demonstration: 1. Figure #1 shows a Type K thermocouple that is connected to an oscilloscope or voltmeter. Construct the circuit, test the circuit at room temperature and record the result in Table #1. It will not be easy to see a steady output because the very low-level output will be overshadowed by electrical noise. 2. Insert the thermocouple in an ice bath and record the result. 3. Note that the thermocouple generates a very small voltage but you should be able to see a noticeable increase between the ice bath and your hand temperature. Apply moderate heat and capture the result. Then heat it a little more to finish Table #1. 4. Submit Table #1 as your documentation for this experiment. Thermocouple Only Ice Bath 32 F Room Temperature The palm of your hand (fist) Warm tap water Table #1 Actual Temperature Expected mv Output (from T/C tables) Actual mv Output Experiment #2 Temperature Measurement with the Arduino: 1. Figure #2 shows a Type K thermocouple connected to an Arduino microcontroller. The Arduino is using an AdaFruit AD8495 shield which performs the amplification and linearization necessary to for the Arduino to properly collect the temperature.

5 Community College of Allegheny County Unit 9 Page #5 The Adafruit AD8495 shield amplifies the small thermocouple signal and feeds the larger signal to the Arduino A0 analog input. The Arduino software reads the RAW A-D value representing the amplified thermocouple voltage. Because there are low level noise and offset errors, the signal has a small amount of instability causing the temperature to appear to shift up and down by a degree or two. So, the Arduino software reads ten samples every second. It then discards the two highest and two lowest values and averages the eight values in the middle to produce a filtered result. Finally, the filtered result is converted to voltage, Centigrade and Fahrenheit and sent to the Serial Monitor for display. Knowing that the A-D converter is 10-bits (2 10 = 1024) with a 5V reference voltage, the formula to convert the RAW A-D count to voltage is: Vout = RAW A-D Value * 5.0V 1024 The formula to convert the amplified T/C voltage to C is: C = Vout mV 2. Construct the circuit and upload the Arduino with the program named: Arduino_Thermocouple.ino 3. Start the Arduino Serial Monitor: Tools Serial Monitor so that you can monitor the Arduino temperatures. 4. Complete the tests listed in Table #2. The Arduino AD8495 shield amplifies and filters the signal so it will be much easier to read. The shield also adds a 1.25 volt offset to the signal so don t forget to subtract 1.25 volts from the Arduino reported voltage. There will also be an ADC offset error due to the Arduino. 5. Note that the Arduino temperatures are very responsive and easy to use. It is possible to perform the amplification with a basic Op-Amp but that would require a circuit design and construction and would not provide any type of linearization, filtering, or display. Today s technology allows us to purchase off-the-shelf components like the Arduino that, with a little bit of software, can greatly expand the usefulness for much less development costs.

6 Community College of Allegheny County Unit 9 Page #6 6. Submit Table #2 as your documentation for this experiment. Table #2 Expected mv Actual Actual Output Arduino mv Temperature (from T/C Temperature Output tables) Arduino Thermocouple Ice Bath 32 F Room Temperature The palm of your hand (fist) Warm tap water Experiment #3: 1. Build and test the circuit on the cover page of this lab. You should observe that this circuit is better than Experiment #1 (which measures a very small signal) but not as good as Experiment #2 (which includes both amplification and filtering). 2. Submit a schematic and summary of the results with comments contrasting this solution to those in Experiments 1 and 2. Optional Experiment #1: 1. Place the thermocouple in an ice bath and observe whether you get a 0 C reading. If it is not zero, adjust the offset value that is in the software (1.25 volt) so that you get 0 C when the T/C is in the ice bath. Due to the Arduino scaling, every 4.88mV ( ) that you add or subtract will affect the temperature offset by 1 C. 2. Examine the Arduino software. The A-D value is read by the call to analogread(a0) which puts the value into the raw variable. Change the software by removing the filter so that the Serial Monitor displays each temperature value in

7 Community College of Allegheny County Unit 9 Page #7 real-time (ask the instructor for help if you are not familiar with software). Observe the amount of instability. 3. Summarize your comments and provide a copy of the modified Arduino software. Figure #1 Thermocouple Demonstration

8 Community College of Allegheny County Unit 9 Page #8 Figure #2 Arduino Thermocouple Circuit Type K Thermocouple Junction Copper Wire Constantan Wire Adafruit AD8495 Shield Analog K-Type Thermocouple Amplifier 2.7 to 18Vdc T=(Vo-1.25)/5mV Vo=T*5mV+1.25V Temp is in C Computer USB Arduino Uno External Power Supply

9 Community College of Allegheny County Unit 9 Page #9 Figure #3 Type K Temperature Table Type K Thermocouple - Thermoelectric Voltage in mv DegC

10 Community College of Allegheny County Unit 9 Page #10 Figure #4 Arduino_Thermocouple.ino - Arduino Software // // Every second, this collects 10 temperature samples, // discards the 2 lowest and the 2 highest then averages the 6 in the middle. // Written: 12/23/2016, djw // This uses the AdaFruit AD8495 shield via the Arduino Analog 0 input // Accurate to about 1degC or about 2degF // #include <SPI.h> const int OUTPUT_PIN_LOW = 4; //this output will go high when the temperature exceeds the lower threshold const int OUTPUT_PIN_HIGH = 5; //this output will go high when the temperature exceeds the upper threshold const float OUTPUT_PIN_LOW_THRESHOLD = 5.0; //this is the low threshold in degf const float OUTPUT_PIN_HIGH_THRESHOLD = 15.0; //this is the high threshold in degf void setup() { Serial.begin(9600); Serial.print("Thermocouple Program Starting vapr_20_ \n"); Serial.print("This uses the AdaFruit AD8495 shield via the Arduino Analog 0 input.\n"); Serial.print("This filters via 10 samples, discarding the two upper and lower.\n"); pinmode(output_pin_low, OUTPUT); //LED for low status pinmode(output_pin_high, OUTPUT); //LED for high status void loop() { int ix; char buf[200]; char stemp_float[10]; float ftemperature_degf; char stemperature_degf[10]; float ftemperature_degc; char stemperature_degc[10]; int sortvalues[13]; int raw; float Vout; for (ix = 0; ix < 10; ix++) { //collect 10 samples sortvalues[ix] = analogread(a0); delay(100); sort(sortvalues, 10); // sort and then discard the two upper and lower values raw = (sortvalues[2] + sortvalues[3] + sortvalues[4] + sortvalues[5] + sortvalues[6] + sortvalues[7] ) / 6; Vout = raw * (5.0 / ); // Temperature = (Vout ) / V. For example, if the voltage is 1.5VDC, the temperature is ( ) / = 50 C ftemperature_degc = (Vout ) / ; // normally subtract 1.25 but adjust for zero-offset calibration compensation ftemperature_degf = (ftemperature_degc * 9) / ; //convert to degf dtostrf(ftemperature_degf, 3, 1, stemperature_degf); // 3 is mininum width, 1 is precision; dtostrf(ftemperature_degc, 3, 1, stemperature_degc); // 3 is mininum width, 1 is precision; dtostrf(vout, 4, 3, stemp_float); // 4 is mininum width, 3 is precision; sprintf(buf, " RawAD Value= %u Voltage= %s Volt Temperature= %s degc or %s degf \n", raw, stemp_float, stemperature_degc, stemperature_degf); Serial.print(buf); if (ftemperature_degf > OUTPUT_PIN_LOW_THRESHOLD) { digitalwrite(output_pin_low, HIGH); //indicate temperature is higher then the low limit else { digitalwrite(output_pin_low, LOW); //indicate temperature is lower then the low limit if (ftemperature_degf > OUTPUT_PIN_HIGH_THRESHOLD) { digitalwrite(output_pin_high, HIGH); //indicate temperature is higher then the high limit else { digitalwrite(output_pin_high, LOW); //indicate temperature is lower then the high limit // ===================================================================================================== void sort(int a[], int size) { int x; int y; int z; for (x = 0; x < (size - 1); x++) { for (y = 0; y < (size - (x + 1)); y++) { if (a[y] > a[y + 1]) { z = a[y]; a[y] = a[y + 1]; a[y + 1] = z;

11 Community College of Allegheny County Unit 9 Page #11 PRACTICE PROBLEMS: on the Kelvin scale is equal to: C = F = 2. Temperature sensing can be achieved by the use of: a) RTDs b) thermocouples c) thermistors d) all of the above 3. What is the definition of Negative Temperature Coefficient? 4. Identify the accuracy of each of the following: a. Type-K Thermocouple: b. Thermistor: c. Platinum RTD: 5. What voltage would we expect from a type-j thermocouple at 100 C?

Temperature Measurements

Temperature Measurements Engineering 80 Spring 2015 Temperature Measurements SOURCE: http://www.eng.hmc.edu/newe80/pdfs/vishaythermdatasheet.pdf SOURCE: http://elcodis.com/photos/19/51/195143/to-92-3_standardbody to-226_straightlead.jpg

More information

Exercise 1: Thermocouple Characteristics

Exercise 1: Thermocouple Characteristics The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

More information

THERMOCOUPLE CHARACTERISTICS TRAINER

THERMOCOUPLE CHARACTERISTICS TRAINER THERMOCOUPLE CHARACTERISTICS TRAINER (Model No : ) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

Temperature Measurement

Temperature Measurement Temperature Measurement Temperature is one of the most common measurements What is Temperature? Intuitively understood as sensation of hot/cold Early Researchers: Galileo (1564-1642) Newton (1642-1727)

More information

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and ctuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC SENSORS (Chapter 3.9, 16.4) 3 Thermoelectric effect thermoelectric

More information

ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS

ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS Objectives: In this two week experiment, we will gain familiarity with first order systems by using two

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

The Underground Experimental Investigation of Thermocouples

The Underground Experimental Investigation of Thermocouples The Underground Experimental Investigation of Thermocouples April 14, 21 Abstract This experiment investigates a K-type thermocouple in order to demonstrate the Seebeck and Peltier coefficients. Temperature

More information

Temperature Measurement

Temperature Measurement MECE 3320 Measurements & Instrumentation Temperature Measurement Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Introduction Temperature is one of the most

More information

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation Introduction Due to their low cost and ease of use, thermocouples are still a popular means for making temperature measurements up

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, ctuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC EFFECT (Chapter 5.11) 3 Thermocouple cylinder head temperature (thermocouple)

More information

I m. R s. Digital. R x. OhmmetersxSeries Shunt Digital. R m

I m. R s. Digital. R x. OhmmetersxSeries Shunt Digital. R m µa Meter I I s I m s E Digital x I Voltmeter x x E µa Meter m Is OhmmetersxSeries Shunt Digital EIx= = ()E sm x mxvi= x Shunt Ohmmeter Shunt s x E µa Meter I m I m V m E ) ( v I E ) ( E v E v E I When

More information

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design Lecture 11 Temperature Sensing 1 Temperature Sensing Q: What are we measuring? A: Temperature 2 SI Units: Celcius ( C), Kelvin (K) British Units: Fahrenheit ( F)

More information

Temperature Sensors & Measurement

Temperature Sensors & Measurement Temperature Sensors & Measurement E80 Spring 2014 Contents Why measure temperature? Characteristics of interest Types of temperature sensors 1. Thermistor 2. RTD Sensor 3. Thermocouple 4. Integrated Silicon

More information

Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011)

Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011) Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011) Objective: To implement a thermocouple circuit for temperature sensing. I. Introduction to Thermocouples

More information

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test Assigned 6 September 2000 Individual Lab Reports due 3 October 2000 OBJECTIVES Learn the basic concepts and definitions

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

An Electronic Thermal Transducer

An Electronic Thermal Transducer An Electronic Thermal Transducer PRJ NO: 16 By Okore Daniel F17/969/ Supervisor : Dr. Mwema Examiner: Dr. Abungu INTRODUCTION The aim of this project was to design and implement a temperature sensor in

More information

Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund

Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund Aalborg Universitet Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund Publication date: 2008 Document Version

More information

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have 105) to convert it to. 15. Compare the result with the value you have taken above. 17. 16. Compare the calculated pressure value with the actual pressure value that you have taken from the, is it the same?

More information

4. Thermometry. Temperature and Heat Flow Temperature Scales Thermometers

4. Thermometry. Temperature and Heat Flow Temperature Scales Thermometers 4. Thermometry Measuring temperature by sensation is very imprecise. That is why we need a temperature scale and a thermometer to measure temperature more accurately. Temperature and Heat Flow Temperature

More information

Measurements & Instrumentation. Module 3: Temperature Sensors

Measurements & Instrumentation. Module 3: Temperature Sensors Measurements & Instrumentation PREPARED BY Academic Services Unit August 2013 Institute of Applied Technology, 2013 Module Objectives Upon successful completion of this module, students should be able

More information

ECNG3032 Control and Instrumentation I

ECNG3032 Control and Instrumentation I sensor ECNG3032 Control and Instrumentation I Lecture 1 Temperature Sensors Sensors The sensor is the first element in the measurement system. Measurand Transducer Principle Excitation Signal Interface

More information

Microcontrollers and Interfacing

Microcontrollers and Interfacing Microcontrollers and Interfacing Week 04 Environmental sensing: light and temperature College of Information Science and Engineering Ritsumeikan University 1 series and parallel circuits series circuit:

More information

MEASURING INSTRUMENTS

MEASURING INSTRUMENTS Albaha University Faculty of Engineering Mechanical Engineering g Department MEASURING INSTRUMENTS AND CALIBRATION Lecture (7) Temperature measurement By: Ossama Abouelatta o_abouelatta@yahoo.com Mechanical

More information

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives EXPERIMENT 7 VARIATION OF THERMO-EMF WITH TEMPERATURE Thermo-EMF Structure 7.1 Introduction Objectives 7.2 Working Principle of a Potentiometer 7.3 Measurement of Thermo-EMF and its Variation with Temperature

More information

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale Temperature Scales The Celsius, Fahrenheit, and Kelvin Temperature Scales: Temperature, and Temperature Dependent on Physical Properties Physics Enhancement Programme Dr. M.H. CHAN, HKBU 9 T F T 5 T T

More information

Welcome. Functionality and application of RTD Temperature Probes and Thermocouples. Dipl.-Ing. Manfred Schleicher

Welcome. Functionality and application of RTD Temperature Probes and Thermocouples. Dipl.-Ing. Manfred Schleicher Welcome Functionality and application of RTD Temperature Probes and Thermocouples Dipl.-Ing. Manfred Schleicher This presentation informs about the basics of RTD Temperature Probes and thermocouples Functionality

More information

Theory and Design for Mechanical Measurements

Theory and Design for Mechanical Measurements Theory and Design for Mechanical Measurements Third Edition Richard S. Figliola Clemson University Donald E. Beasley Clemson University John Wiley & Sons, Inc. New York / Chichester / Weinheim / Brisbane

More information

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 1 Issue 1 Article 3 2013 Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data

More information

24 volts (0.25 amps current-limited)

24 volts (0.25 amps current-limited) Question 1 Questions Suppose the lamp refuses to light up. A voltmeter registers 24 volts between test points C and D: A C E + 24 volts (0.25 amps current-limited) B D F First, list all the possible (single)

More information

DATA SHEET. Thermocouple module with digital I²C-Interface - THMOD-I²C. Characteristic features. Areas of application. Features.

DATA SHEET. Thermocouple module with digital I²C-Interface - THMOD-I²C. Characteristic features. Areas of application. Features. Description Characteristic features Industrial temperature measuring method Wide measuring range, -270...+1360 C Digital I²C-interface Simple integration to micro-controller Scope of supply with thermocouple,

More information

Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit

Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit A,Venkata Naga Vamsi, G.S.S.S.S.V.Krishna Mohan,S.S.S.Srikanth A gitam UNIVERSITY, RUSHIKONDA,VISHAKAPATNAM

More information

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

Chapter 1. Blackbody Radiation. Theory

Chapter 1. Blackbody Radiation. Theory Chapter 1 Blackbody Radiation Experiment objectives: explore radiation from objects at certain temperatures, commonly known as blackbody radiation ; make measurements testing the Stefan-Boltzmann law in

More information

TEMPERATURE MEASUREMENT. GROUP 3 Noah Beauchamp Kyle Camacho Jack Connolly Curtis Yu

TEMPERATURE MEASUREMENT. GROUP 3 Noah Beauchamp Kyle Camacho Jack Connolly Curtis Yu TEMPERATURE MEASUREMENT GROUP 3 Noah Beauchamp Kyle Camacho Jack Connolly Curtis Yu Thermodynamics I Section 15 22 January 2018 Group 3 Page: 2 Abstract The Temperature Measurement lab involved using a

More information

1) Thermo couple sensor

1) Thermo couple sensor 1) Thermo couple sensor Fundamental operation. In 1821 Mr. Seebeck found that if you connected 2 wires of different metals, a small Voltage would be generated, when this connection (junction) is heated.

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information

I. Introduction and Objectives

I. Introduction and Objectives Calibration and Measurement of Temperatures using K, T-Type Thermocouples, and a Thermistor Ben Sandoval 1 8/28/2013 Five K and five T type thermocouples were calibrated using ice water, a hot bath (boiling

More information

Lecture 36: Temperatue Measurements

Lecture 36: Temperatue Measurements Lecture 36: Temperatue Measurements Contents Principle of thermocouples Materials for themocouples Cold junction compensation Compensating wires Selection of thermocouples Illustration of gas temperature

More information

EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY

EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY PURPOSE The objective of this laboratory is to introduce the student to the manufacture and use of thermocouples. Thermocouples will

More information

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds)

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds) Reminder: Lab #1 : Limitations of A/D conversion Lab #2 : Thermocouple, static and dynamic calibration Lab #3 : Conversion of work into heat Lab #4 : Pressure transducer, static and dynamic calibration

More information

The LM741C Integrated Circuit As A Differential Amplifier Building The Electronic Thermometer

The LM741C Integrated Circuit As A Differential Amplifier Building The Electronic Thermometer BE 209 Group BEW6 Jocelyn Poruthur, Justin Tannir Alice Wu, & Jeffrey Wu November 19, 1999 The LM741C Integrated Circuit As A Differential Amplifier Building The Electronic Thermometer INTRODUCTION: A

More information

M E 345 Professor John M. Cimbala Lecture 42

M E 345 Professor John M. Cimbala Lecture 42 M E 345 Professor John M. Cimbala Lecture 42 Today is the last day of class. We will Do some review example problems to help you prepare for the final exam Comments: Today, I will cover as many review

More information

SCTP20 Programmable 2-Wire Temperature Transmitter, Head Mount

SCTP20 Programmable 2-Wire Temperature Transmitter, Head Mount 20 Programmable 2-Wire Temperature Transmitter, Head Mount Configurable Transmitters Description Each 20 2-wire transmitter is designed for measuring temperature using thermocouples or RTDs. The input

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 17, 2001 Closed Book and Notes 1. Be sure to fill in your

More information

EA Guidelines on the Calibration of Temperature Indicators and Simulators by Electrical Simulation and Measurement

EA Guidelines on the Calibration of Temperature Indicators and Simulators by Electrical Simulation and Measurement Publication Reference EA-10/11 EA Guidelines on the Calibration of Temperature Indicators and Simulators by Electrical PURPOSE This document has been produced by EA as a means of giving advice for calibrating

More information

Now let s look at some devices that don t have a constant resistance.

Now let s look at some devices that don t have a constant resistance. Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then

More information

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes ph measurement A very important measurement in many liquid chemical processes (industrial, pharmaceutical, manufacturing, food production, etc.) is that of ph: the measurement of hydrogen ion concentration

More information

SENSOR OR TRANSDUCER OF INTEREST.

SENSOR OR TRANSDUCER OF INTEREST. SENSORS & TRANSDUCERS PREREQUISITES: MODULE 04: OP-AMPS II; MODULE 8: HYBRID CIRCUITS; MODULE 11: MICROCONTROLLERS III; OTHER MODULES MAY ALSO BE HELPFUL, DEPENDING UPON THE SENSOR OR TRANSDUCER OF INTEREST.

More information

Temperature Measurement and First-Order Dynamic Response *

Temperature Measurement and First-Order Dynamic Response * OpenStax-CNX module: m13774 1 Temperature Measurement and First-Order Dynamic Response * Luke Graham This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Harnessing the Power of Arduino for the Advanced Lab

Harnessing the Power of Arduino for the Advanced Lab P P Herbert Jaeger + Harnessing the Power of Arduino for the Advanced Lab (Final Version) ALPhA Immersion Workshop July 27 29, 2017 Department of Physics Indiana University Purdue University Ft. Wayne,

More information

Experiment A4 Sensor Calibration Procedure

Experiment A4 Sensor Calibration Procedure Experiment A4 Sensor Calibration Procedure Deliverables: Checked lab notebook, Brief technical memo Safety Note: Heat gloves and lab coats must be worn when dealing with boiling water. Open-toed shoes

More information

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore

Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture No. # 08 Temperature Indicator Design Using Op-amp Today,

More information

Prepare for this experiment!

Prepare for this experiment! Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,

More information

Thermocouple Calibrations and Heat Transfer Coefficients

Thermocouple Calibrations and Heat Transfer Coefficients Laboratory Experiment 5: Thermocouple Calibrations and Heat Transfer Coefficients Presented to the University of California, San Diego Department of Mechanical and Aerospace Engineering MAE 170 Prepared

More information

Thermistor. Created by lady ada. Last updated on :07:23 PM UTC

Thermistor. Created by lady ada. Last updated on :07:23 PM UTC Thermistor Created by lady ada Last updated on 2017-11-26 10:07:23 PM UTC Guide Contents Guide Contents Overview Some Stats Testing a Thermistor Using a Thermistor Connecting to a Thermistor Analog Voltage

More information

The Digital Multimeter (DMM)

The Digital Multimeter (DMM) The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

More information

Making Temperature Measurements

Making Temperature Measurements Making Temperature Measurements using Measurement Computing DQ Products THERMOCOUPLE BSICS The Gradient Nature of Thermocouples Thermocouples (TCs) are probably the most widely used and least understood

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Making Contact with Temperature

Making Contact with Temperature Making Contact with Temperature Here is a look at the phenomenon itself, the basic measurement technologies available, and how industry is presently using them. Jesse Yoder, Flow Research Temperature is

More information

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter. PS 12b Lab 1a Fun with Circuits Lab 1a Learning Goal: familiarize students with the concepts of current, voltage, and their measurement. Warm Up: A.) Given a light bulb, a battery, and single copper wire,

More information

Lab 5a: Magnetic Levitation (Week 1)

Lab 5a: Magnetic Levitation (Week 1) ME C134 / EE C128 Fall 2017 Lab 5a Lab 5a: Magnetic Levitation (Week 1) Magnetism, as you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators. Dave

More information

(Refer Slide Time: 01:16)

(Refer Slide Time: 01:16) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 50 Case Studies This will be lecture 50 in

More information

Thermometry. History. History 1/21/18. The art or science of temperature observation

Thermometry. History. History 1/21/18. The art or science of temperature observation Thermometry The art or science of temperature observation History No one person credited with the invention of the thermometer; developed over time Avicenna used this principal to show that hotness and

More information

Sensors Conditioning Module

Sensors Conditioning Module Sensors Conditioning Module Version 1.00 Microstar Laboratories, Inc. This manual is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced, or translated

More information

Arduino and Raspberry Pi in a Laboratory Setting

Arduino and Raspberry Pi in a Laboratory Setting Utah State University DigitalCommons@USU Physics Capstone Project Physics Student Research 5-16-217 Arduino and Raspberry Pi in a Laboratory Setting Dustin Johnston Utah State University Follow this and

More information

Measurement of non-electrical quantities

Measurement of non-electrical quantities Measurement of non-electrical quantities Measurement chain analog part digital part ef bias conditioning circuitry ef µc DSP SOC... C/A sensor A/C processing 2.718 CLK Sensor a converter that measures

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Objectives In this lecture you will learn the following Seebeck effect and thermo-emf. Thermoelectric series of metals which can be used to form

More information

AN3002 Thermocouple measurement

AN3002 Thermocouple measurement AN3002 Thermocouple measurement This application note illustrates the correct measurement of thermocouple sensors. Contents 1 Introduction......................................... 3 2 Test configuration....................................

More information

Prepare for this experiment!

Prepare for this experiment! Notes on Experiment #8 Theorems of Linear Networks Prepare for this experiment! If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So,

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

National Exams May 2016

National Exams May 2016 National Exams May 2016 04-Agric-A5, Principles of Instrumentation 3 hours duration NOTES: 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer

More information

PALO VERDE NUCLEAR GENERATING STATION

PALO VERDE NUCLEAR GENERATING STATION PALO VERDE NUCLEAR GENERATING STATION I&C Program Classroom Lesson I&C Program Date: 2/25/2011 1:42:48 PM LP Number: NIA97C000503 Rev Author: DANIEL R. REED Title: Temperature Measurement Technical Review:

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

PHYS 352 Assignment #1 Solutions

PHYS 352 Assignment #1 Solutions PHYS 352 Assignment #1 Solutions 1. Steinhart-Hart Equation for a thermistor In[1]:= a : 0.00128 In[2]:= b : 0.000236 In[3]:= In[4]:= d : 9.27 10^ 8 t r_ : a b Log r d Log r ^3 ^ 1 Note: Mathematica Log

More information

Measurement in Engineering

Measurement in Engineering Measurement in Engineering Responsible person for the course: Ing. Martin Novak, Ph.D. Report on the laboratory experiment Measurement of temperature of the 12.10.10 - made by Sebastian Kößler Report on

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Thermal Energy Domain Physics» Seebeck effect» Peltier effect» Thomson effect Thermal effects in semiconductors Thermoelectric sensors

More information

Thermocouple Amplifier MAX31855 breakout board (MAX6675 upgrade)

Thermocouple Amplifier MAX31855 breakout board (MAX6675 upgrade) 9/30/2014 Thermocouple Amplifier breakout board (MAX6675 upgrade) PRODUCT ID: 269 http://www.adafruit.com/product/269 9/30/2014 DESCRIPTION Thermocouples are very sensitive, requiring a good amplifier

More information

Laboratory 12: Three Thermodynamics Experiments

Laboratory 12: Three Thermodynamics Experiments Laboratory 12: Three Thermodynamics Experiments Experiment 1: Coefficient of Linear Expansion of Metals The fact that most objects expand when heated is common knowledge. The change in the linear dimensions

More information

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors General Description The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal

More information

Of all the physical properties, it is temperature, which is being measured most often.

Of all the physical properties, it is temperature, which is being measured most often. 1. Temperature 1.1 Introduction Of all the physical properties, it is temperature, which is being measured most often. Even the measurement of other physical properties,e.g. pressure, flow, level,, often

More information

APPENDIX ELEVEN Open Fire Temperature Measurements

APPENDIX ELEVEN Open Fire Temperature Measurements APPENDIX ELEVEN Open Fire Temperature Measurements Temperatures are usually recorded with alcohol or mercury thermometers, with thermistors or resistance temperature detectors (platinum resistance thermometers),

More information

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor.

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor. Experiment 3 Electrical Energy 3.1 Objectives Calculate the electrical power dissipated in a resistor. Determine the heat added to the water by an immersed heater. Determine if the energy dissipated by

More information

Semiconductor thermogenerator

Semiconductor thermogenerator Semiconductor thermogenerator LEP 4.1.07 Related topics Seebeck effect (thermoelectric effect), thermoelectric e.m.f., efficiency, Peltier coefficient, Thomson coefficient, Seebeck coefficient, direct

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Temperature Measurements

Temperature Measurements ME 22.302 Mechanical Lab I Temperature Measurements Dr. Peter Avitabile University of Massachusetts Lowell Temperature - 122601-1 Copyright 2001 A transducer is a device that converts some mechanical quantity

More information

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors General Description The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal

More information

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology

California University of Pennsylvania. Department of Applied Engineering & Technology. Electrical / Computer Engineering Technology California University of Pennsylvania Department of Applied Engineering & Technology Electrical / Computer Engineering Technology EET 215: Introduction to Instrumentations Lab No.7 Temperature Measurement

More information

MAX Cold-Junction Compensated Thermocouple-to-Digital Converter ABSOLUTE MAXIMUM RATINGS. PACKAGE THERMAL CHARACTERISTICS (Note 1)

MAX Cold-Junction Compensated Thermocouple-to-Digital Converter ABSOLUTE MAXIMUM RATINGS. PACKAGE THERMAL CHARACTERISTICS (Note 1) AVAILABLE General Description The performs cold-junction compensation and digitizes the signal from a K-, J-, N-, T-, S-, R-, or E-type thermocouple. The data is output in a signed 14-bit, SPI-compatible,

More information

Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

More information

Activity 1: Investigating Temperature

Activity 1: Investigating Temperature Contents Activity Overview... 5 Quick Start Guide... 5 Software Installation... 5 Hardware Setup... 6 mytemp Getting Started Program... 10 General Tips and Tricks... 11 Activity 1: Investigating Temperature...

More information

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

4. Heat and Thermal Energy

4. Heat and Thermal Energy 4. Heat and Thermal Energy Introduction The purpose of this experiment is to study cooling and heating by conduction, convection, and radiation. Thermal energy is the energy of random molecular motion.

More information

MAX31855 Cold-Junction Compensated Thermocouple-to-Digital Converter

MAX31855 Cold-Junction Compensated Thermocouple-to-Digital Converter 19-5793; Rev 0; 3/11 General Description The performs cold-junction compensation and digitizes the signal from a K, J, N, T, or E type thermocouple. (Contact the factory for S and R type thermocouples.)

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

ISOCON-6. 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER

ISOCON-6. 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER ISOCON-6 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER Whilst every effort has been taken to ensure the accuracy of this document, we accept no responsibility for damage, injury, loss or expense resulting

More information