I. Introduction and Objectives

Size: px
Start display at page:

Download "I. Introduction and Objectives"

Transcription

1 Calibration and Measurement of Temperatures using K, T-Type Thermocouples, and a Thermistor Ben Sandoval 1 8/28/2013 Five K and five T type thermocouples were calibrated using ice water, a hot bath (boiling water), and a boiling liquid nitrogen bath. These reference temperatures allowed for the calibration of the thermocouples at different temperature gradients. The thermistor was calibrated in the ice bath and the boiling water. These measurements were used to determine the accuracy and precision of each type of thermometric device. Fig. 5 and Fig. 10 give the relative accuracy of each device, while Fig. 3, Fig. 6, and Fig. 8 show the specific accuracy and precision. K-Type thermocouples were also attached to a hot plate in various locations and steady state and transient temperature conditions. These measurements were plotted overtime (Fig. 11) to determine the appearance of a steady state curve and the most accurate placement of a K-Type Thermocouple (the placement of K-Type #6). R = electrical resistance in ohms T = temperature in Kelvin I = sensing current, 10µA A = Eq 1 coefficient, 1.032E-3 B = Eq 1 coefficient, 2.387E-4 C = Eq 1 coefficient, 1.597E-7 S a = Seebeck coefficient material a S b = Seebeck coefficient material b (T 1 - T 2 ) = Temperature gradient Nomenclature I. Introduction and Objectives 1 Mechanical Engineering Student, Fulton School of Engineering at Arizona State University, ID: Fall 2013

2 In order to experimentally measure temperature, two requirements must be met. 1) The sensor (or system) must have thermometric properties, varying predictably with temperature, and 2) A calibration curve that relates the thermometric readings to a known temperature scale. The two types of temperature sensors used in this experiment were thermistors and thermocouples. Thermistors are considered semiconductors and have an electrical resistance that varies significantly based on the temperature. A thermocouple is made of two different metals that when joined, produce a small current when exposed to temperature differentials. Specifically, K type (chromel alumel) and T type (copper-constantan) thermocouples were used. The purpose of this experiment was to obtain calibration data for the two types of thermocouples and the thermistor, with the objective of using this information to assess the precision and accuracy of the temperature sensing technologies. The Steinhart-Hart equation [1] (Eq 1, used to convert thermistor temperature readings (originally in kohms) into degrees Celsius. Eq. 2 [2] was applied to the data before analysis in order to convert the readings of the thermocouples into degrees Celsius. Eq. 3 was applied to each data set in order to determine the accuracy of each thermometric device. Thermocouples are of interest in many engineering and testing applications due to their durability, low cost, simplicity, accuracy (which was the factor focused on in this experiment) and finally reproducibility. Equations 1 T = A + Bln(R) + Cln(R) 3 Eq. 1 V out = (S a - S b )(T 1 - T 2 ) Eq. 2 Eq. 3 II. Experimental Setup and Procedure 2 Fall 2013

3 First, K and T type thermocouples were made by spot welding one end of the two different metals together, while still leaving the other end unattached. The spot welder (Fig. 1, a) was used to complete this task for each of the thermocouples. The open ends of these thermocouples (five K, five T-type) were then placed in specific slots on the isothermal terminal block (Fig. 1, b). This terminal block was then placed in the LabVIEW data acquisition system (Fig. 1, c) and a computer running the LabVIEW program (Fig. 1, d) was used to capture and record the corresponding readings from each thermocouple and plot them in real time. In order to calibrate the thermistor, measurements were taken by connecting it to a multimeter and measuring the resistance as it was submerged in an ice bath (Fig. 2, far left, known to be at 0 C) and boiling water (Fig. 2, 2nd from the left, boiling point calculation was based off of laboratory conditions, theoretically calculated at C). Three resistance measurements were taken at each calibration point. The same tests (cold bath, hot bath) were performed using the thermocouples, but in this case LabView was used to capture the calibration data. For the K type thermocouple, additional calibration data was taken by submerging it in boiling liquid nitrogen (Fig. 2, 3rd from the left, know to be C). Similarly, three measurements were taken for each sensor at each calibration point. Figure 2. The above photographs shows multiple thermal systems with known temperatures that were used to calibrate the sensors. Finally, measurements were taken by exposing each of the five K type thermocouples to transient and steady state temperatures of the hot plate (Fig. 2, far right). Each thermocouple was placed at a different depth on the hot plate, with #1 being on the surface and #10 at a depth of roughly 0.5cm. A continuous sample was taken starting from the time that the hot plate was cool, then turning it on and waiting until it reached a steady state temperature. III. Results and Discussion 3 Fall 2013

4 For the first part of the experiment, each thermocouple (five K-Type, five T-Type) was placed in the ice bath and five readings were recorded. This was repeated three times. For each reading set (total of 15) the average off the readings (5 total for each thermocouple type) were calculated, along with their standard deviation (Eq. 3) which was used to determine the relative accuracy of each sample. Three readings were taken with the Thermistor. The chart below (Fig. 3) is a brief summary of the results, more clearly depicted by the graph in Fig. 4. Figure 3. This chart is a brief summary of data collected from three different thermometric devices (T, K-Type Thermocouples, and a Thermistor.) At some points during the experiment, there were rogue data points. The columns with the Corrected Data label are the result when this rogue data was removed. All readings are in degrees Celsius. Figure 4. The above graph shows the the temperature readings for each of the three thermometric devices (T, K-Type Thermocouples and a Thermistor). For the thermocouples, each bar represents the average of the five readings taken with the stacked bar representing the standard deviation (Eq. 3). For the thermistor, each bar represents one measurement with the stacked bar representing the deviation between the three measurements. Upon looking at Fig. 4 and eyeballing the standard deviation, then comparing this with the overall findings listed in Fig. 3, it is clear that the T-Type Thermocouple is the least precise, with the highest deviation between the sensors (0.894 degrees Celsius,) and as well the least accurate with an average temperature reading of 4.11 degrees Celsius in the ice bath of known temperature (0 degrees Celsius.) 4 Fall 2013

5 The thermistor is the second most precise with a deviation of 0.79 degrees Celsius and the most accurate of the three sensors with an average temperature of 2.23 degrees Celsius in the ice bath. Finally, the K-Type Thermocouple was the most precise with an adjusted standard deviation of 0.48 degrees Celsius and the second most accurate with an average reading of 3.38 degrees Celsius. The precision and accuracy findings of all of the ice bath calibration tests are listed below in Fig. 5. Thermistor T-Type Thermocouple K-Type Thermocouple Accuracy Precision Figure 5. The table above summarizes the precision and accuracy of each thermometric device tested in an ice bath. 1 is the most accurate or precise, and 3 is the least. For the second part of the experiment, each thermocouple (five K-Type, five T-Type) was placed in the boiling nitrogen and five readings were recorded. This was repeated three times. For each reading set (total of 15) the average off the readings (5 total for each thermocouple type) were calculated, along with their standard deviation (Eq. 3) which was used to determine the relative accuracy of each sample. The chart below (Fig. 6) is a brief summary of the results, more clearly depicted by the graph in Fig. 7. Figure 6. The above chart is a brief summary of data collected from two different thermometric devices (T, K- Type Thermocouples.) At some points during the experiment, there were rogue data points. The columns with the Corrected Data label are the result when this rogue data was removed. All readings are in degrees Celsius. Figure 7. The above graph shows the the temperature readings for the two thermometric devices (T, K-Type Thermocouples.) Each bar represents the average of the five readings taken with the stacked bar representing the standard deviation (Eq. 3). Looking at Fig. 7 and referencing the summary data from Fig. 6 as verification, it is clear to see that the T-Type Thermocouple is the most precise with an adjusted standard deviation of 0.50 degrees Celsius and the most accurate 5 Fall 2013

6 with an average temperature reading of degrees Celsius in the boiling nitrogen (know to be at degrees Celsius). The K-Type Thermocouple is the second most precise (standard deviation of 1.72 degrees Celsius) and the second most accurate with an average reading of degrees Celsius in the boiling nitrogen. For the third part of the experiment, each thermocouple (five K-Type, five T-Type) was placed in the boiling water and five readings were recorded. This was repeated three times. For each reading set (total of 15) the average off the readings (5 total for each thermocouple type) were calculated, along with their standard deviation (Eq. 3) which was used to determine the relative accuracy of each sample. Three readings were taken with the Thermistor. The chart below (Fig. 3) is a brief summary of the results, more clearly depicted by the graph in Fig. 4. Figure 8. This chart is a brief summary of data collected from three different thermometric devices (T, K-Type Thermocouples, and a Thermistor) when they were submerged in boiling water. Occasionally there were rogue data points. The columns with the Corrected Data label are the result when this rogue data was removed. All readings are in degrees Celsius. Figure 9. The above graph shows the the temperature readings for each of the three thermometric devices (T, K-Type Thermocouples and a Thermistor) when submerged in liquid nitrogen. For the thermocouples, each bar represents the average of the five readings taken with the stacked bar representing the standard deviation (Eq. 3). For the thermistor, each bar represents one measurement with the stacked bar representing the deviation between the three measurements. 6 Fall 2013

7 Upon reviewing Fig. 8 and Fig. 9, it is clear that the T-Type Thermocouple is the most accurate with an average temperature reading of degrees Celsius (in water with a known boiling point of degrees Celsius), and the second most precise with an adjusted standard deviation of 1.72 degrees Celsius. The K-Type Thermocouple is the second most accurate with an average temperature reading of degrees Celsius and the most precise with a standard deviation of 0.41 degrees Celsius. The Thermistor is the least accurate and precise of the three with an average temperature reading of degrees Celsius and a standard deviation of 1.82 degrees Celsius. The precision and accuracy findings of all of the ice bath calibration tests are listed below Thermistor T-Type Thermocouple K-Type Thermocouple Accuracy Precision Figure 10. The table above summarizes the precision and accuracy of each thermometric device tested in boiling water. 1 is the most accurate or precise, and 3 is the least. Finally, the graph below (Fig. 11) shows the temperature measurements of the K-Type Thermocouples over a period of time as it was exposed to steady state and transient conditions. Figure 11. The graph above shows the temperature readings of the five K-Type thermocouples vs time on a hot plate. The standard deviation of the set of lines is located near the lower (0-20 degrees Celsius) part of the graph. 7 Fall 2013

8 After further review of the graph in Fig. 11, it becomes clear that the hot plate reaches steady state when the slopes of the lines become zero. This occurs at the beginning of the test (from roughly seconds) and towards the very end of the trial (from roughly seconds). The K-Type Thermocouple that appears to give the most accurate measurement of the plate temperature appears to be #6, which follows the average of the other four thermocouples very closely. On a side note, it quickly became obvious that as the hot plate increased in temperature, the deviation of the K-Type Thermocouple measurements increased significantly. Q and A 1. The reading of average reading of the T-Type thermocouple was 4.11 degrees Celsius in the ice bath, the average reading of the T-Type thermocouple in the liquid nitrogen was degrees Celsius (0.4 higher than the known), and average in the hot bath was degrees Celsius (.3 degrees above the calculated boiling point of water. Setting the differences of the Seebeck coefficients (S a S b ) equal to 41µV/K and applying the Eq. 1, the corresponding temperatures are a) -76, 0.0, 198.7, degrees Celsius. b) , 32.0, 387.9, and degrees Celsius. 2. The average reading of the K-Type thermocouple in the ice bath was 3.6 degrees Celsius, in the liquid nitrogen, (1.9 above the reference), and in boiling water, 99 degrees Celsius (0.5 above the reference.) Applying these calibrations along with Eq. 1 yields a) -22.0, -5.6, (no calibration applied), and 100 degrees Celsius. 3. If the ice bath reference was allowed to increase, it would decrease the temperature gradient from 45 degrees Celsius (45 0 degrees Celsius) to 39 (45-6) degrees Celsius. This would decrease the voltage from 1.845mV to 1.599mV. The magnitude of the error introduced is 13.3% for both the temperature and voltage. IV. Summary In this experiment, three devices with known thermometric properties were used in order to assess their accuracy and precision. The tests used to assess this were common bath temperatures used in a laboratory. These baths included: ice, boiling liquid nitrogen, boiling water, and direct contact with a hot plate. These tests made it very clear the accuracy of each device at the different positions. At extreme temperature differentials, the thermocouples were clearly more accurate at larger temperature differentials (such as the boiling water and the liquid nitrogen) while the thermistor was more accurate at moderate temperatures like those simulated by the ice bath. In this experiment, it seemed that excess sensors were used and excess data was collected than would actually be needed in the calibration of various sensors. I think that an acceptable number of sensors to run this trial would be three K-Type and three T-Type thermocouples, with ten total samples taken at each temperature. This would increase the processing time of the calibration data, without much loss to the accuracy of experimental data. References [1] J. S. Steinhart and S. R. Hart, Calibration curves for thermistors, Deep Sea Research 15, 4, (1968) [2] Kerlin, Thomas W. Practical Thermocouple Thermometry. Research Triangle Pa: International Society of Automation, Print. Appendix Throughout the report, the methodology of all calculations was described in detail, along with the equations used listed in the Experimental Setup and Procedure section (II). 8 Fall 2013

Sensors and Actuators Sensors Physics

Sensors and Actuators Sensors Physics Sensors and ctuators Sensors Physics Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC SENSORS (Chapter 3.9, 16.4) 3 Thermoelectric effect thermoelectric

More information

Sensing, Computing, Actuating

Sensing, Computing, Actuating Sensing, Computing, ctuating Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 THERMOELECTRIC EFFECT (Chapter 5.11) 3 Thermocouple cylinder head temperature (thermocouple)

More information

Measurements & Instrumentation. Module 3: Temperature Sensors

Measurements & Instrumentation. Module 3: Temperature Sensors Measurements & Instrumentation PREPARED BY Academic Services Unit August 2013 Institute of Applied Technology, 2013 Module Objectives Upon successful completion of this module, students should be able

More information

Measurement in Engineering

Measurement in Engineering Measurement in Engineering Responsible person for the course: Ing. Martin Novak, Ph.D. Report on the laboratory experiment Measurement of temperature of the 12.10.10 - made by Sebastian Kößler Report on

More information

Thermocouple Calibrations and Heat Transfer Coefficients

Thermocouple Calibrations and Heat Transfer Coefficients Laboratory Experiment 5: Thermocouple Calibrations and Heat Transfer Coefficients Presented to the University of California, San Diego Department of Mechanical and Aerospace Engineering MAE 170 Prepared

More information

PHYS 352 Assignment #1 Solutions

PHYS 352 Assignment #1 Solutions PHYS 352 Assignment #1 Solutions 1. Steinhart-Hart Equation for a thermistor In[1]:= a : 0.00128 In[2]:= b : 0.000236 In[3]:= In[4]:= d : 9.27 10^ 8 t r_ : a b Log r d Log r ^3 ^ 1 Note: Mathematica Log

More information

Temperature Measurement

Temperature Measurement MECE 3320 Measurements & Instrumentation Temperature Measurement Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Introduction Temperature is one of the most

More information

Temperature Measurements

Temperature Measurements Engineering 80 Spring 2015 Temperature Measurements SOURCE: http://www.eng.hmc.edu/newe80/pdfs/vishaythermdatasheet.pdf SOURCE: http://elcodis.com/photos/19/51/195143/to-92-3_standardbody to-226_straightlead.jpg

More information

Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011)

Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011) Experiment 5: Thermocouples (tbc 1/14/2007, revised 3/16/2007, 3/22,2007, 2/23/2009, 3/13/2011) Objective: To implement a thermocouple circuit for temperature sensing. I. Introduction to Thermocouples

More information

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design

Lecture 11 Temperature Sensing. ECE 5900/6900 Fundamentals of Sensor Design EE 4900: Fundamentals of Sensor Design Lecture 11 Temperature Sensing 1 Temperature Sensing Q: What are we measuring? A: Temperature 2 SI Units: Celcius ( C), Kelvin (K) British Units: Fahrenheit ( F)

More information

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale Temperature Scales The Celsius, Fahrenheit, and Kelvin Temperature Scales: Temperature, and Temperature Dependent on Physical Properties Physics Enhancement Programme Dr. M.H. CHAN, HKBU 9 T F T 5 T T

More information

ME 105 Mechanical Engineering Laboratory Spring Quarter Experiment #2: Temperature Measurements and Transient Conduction and Convection

ME 105 Mechanical Engineering Laboratory Spring Quarter Experiment #2: Temperature Measurements and Transient Conduction and Convection ME 105 Mechanical Engineering Lab Page 1 ME 105 Mechanical Engineering Laboratory Spring Quarter 2010 Experiment #2: Temperature Measurements and Transient Conduction and Convection Objectives a) To calibrate

More information

Temperature Measurement

Temperature Measurement Temperature Measurement Temperature is one of the most common measurements What is Temperature? Intuitively understood as sensation of hot/cold Early Researchers: Galileo (1564-1642) Newton (1642-1727)

More information

EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY

EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY EM375 MECHANICAL ENGINEERING EXPERIMENTATION THERMOCOUPLE LABORATORY PURPOSE The objective of this laboratory is to introduce the student to the manufacture and use of thermocouples. Thermocouples will

More information

4. Thermometry. Temperature and Heat Flow Temperature Scales Thermometers

4. Thermometry. Temperature and Heat Flow Temperature Scales Thermometers 4. Thermometry Measuring temperature by sensation is very imprecise. That is why we need a temperature scale and a thermometer to measure temperature more accurately. Temperature and Heat Flow Temperature

More information

APPENDIX ELEVEN Open Fire Temperature Measurements

APPENDIX ELEVEN Open Fire Temperature Measurements APPENDIX ELEVEN Open Fire Temperature Measurements Temperatures are usually recorded with alcohol or mercury thermometers, with thermistors or resistance temperature detectors (platinum resistance thermometers),

More information

Veerapong Kanchanawongkul*

Veerapong Kanchanawongkul* Using LabVIEW to Development of Temperature Measurement System with Thermocouple and Thermistor AIS 08 Veerapong Kanchanawongkul* Department of Mechanical Engineering, Faculty of Engineering, South-East

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

The Underground Experimental Investigation of Thermocouples

The Underground Experimental Investigation of Thermocouples The Underground Experimental Investigation of Thermocouples April 14, 21 Abstract This experiment investigates a K-type thermocouple in order to demonstrate the Seebeck and Peltier coefficients. Temperature

More information

Activity 1: Investigating Temperature

Activity 1: Investigating Temperature Contents Activity Overview... 5 Quick Start Guide... 5 Software Installation... 5 Hardware Setup... 6 mytemp Getting Started Program... 10 General Tips and Tricks... 11 Activity 1: Investigating Temperature...

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS

ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS ME 365 EXPERIMENT 5 FIRST ORDER SYSTEM IDENTIFICATION APPLIED TO TEMPERATURE MEASUREMENT SYSTEMS Objectives: In this two week experiment, we will gain familiarity with first order systems by using two

More information

MEASURING INSTRUMENTS

MEASURING INSTRUMENTS Albaha University Faculty of Engineering Mechanical Engineering g Department MEASURING INSTRUMENTS AND CALIBRATION Lecture (7) Temperature measurement By: Ossama Abouelatta o_abouelatta@yahoo.com Mechanical

More information

Thermometry. History. History 1/21/18. The art or science of temperature observation

Thermometry. History. History 1/21/18. The art or science of temperature observation Thermometry The art or science of temperature observation History No one person credited with the invention of the thermometer; developed over time Avicenna used this principal to show that hotness and

More information

I m. R s. Digital. R x. OhmmetersxSeries Shunt Digital. R m

I m. R s. Digital. R x. OhmmetersxSeries Shunt Digital. R m µa Meter I I s I m s E Digital x I Voltmeter x x E µa Meter m Is OhmmetersxSeries Shunt Digital EIx= = ()E sm x mxvi= x Shunt Ohmmeter Shunt s x E µa Meter I m I m V m E ) ( v I E ) ( E v E v E I When

More information

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams Dr.Salwa Alsaleh Salwams@ksu.edu.sa fac.ksu.edu.sa/salwams What is Temperature? It is the measurement of the AVERAGE kinetic energy of the particles of matter. Temperature We associate the concept of temperature

More information

Temperature. Sensors. Measuring technique. Eugene V. Colla. 10/25/2017 Physics 403 1

Temperature. Sensors. Measuring technique. Eugene V. Colla. 10/25/2017 Physics 403 1 Temperature. Sensors. Measuring technique. Eugene V. Colla 10/25/2017 Physics 403 1 Outline Temperature Sensors Measuring equipment and ideas Sensor calibration Temperature scales 10/25/2017 Physics 403

More information

Temperature Sensors & Measurement

Temperature Sensors & Measurement Temperature Sensors & Measurement E80 Spring 2014 Contents Why measure temperature? Characteristics of interest Types of temperature sensors 1. Thermistor 2. RTD Sensor 3. Thermocouple 4. Integrated Silicon

More information

Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund

Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund Aalborg Universitet Temperature Measurements Using Type K Thermocouples and the Fluke Helios Plus 2287A Datalogger Artmann, Nikolai; Vonbank, R.; Jensen, Rasmus Lund Publication date: 2008 Document Version

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Thermal Energy Domain Physics» Seebeck effect» Peltier effect» Thomson effect Thermal effects in semiconductors Thermoelectric sensors

More information

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 13 Contents Initial Problem Statement 2 Narrative

More information

Heat and temperature are related and often confused, but they are not the same.

Heat and temperature are related and often confused, but they are not the same. Heat and temperature are related and often confused, but they are not the same. Heat Definition: Heat is energy that is transferred from one body to another as a result of a difference in temperature Symbol:

More information

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 1 Issue 1 Article 3 2013 Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data

More information

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation

IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation IC Temperature Sensor Provides Thermocouple Cold-Junction Compensation Introduction Due to their low cost and ease of use, thermocouples are still a popular means for making temperature measurements up

More information

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test Assigned 6 September 2000 Individual Lab Reports due 3 October 2000 OBJECTIVES Learn the basic concepts and definitions

More information

Temperature Measurement and First-Order Dynamic Response *

Temperature Measurement and First-Order Dynamic Response * OpenStax-CNX module: m13774 1 Temperature Measurement and First-Order Dynamic Response * Luke Graham This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0

More information

Semiconductor thermogenerator

Semiconductor thermogenerator Semiconductor thermogenerator LEP 4.1.07 Related topics Seebeck effect (thermoelectric effect), thermoelectric e.m.f., efficiency, Peltier coefficient, Thomson coefficient, Seebeck coefficient, direct

More information

Thermometer Calibration

Thermometer Calibration Thermometer Calibration Jane Doe: Introduction and references John Smith: Procedure Leo Patel: Results Mike Jones: Discussion/Conclusion Introduction: Thermometers measure the amount of thermal energy

More information

Lecture 36: Temperatue Measurements

Lecture 36: Temperatue Measurements Lecture 36: Temperatue Measurements Contents Principle of thermocouples Materials for themocouples Cold junction compensation Compensating wires Selection of thermocouples Illustration of gas temperature

More information

Chapter 17 Temperature and heat

Chapter 17 Temperature and heat Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

More information

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives

EXPERIMENT VARIATION OF THERMO-EMF WITH TEMPERATURE. Structure. 7.1 Introduction Objectives EXPERIMENT 7 VARIATION OF THERMO-EMF WITH TEMPERATURE Thermo-EMF Structure 7.1 Introduction Objectives 7.2 Working Principle of a Potentiometer 7.3 Measurement of Thermo-EMF and its Variation with Temperature

More information

Lab 1f Boiling Heat Transfer Paradox

Lab 1f Boiling Heat Transfer Paradox Lab 1f Boiling Heat Transfer Paradox OBJECTIVES Warning: though the experiment has educational objectives (to learn about boiling heat transfer, etc.), these should not be included in your report. - Obtain

More information

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction

Department of Mechanical Engineering ME 96. Free and Forced Convection Experiment. Revised: 25 April Introduction CALIFORNIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering ME 96 Free and Forced Convection Experiment Revised: 25 April 1994 1. Introduction The term forced convection refers to heat transport

More information

THERMOCOUPLE CHARACTERISTICS TRAINER

THERMOCOUPLE CHARACTERISTICS TRAINER THERMOCOUPLE CHARACTERISTICS TRAINER (Model No : ) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

1) Thermo couple sensor

1) Thermo couple sensor 1) Thermo couple sensor Fundamental operation. In 1821 Mr. Seebeck found that if you connected 2 wires of different metals, a small Voltage would be generated, when this connection (junction) is heated.

More information

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8.

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8. Question Sheet Page 1 of 5 Instructions for the student: Question 1 is compulsory [40 marks] Attempt any two other questions [30 marks per question] The following must be made available during the examination:

More information

Experiment A4 Sensor Calibration Procedure

Experiment A4 Sensor Calibration Procedure Experiment A4 Sensor Calibration Procedure Deliverables: Checked lab notebook, Brief technical memo Safety Note: Heat gloves and lab coats must be worn when dealing with boiling water. Open-toed shoes

More information

Exercise 1: Thermocouple Characteristics

Exercise 1: Thermocouple Characteristics The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

More information

Energy Conversion in the Peltier Device

Energy Conversion in the Peltier Device Laboratory exercise 4 Energy Conversion in the Peltier Device Preface The purpose of this exercise is to become familiar with the Peltier effect. Students will observe Peltier device working as a heat

More information

Section 7. Temperature Measurement

Section 7. Temperature Measurement Section 7 Temperature Measurement 7/25/2017 Engineering Measurements 7 1 Working Definition Temperature is a measure of the average kinetic energy of the molecules that make of a substance. After time,

More information

Laboratory 12: Three Thermodynamics Experiments

Laboratory 12: Three Thermodynamics Experiments Laboratory 12: Three Thermodynamics Experiments Experiment 1: Coefficient of Linear Expansion of Metals The fact that most objects expand when heated is common knowledge. The change in the linear dimensions

More information

HEAT AND THERMODYNAMICS

HEAT AND THERMODYNAMICS HEAT AND THERMODYNAMICS 1. THE ABSOLUTE TEMPERATURE SCALE In the textbook you have been introduced to the concept of temperature, and to the fact that there is a natural zero of temperature, the temperature

More information

PURE PHYSICS THERMAL PHYSICS (PART I)

PURE PHYSICS THERMAL PHYSICS (PART I) PURE PHYSICS THERMAL PHYSICS (PART I) 1 The kinetic theory of matter states that all matters are made up of or, which are in and motion. forces hold the atoms or molecules together. The nature of these

More information

THERMYS 150. Advanced field reference thermometer / temperature calibrator

THERMYS 150. Advanced field reference thermometer / temperature calibrator Advanced field reference thermometer / temperature calibrator THERMYS 150 is an all-in-one high accurate documenting field reference thermometer for thermocouples (14 types), resistive probes (12 types)

More information

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K 10K Community College of Allegheny County Unit 9 Page #1 Thermocouples +12V Thermocouple Junction Vin Copper Wire Constantan Wire + - 3 2 741 7 4 1 5-12V 6 V Vout R1 = 1K Rf = 100K Engineers are not expected

More information

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Steven Brinser IBM Microelectronics Abstract Thermal characterization of a semiconductor device is

More information

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 22 Contents Initial Problem Statement 2 Narrative

More information

Experimentally estimating a convection coefficient. 2. Demonstration and preliminary data reduction

Experimentally estimating a convection coefficient. 2. Demonstration and preliminary data reduction Thermocouple Parameter Identification ES 205 Analysis and Design of Engineering Systems 1. Summary Experimentally estimating a convection coefficient Parameter identification is the experimental determination

More information

High Temperature Measurement System Design for Thermoelectric Materials In Power Generation Application

High Temperature Measurement System Design for Thermoelectric Materials In Power Generation Application Mat. Res. Soc. Symp. Proc. Vol. 793 24 Materials Research Society S9.4.1 High Temperature Measurement System Design for Thermoelectric Materials In Power Generation Application Sim Loo, Jarrod Short, Kuei

More information

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3

AE 3051, Lab #16. Investigation of the Ideal Gas State Equation. By: George P. Burdell. Group E3 AE 3051, Lab #16 Investigation of the Ideal Gas State Equation By: George P. Burdell Group E3 Summer Semester 000 Abstract The validity of the ideal gas equation of state was experimentally tested for

More information

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have 105) to convert it to. 15. Compare the result with the value you have taken above. 17. 16. Compare the calculated pressure value with the actual pressure value that you have taken from the, is it the same?

More information

ME 105 Mechanical Engineering Laboratory Spring Quarter INTRODUCTION TO TRANSIENT CONDUCTION AND CONVECTION

ME 105 Mechanical Engineering Laboratory Spring Quarter INTRODUCTION TO TRANSIENT CONDUCTION AND CONVECTION ME 105 Mechanical Engineering Lab Page 1 ME 105 Mechanical Engineering Laboratory Spring Quarter 2003 2. INTRODUCTION TO TRANSIENT CONDUCTION AND CONVECTION This set of experiments is designed to provide

More information

A Comparison of Figureof Merit for Some Common ThermocouplesintheHighTemperatureRange

A Comparison of Figureof Merit for Some Common ThermocouplesintheHighTemperatureRange Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 13 Issue 11 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

c. VH: Heating voltage between the collector and emitter.

c. VH: Heating voltage between the collector and emitter. TERMAL IMPEDANCE MEASUREMENTS FOR INSULATED GATE BIPOLAR TRANSISTORS (DELTA GATE-EMITTER ON VOLTAGE METOD) 1. Purpose. The purpose of this test method is to measure the thermal impedance of the IGBT under

More information

Chapter 1. Blackbody Radiation. Theory

Chapter 1. Blackbody Radiation. Theory Chapter 1 Blackbody Radiation Experiment objectives: explore radiation from objects at certain temperatures, commonly known as blackbody radiation ; make measurements testing the Stefan-Boltzmann law in

More information

1. Data based question. This question is about change of electrical resistance with temperature.

1. Data based question. This question is about change of electrical resistance with temperature. 1. Data based question. This question is about change of electrical resistance with temperature. The table below gives values of the resistance R of an electrical component for different values of its

More information

STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES

STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES STUDY OF THERMAL RESISTANCE MEASUREMENT TECHNIQUES The Development of the Next Generation VLSI Technology for Very High Speed Analog Chip Design PROJECT UPDATE Prepared for : Dr. Ronald Carter Dr. W.Alan

More information

CHAPTER VII. Thermometry

CHAPTER VII. Thermometry CHAPTER VII Thermometry 1. Introduction Temperature is a measure of the degree of warmth or cold in a material. We can perceive through touch that one bath of water is warmer than another. To make such

More information

UMEÅ UNIVERSITY Department of Physics Agnieszka Iwasiewicz Leif Hassmyr Ludvig Edman SOLID STATE PHYSICS HALL EFFECT

UMEÅ UNIVERSITY Department of Physics Agnieszka Iwasiewicz Leif Hassmyr Ludvig Edman SOLID STATE PHYSICS HALL EFFECT UMEÅ UNIVERSITY Department of Physics 2004-04-06 Agnieszka Iwasiewicz Leif Hassmyr Ludvig Edman SOLID STATE PHYSICS HALL EFFECT 1. THE TASK To measure the electrical conductivity and the Hall voltage for

More information

Measurement of Temperature in the Plastics Industry

Measurement of Temperature in the Plastics Industry Sawi Mess- und Regeltechnik AG CH 8405 Winterthur-Gotzenwil, Switzerland Telephone +41 52 320 50 50, Fax +41 52 320 50 55 www.sawi.ch Measurement of Temperature in the Plastics Industry Johannes Wild,

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

Measurement of non-electrical quantities

Measurement of non-electrical quantities Measurement of non-electrical quantities Measurement chain analog part digital part ef bias conditioning circuitry ef µc DSP SOC... C/A sensor A/C processing 2.718 CLK Sensor a converter that measures

More information

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT

Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Ordinary Level Physics Long Questions: TEMPERATURE AND HEAT Temperature 2014 Question 7 (a) [Ordinary Level] The temperature of an object can be measured using a thermometer which is based on a suitable

More information

Lecture 2: Zero law of thermodynamics

Lecture 2: Zero law of thermodynamics Lecture 2: Zero law of thermodynamics 1. Thermometers and temperature scales 2. Thermal contact and thermal equilibrium 3. Zeroth law of thermodynamics 1. Thermometers and Temperature scales We often associate

More information

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES

TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES SEMI G38-0996 N/A SEMI 1987, 1996 TEST METHOD FOR STILL- AND FORCED-AIR JUNCTION-TO- AMBIENT THERMAL RESISTANCE MEASUREMENTS OF INTEGRATED CIRCUIT PACKAGES 1 Purpose The purpose of this test is to determine

More information

Temperature Measurement And Calibration Setup (TH1)

Temperature Measurement And Calibration Setup (TH1) Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2018 Temperature Measurement And Calibration Setup (TH1) Momin E. Abdalla University

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010

Technical Notes. Introduction. PCB (printed circuit board) Design. Issue 1 January 2010 Technical Notes Introduction Thermal Management for LEDs Poor thermal management can lead to early LED product failure. This Technical Note discusses thermal management techniques and good system design.

More information

Temperature. 3

Temperature. 3 Temperature In 1848, Sir William Thomson (Lord Kelvin) stated the zero principle of dynamics. This principle enabled him to define thermodynamic temperature and to establish an objective method of measuring

More information

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes

Module 1, Add on math lesson Simultaneous Equations. Teacher. 45 minutes Module 1, Add on math lesson Simultaneous Equations 45 minutes eacher Purpose of this lesson his lesson is designed to be incorporated into Module 1, core lesson 4, in which students learn about potential

More information

MIL-STD-750D METHOD THERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METHOD)

MIL-STD-750D METHOD THERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METHOD) TERMAL RESISTANCE MEASUREMENTS OF GaAs MOSFET's (CONSTANT CURRENT FORWARD-BIASED GATE VOLTAGE METOD) 1. Purpose. The purpose of this test method is to measure the thermal resistance of the MESFET under

More information

Ideal Gas Law. To demonstrate the dependence of pressure on temperature for a fixed volume of real gas.

Ideal Gas Law. To demonstrate the dependence of pressure on temperature for a fixed volume of real gas. Ideal Gas Law 1 Object To demonstrate the dependence of pressure on temperature for a fixed volume of real gas. 2 Apparatus Constant volume gas apparatus with pressure gauge, fixed mass/volume of air,

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

Gas Thermometer and Absolute Zero

Gas Thermometer and Absolute Zero Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

More information

MIL-STD-883E METHOD THERMAL CHARACTERISTICS

MIL-STD-883E METHOD THERMAL CHARACTERISTICS THERMAL CHARACTERISTICS 1. PURPOSE. The purpose of this test is to determine the thermal characteristics of microelectronic devices. This includes junction temperature, thermal resistance, case and mounting

More information

Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:.

Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:. Thermal Physics Lectures Nos. 8 and 9. Name: ID number:.. Date:. 1. Which of the following statements about thermal contact and thermal equilibrium is NOT true? A) Two objects can be in thermal equilibrium

More information

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date:

Lab: Phase Change. Introduction. Predict. Computer setup- Equipment setup- Name: Period: Date: /16 Points Lab: Phase Change Introduction Every substance has a characteristic freezing point and melting point. As you might expect, the substance changes phase at each of these temperatures. A pure substance

More information

Heat and Temperature Practice Quiz Topic 2 - Measuring Temperature

Heat and Temperature Practice Quiz Topic 2 - Measuring Temperature Heat and Temperature Practice Quiz Topic 2 - Measuring Temperature 1. Estimating temperature is something that we do automatically. Touching something to see how hot or cold it is is one technique that

More information

Thermal and electrical conductivity of metals

Thermal and electrical conductivity of metals Thermal and electrical conductivity of metals (Item No.: P2350200) Curricular Relevance Area of Expertise: Physics Education Level: University Topic: Thermodynamics Subtopic: Heat, Work, and the First

More information

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1) CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

More information

Electricity. Semiconductor thermogenerator Stationary currents. What you need:

Electricity. Semiconductor thermogenerator Stationary currents. What you need: Stationary currents Electricity Semiconductor thermogenerator What you can learn about Seebeck effect (thermoelectric effect) Thermoelectric e.m.f. Efficiency Peltier coefficient Thomson coefficient Seebeck

More information

Commentary on candidate 3 evidence (Batteries)

Commentary on candidate 3 evidence (Batteries) on candidate 3 evidence (Batteries) The evidence for this candidate has achieved the following s for each section of this course assessment component. 1 Aim An aim that describes clearly the purpose of

More information

DIFFUSION PURPOSE THEORY

DIFFUSION PURPOSE THEORY DIFFUSION PURPOSE The objective of this experiment is to study by numerical simulation and experiment the process of diffusion, and verify the expected relationship between time and diffusion width. THEORY

More information

Part Number Range Accuracy Printing WP * Probe Special User LDC with Page Logging included Feature Cal Backlight

Part Number Range Accuracy Printing WP * Probe Special User LDC with Page Logging included Feature Cal Backlight Table of Contents Comparison Chart Introduction Temperature Indicators & Controllers Portable Infrared Printing/Logging Page O2 O3 O10 O14 O30 O33 O1 Part Number Range Accuracy Printing WP * Probe Special

More information

4. I-V characteristics of electric

4. I-V characteristics of electric KL 4. - characteristics of electric conductors 4.1 ntroduction f an electric conductor is connected to a voltage source with voltage a current is produced. We define resistance being the ratio of the voltage

More information

an alternative approach to junction-to-case thermal resistance measurements

an alternative approach to junction-to-case thermal resistance measurements an alternative approach to junction-to-case thermal resistance measurements Bernie Siegal Thermal Engineering Associates, Inc. Introduction As more and more integrated circuits dissipate power at levels

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

PALO VERDE NUCLEAR GENERATING STATION

PALO VERDE NUCLEAR GENERATING STATION PALO VERDE NUCLEAR GENERATING STATION I&C Program Classroom Lesson I&C Program Date: 2/25/2011 1:42:48 PM LP Number: NIA97C000503 Rev Author: DANIEL R. REED Title: Temperature Measurement Technical Review:

More information

Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit

Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit Simplified Thermocouple Interface For Hot Only Or Cold Only Measurement With Linearization Circuit A,Venkata Naga Vamsi, G.S.S.S.S.V.Krishna Mohan,S.S.S.Srikanth A gitam UNIVERSITY, RUSHIKONDA,VISHAKAPATNAM

More information

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect

Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Module 4 : THERMOELECTRICITY Lecture 21 : Seebeck Effect Objectives In this lecture you will learn the following Seebeck effect and thermo-emf. Thermoelectric series of metals which can be used to form

More information