From Automata Networks to HMSCs: A Reverse Model Engineering Perspective

Size: px
Start display at page:

Download "From Automata Networks to HMSCs: A Reverse Model Engineering Perspective"

Transcription

1 From Automt Ntworks to HMSCs: A Rvrs Modl Enginring Prsptiv Thoms Chtin,Loï Hélouët, nd Clud Jrd 3 IRISA/ENS Chn-Brtgn, Cmpus d Buliu, F-354 Rnns d, Frn Thoms.Chtin@iris.fr IRISA/INRIA, Cmpus d Buliu, F-354 Rnns d, Frn Loi.Hlout@iris.fr 3 IRISA/ENS Chn-Brtgn, Cmpus d Kr-Lnn, F-357 Bruz d, Frn Clud.Jrd@rtgn.ns-hn.fr Astrt. This ppr onsidrs th prolm of utomti strtion, from low-lvl modl givn in trm of ntwork of intrting utomt to high-lvl mssg squn hrt. This llows th dsignr to ply in ohrnt wy with th lol nd glol viws of systm, nd opns nw prsptivs in rvrs modl nginring. Our thniqu is sd on prtil ordr smntis of synhronous prlll utomt nd th onstrution of finit omplt prfi of n vnt-strutur oding ll th hviors. W prsnt th modls nd lgorithms. Th mpls prsntd in th ppr hv n prossd y smll softwr prototyp w hv implmntd. Introdution Dsigning distriutd pplition is ompl tsk. At th finl stg of th modling, on th diffrnt rhitturl disions hv n md, dsignrs usully otin st of ommuniting squntil omponnts. During rlir stgs of softwr dvlopmnt, dsignrs us mor strt nd visul rprsnttions suh s snrios. For instn, Mssg Squn Chrts (MSCs) [9] r n ppling visul formlism to ptur systm rquirmnts. Thy r prtiulrly suitd for dsriing snrios of distriutd tlommunition softwr [7]. Svrl vrints of MSCs ppr in th litrtur (squn digrms, mssg flow digrms, ojt intrtion digrms, Liv Squn Chrts) nd r usd in numr of softwr nginring mthodologis inluding UML [8]. Thy provid th dsignr with glol viw of th dynmi hvior of th systm, givn in dlrtiv mnnr. Howvr, thr is oftn gp twn th lol viw dfind s squntil omponnts nd th mor glol viw dsrid y snrios. Som snrios nnot implmntd y squntil mhins, nd som ompositions of s- F. Wng (Ed.): FORTE 5, LNCS 373, pp , 5. IFIP Intrntionl Fdrtion for Informtion Prossing 5

2 49 T. Chtin, L. Hélouët, nd C. Jrd quntil mhins do not hv finit rprsnttion in trms of MSCs. This is why lot of rnt works hv n dvlopd to utomtilly gnrt ommuniting utomt (t lst sklton) from MSCs [,5] in th ontt of top-down dsign mthodology. Oviously, uilding ridg in th opposit dirtion is lso n intrsting prolm, s it would llow dsignrs to ply frly with ny styl of spifition (glol dlrtiv or distriutd imprtiv) whil prsrving th ohrn of oth viws. A solution to this prolm ould lso th sis of nothr importnt hllng lld spt modling, in whih nw ftur dsrid s st of snrios n ddd sfly to n lrdy isting modl of ommuniting mhins. This will imply sophistitd forml thniqus, sin th rquird trnsformtions modify drmtilly th strutur of th utomt. This ontt motivts our work on som rvrs distriutd modl nginring. W gin with simpl modls, whih r ntworks of synhronous prlll finit stt utomt for th imprtiv spt, nd MSCs for th dlrtiv spt. Th prolm is thus to utomtilly otin MSC from n utomt ntwork, whih ods ll th runs of th systm, runs ing dfind s prtil ordrs of trnsition ourrns. Th finitnss of th utomt nd th synhronous ommunition nsur tht suh trnsformtion is possil. This qustion hs lrdy n ddrssd from th thortil point of viw in trm of forml lngugs in [3]. Thy show tht ny singl Bühi utomton with struturl proprty, lld dimond, nd with ll its stts pting, is l to gnrt th lngug of oundd MSC. Howvr, this prolm is undidl for synhronous ommuniting finit stt mhins. This justifis our hoi to onsidr synhronous ntworks nd to propos n originl lgorithm to produ onrt MSC, s rdl s possil. Figur shows n mpl of suh ntwork, whih onsists of two utomt A nd A, synhronizd on thir ommon vnt. Figur givs th orrsponding MSC w would lik to omput. Noti tht th MSC grph is ompl du to th ft tht this mpl ws dsignd to show ll th triky spts of th trnsformtion. A mor rlisti mpl is trtd in Stion 4. W will us th notion of unfolding, nd th ft it n finitly gnrtd y finit omplt prfi. This is sd on th unfolding thory, s prsntd in [4,]. In th ppr, w dopt nvrthlss dirt pproh, without using Ptri nts s usul, in ordr to void to introdu nw intrmdiry forml modl. Th qustion of using th finit prfi s gnrtor of th unfolding is lso nw up to our knowldg. Th rst of th ppr is orgnizd s follows. Stion dfins formlly utomt ntworks, MSCs nd th notion of runs. Th nt stion 3 is dvotd to th gnrtion of possil runs y th onstrution of finit omplt prfi of th unfolding. Stion 4 prsnts how th MSC utomton nd th rfrnd si MSCs r trtd from th prfi. W onlud y disussion summrizing th pproh nd proposing fw prsptivs. All th proofs of th propositions nd thorms r vill in th rsrh rport [].

3 From Automt Ntworks to HMSCs 49 hms Glol viw d d d ms A A ms A A ms d A A d ms A A Fig.. A ntwork of two synhronizd utomt nd its snrio viw Dfinition of Automt Ntworks nd MSCs. Ntworks An initilizd llld utomton is tupl A = S, Σ,, s whr S is finit st of stts, Σ is st of lls, S Σ S is st of llld trnsitions, nd s S is th initil stt. For trnsition t = (s,, s ), w dnot α(t) df = s its sour, β(t) df = s its trgt, nd λ(t) df = its ll. I df = {,..., n} dnots finit st of indis. W onsidr th synhronous prlll omposition of th initilizd llld utomt A i = S i, Σ i, i, s i i I Th ntwork of Figur is formlly dfind y: S = {,, } S = {,, } Σ = {,, } Σ = {, d,, } s = s = = {(,, ), (,, ), (,,), (,, )} = {(,, ), (,, ), (,,), (, d, )} In n intrlving smntis, th ntwork hvior is dfind s th (glol) initilizd llld utomton A = S, Σ,, s whr:

4 49 T. Chtin, L. Hélouët, nd C. Jrd S df = S S n Σ df = i I Σ i ((s i ) i I,, (s i ) i I) iff s df = (s,...,s n ) i {,..., n} i {,..., n} { (si,, s i ) i (s i = s i / Σ i ) (s i,, s i ) i d d d Fig.. Th synhronizd produt ms SynhroBrrir A B C m n o Fig. 3. MSC rprsnttion of rndz-vous Intuitivly, w for th utomt to volv synhronously whn thy ut trnsition llld y th sm nm. In th othr s, thy volv indpndntly. Figur shows th produt utomton of our mpl. Squntil runs r th diffrnt pths in th grph of th produt utomton. Unfortuntly, this notion of run dos not nlight th usl rltions twn th diffrnt ourrns of trnsitions (sn s tomi vnts), s don in MSCs. In our ontt, th right notion of run is th prtil ordring of vnts tht hv ourrd. Hn, runs of systm will dfind s si MSCs.. Mssg Squn Chrts MSCs r omposd of si snrios (or MSCs), tht dpit intrtions mong svrl ojts. Ths intrtions r thn omposd hirrhilly y

5 From Automt Ntworks to HMSCs 493 mns of oprtors (loop, hoi, squn,...). For th sk of simpliity, w will only onsidr singl hirrhil lvl. Intrtions in th utomt ntworks w onsidr r synhronous (i.. Rndz-vous ommunition): thy r loking, nd involv svrl prtiipnts. For this rson, ommunitions in MSCs will rprsntd y rfrns to othr MSCs dsriing how ommunition mhnism is implmntd. Suh Rndz-vous n implmntd using synhroniztion rrir, s dpitd in Figur 3. In MSCs, rfrning insid digrm is llowd y inlin prssions. Hr, w will only onsidr rfrns to simpl MSCs dpiting ommunitions mong givn st of omponnts. W do not llow rfrn nsting, nd will not us inlin prssions with opt, lt or loop. In our frmwork, MSC is dfind s finit st of vnts. Eh vnt is rprsntd s th vtor of its prdssors on h instn. Th sn of prdssor on n instn is dnotd y th null vnt. W ssoit ll to h vnt, whih will srv to not th orrsponding trnsition of th utomt. For mpl, onsidring systm with thr instns, th vnt 3 dnotd y ((, (,, )),, (, (3,, 4))) is synhroniztion vnt twn th first nd th third instn, nd hving th vnts nd s immdit prdssors on ths instns. Thr is no immdit prdssor on th sond instn sin it dos not prtiipt in th synhroniztion. Th lls r (,, ) nd (3,, 4), dnoting for instn th trnsitions to synhroniz in n utomt ntwork. Formlly, MSC ovr st of instns I is tupl B = (E, Σ, A, Θ), whr E = {( i, σ) i I, σ Σ} is st of vnts suh tht h i { } E Σ. E ontins lol vnts (vnts suh tht { i } = ) nd intrtions (vnts suh tht { i } > ). Σ is lol lpht, A is n lpht of lol tions nd intrtion nms, nd Θ : Σ A ssigns glol nm to vnts. Whn f i = (, σ), w dnot π i (f) =. W will sy tht is prdssor of f, nd writ f whn i I suh tht π i (f) =. E lso ontins spifi vnt = (,..., ) i I lld th initil vnt tht hs no prdssor. W will sy tht n vnt is miniml in MSC iff is th uniqu prdssor of ll its omponnts. A MSC must lso stisfy th following proprtis : i) th rfliv nd trnsitiv losur of is prtil ordr. ii) (synhroniztion) = ( i ) i I E, w rquir tht!, i I, i = Θ(σ i ) =. This proprty mns tht ll omponnts prtiipting to n vnt must synhroniz. iii) (lol squning) i I, E, i = π i () = or (π i ()) i iv) (no hoi) (, ) E, i I, = π i () π i ( ). This proprty forids th introdution of hois in MSC. MSCS r good ndidts to modl usl rltions in runs of distriutd systm. Cuslity twn vnts is dfind y. Whn nithr, nor, w will sy tht nd r indpndnt (or onurrnt). Th st of miniml vnts in B w.r.t is dnotd y min(e). W will sy tht n vnt is miniml for n instn i I if th prdssor vnt on omponnt i is. It is miml for this instn if it is not prdssor vnt for n vnt on this

6 494 T. Chtin, L. Hélouët, nd C. Jrd instn. Th miniml (rsp. miml) vnt on instn i (whn it is dfind) will dnotd y min i (E)(rsp. m i (E)). A MSC B is prfi of MSC B if nd only if E E nd E, Θ () = Θ (). Th mpty MSC is th tupl B = ({ },,, ). Figur 4 is n mpl of MSC. This MSC dfins th hvior of instns A nd A. Evnts,,, r lol tions, nd rfrn rprsnts synhronous intrtion twn A nd A. Th squntil omposition of two MSCs B = (E, Σ, A, Θ ), B = (E, Σ, A, Θ ) is th MSC B = (E, Σ Σ, A A, Θ), whr : E (E \ ( { } {min i (E ) i I} )) E = (,... n) i { I, (,..., n ) min i (E ) j I, j = (mj (E ), σ) if j = (, σ) j othrwis Θ(σ) = Θ (σ) if σ Σ, Θ (σ) othrwis Mor intuitivly, squntil omposition mrgs two MSCs long thir ommon instns s y ddition of n ordring twn th lst vnt on h instn of B nd th first vnt on th sm instn in B. A High-lvl Mssg Squn Chrt (HMSC) is tupl H = (N,, M, n, F), whr N is st of nods, N M N is trnsition rltion, M is st of MSCs, n is th initil nod, nd F is st of pting nods. HMSCs n onsidrd s finit stt utomt llld y MSCs. A HMSC H dfins st of pths P H. For givn pth p = n M M n n... M k n k P H w n ssoit MSC B p = M M M k. Th runs of HMSC H r th prfis of ll MSCs gnrtd y pths of H. Th run ssoitd to th mpty pth is B..3 Runs s Prtil Ordrs A run of n utomt ntwork A i = S i, Σ i, i, s i i I is dfind s MSC M = (E, Σ, A, Θ), with th following proprtis: i) Σ = i I i. Hn, for n vnt = ( i ) i I, h i is of th form i = (, t), nd w will dnot τ i () df = t, α i () df = α(t) nd β i () df = β(t). W dfin β i ( ) df = s i. ii) A = Σ i. i I iii) Θ(t) = λ(t) iv) (lol squning) i I i = α i () = β i (π i ()) As Σ, A, Θ r impliit for givn st of vnts E, w will oftn dnot MSC B = (E, Σ, A, Θ) y its st of vnts E. Intuitivly, n vnt rprsnts th synhroniztion of tions of th utomton A i suh tht i ; nd i = (, t) mns tht th lol tion on utomton A i is t, nd th

7 From Automt Ntworks to HMSCs 495 ms Run A A Fig. 4. A run s dfind s MSC with inlin rfrns prvious tion tht onrnd th utomton A i ws. Not tht proprty iii) implis tht for givn omponnt i I nd for ny hin = (, t ) = (, t )... k = ( k, t k ) suh tht j..k, j i, th squn t.t... t k is pth of utomton A i. This run orrsponds to th ontntion of th MSCs AB nd CEX of Figur. Its vnts r: =, 3 = ((, (,, )), ), = ((, (,, )), ), 4 = (, (, (,, ))), = (, (, (,, ))), 5 = ((3, (,,)), (4, (,,))) Th qustion now is to rprsnt ll th possil runs. This is th rol of th unfolding, whih suprimposs ll th runs, shrs th ommon prfis nd distinguishs th diffrnt historis using th notion of onflit. 3 Gnrtion of Runs 3. Unfolding W onsidr th union of ll possil runs, forming nw vnt st E. Th sn of hois is no mor gurntd. This is why w dfin th onflit rltion # on th vnts s follows: f f # iff f, f f E f i I π i (f) = π i (f ) Informlly, two vnts r in onflit if thy hv ommon nstor vnt tht rnhs on sm instn. Th unfolding of th synhronous prlll omposition of th initilizd llld utomt A i = S i, Σ i, i, s i i I is th st U of ll vnts tht r not in slf-onflit: U df = { E ( # )}. Grphilly, w drw irl for h vnt, nd n r from to, llld y i h tim i = (, t). Figur 5 shows th shp of th unfolding of th ntwork of Figur.

8 496 T. Chtin, L. Hélouët, nd C. Jrd d d d d d Fig. 5. Th unfolding of th ntwork of Figur nd its finit omplt prfi A (finit) run (lso lld onfigurtion) of th unfolding is MSC B = (F, Σ, A, Θ) whr Σ, A, Θ r dfind s usul, nd F { is finit sust of E whih is onflit-fr nd uslly losd,, f F ( # f) i.: f F E f = F Proposition. Th unfolding ontins ll th possil runs. 3. A Trivil Solution for MSC Etrtion As plind prviously, our gol is to omput glol dlrtiv viw dfind s MSC from distriutd imprtiv viw of distriutd systm givn y ntwork of utomt. Th istn of trivil solution to this prolm is gurntd y th following proposition. Proposition. Lt A = (S, Σ,, s ) th glol initilizd llld utomton otind y synhronous produt of utomt (A i ) i I. Lt H = (S, (Σ),, s, S) th HMSC whr (σ) is th MSC ontining singl lol tion prformd y n utomton or singl intrtion prformd y ll utomt involvd in synhronous ommunition, nd = {(n, (σ), n ) (n, σ, n ) )}. Thn, th st of runs of H nd th st of runs of (A i ) i I r quivlnt. W n imgin th rsulting HMSC y hving look on Figur. Clrly, it dos not fulfill our gol of rvrs modl nginring. W must try to fill s muh s possil th MSCs.

9 From Automt Ntworks to HMSCs Finit Complt Prfi Th unfolding U of n utomt ntwork is n infinit strutur. Howvr, it is possil to work on finit rprsnttion of U lld finit omplt prfi. For onfigurtion U nd for n utomton i I, w dfin th lst vnt i tht onrnd i in s th vnt f suh tht: (f i f = ) f π i (f ) = f Proposition 3. For onfigurtion U nd for n utomton i I, i is uniqu. W dnot, th vtor ( i ) i I of lst vnts. Th glol stt vtor ssoitd with onfigurtion is lso dfind s th stts of h utomton ftr hving prformd th vnt i, i.. GStt() df = (β i ( i )) i I For ll U, df = {f E f } is onfigurtion, lld th lol onfigurtion of. W dfin th st C of ut-off vnts of n unfolding s: C iff f \ {} GStt( f ) = GStt( ) Atully th vnt f for ut-off vnt is gnrlly not uniqu. W dfin th rgnrtion onfigurtion, dnotd of ut-off vnt C s th intrstion of th lol onfigurtions f of th vnts f \{} suh tht GStt( f ) = GStt( ): df = f \{} GStt( f )=GStt( ) f. Proposition 4. For ll C, GStt( ) = GStt( ). U. Th st { U f C f + } is finit omplt prfi of th unfolding Thorm. Th finit omplt prfi is finit gnrtor of th unfolding. Figur 5 (right) shows th prfi otind from our mpl. Lt us onsidr th vnt, llld y. It is ut-off vnt. Its rgnrtion onfigurtion is { }. This is grphilly rprsntd y n osillting rrow pointd to, knowing tht =.

10 498 T. Chtin, L. Hélouët, nd C. Jrd Th following lgorithm omputs th finit omplt prfi U. Initiliztion. rt th initil vnt: U = = ( ) i I, with GStt({ }) = (s i ) i I;. C ; Rpt until ddlok. slt tupl ( i ) i I whr { i { } i, suh tht: i = = / Σ Σ i I i i = λ i ( i ) = i I i = i U \ { C, β i( i ) = α i( i ) i = (. uild th vnt = ( i ) i I, whr i, i) if i i = othrwis 3. if / U ( # ) in U {} U U {}; if with GStt( ) = GStt( ): thn C C {}; f \{} GStt( f )=GStt( ) f 4 MSC Etrtion MSC trtion strts with th strtion of th prfi. Intuitivly, for givn finit omplt prfi, w dfin X s sust of onfigurtions tht ontins th lol onfigurtion of th ut-off vnts, thir rgnrtion onfigurtion, th lol onfigurtion of th trminl vnts, nd tht is losd undr intrstion. X n projtd on h instn in ordr to otin ntwork of strt utomt. Th produt forms th HMSC utomton. Bsi MSCs r otind y onsidring ll th vnts ouring in n intrvl twn two onfigurtions of X, nd trnsitions r ddud from onfigurtions inlusion. W dnot y P th finit omplt prfi of th unfolding U of n utomt ntwork. An vnt is trminl if thr ists no f U suh tht f. Lt X th st of onfigurtions indutivly dfind s: { } X for ll ut-off vnt, X X; for ll trminl vnt, X; for ll, X, is onfigurtion = X. W dnot y Y df = { C} th lol onfigurtions of ut-off vnts. df For ll X, lt us dfin E = \. Th sts E r susts of X lmnts tht r not ontind in ny smllr onfigurtion of X. Thy dfin th MSCs tht will trtd from th prfi.

11 For ll X, th sts E with X, r prtition of. For ll vnt w dnot E (, ) th uniqu onfigurtion X suh tht nd E. Lt us dfin n strtion of th prfi P, whr th lmnts of X ply th rol of mro-vnts. For ll i I w dfin th st X i of mro-vnts tht onrn i s: df X i = { X E, i = } For th mpl of Figur 5, w hv: X = {, d,,, } E =, E d = d, E =, E =, E = X = {,,, }, X = {, d, } Y = { d,, } For ll i I nd for ll X i \ {{ }}, th lst vnt tht onrnd i in \ E is i ( \ E ). W dfin th mro-vnt tht immditly prds on i s π i () df = E ( i ( \ E ), ). Using this dfinition, for h i I w n now dfin th initilizd llld mro-utomton whr From Automt Ntworks to HMSCs 499 df A i = X i \ Y, {E X i }, i, { } i = {(π i(), E, ) X i \ {{ }} / Y } {(π i (), E, E ( i, ) X i = with ut-off vnt} Figur 6 shows th ntwork of mro-utomt otind from our mpl. Lt A = S, Σ,, s th synhronous produt A A A n. Th HMSC trtd from finit omplt prfi P is dfind s H P = (S,, (Σ), s, S), whr σ Σ, (σ) is th MSC otind y dding s prdssor of ll miniml vnts to σ, nd = {(s, (σ), s ) s, σ, s ) }. For our mpl, th HMSC omputd from th synhronous produt in Figur 6 is th rsulting HMSC of Figur nnound in th ginning. Thorm. Lt P finit omplt prfi of n utomt ntwork unfolding, nd lt (A i ) i I th st of mro-utomt otind from P. Lt H th HMSC otind from th synhronous produt (A i ) i I. Th runs of (A i ) i I nd th runs of H r quivlnt. d d d Fig. 6. Th ntwork of mro-utomt nd its produt

12 5 T. Chtin, L. Hélouët, nd C. Jrd Lt us onsidr th mor rlisti mpl shown in Figur 7 (lft). It is simpl onntion nd rls protool twn two prs. Th two prs (sndr nd rivr) r prsntd on top of th figur. Thy r onntd through hnnls of siz on. Th utomt of hnnls r givn t th ottom of th figur. In this protool, th sndr n initit onntion y snding th Crq mssg (! nd? hrtrs dnot th snd nd riv tions rsptivly). Aftr tht, it n did lolly to los th onntion y snding th mssg Drq, or rivs th mssg Ddrq inditing tht distnt disonntion hs n md y th rivr. In s of ollision (rption of Ddrq in stt ), th onntion is lso losd. On th rivr sid, ftr hving rivd th Crq, th rivd my did to los th onntion y snding th distnt disonntion mssg Ddrq. If not, th Drq mssg is rivd in stt. In tht s, it is rquird tht th rivr lrts th sndr y th Donf mssg to llow it to los lolly th onntion. Not tht in s of ollision, it is possil to riv mssg Drq in stt, whih must skippd. 3?Crq!Crq?Drq 3?Donf?Ddrq!Crq?Ddrq!Drq!Donf?Crq?Drq!Ddrq?Ddrq!Ddrq 3?Drq?Ddrq!Drq 3?Drq 3?Crq!Crq!Drq?Drq?Ddrq!Ddrq!Donf?Donf!Crq!Donf?Donf Fig. 7. Th Connt-Disonnt protool with hnnls of siz on nd its prfi Figur 7 (right) shows th prfi of th unfolding of this mpl. W show thr ut-off vnts, orrsponding to th thr si pttrns of th protool, whih r lol disonntion, distnt disonntion nd ollision. Th MSC viw produd y our mthod is shown in Figur 8.

13 From Automt Ntworks to HMSCs 5 hms Glol viw!rq ms Ddis S SR RS R?Crq!Ddrq Dis Collid Ddis?Ddrq ms Collid S SR RS R!Drq?Crq ms Dis S SR RS R?Drq!Donf!Drq?Drq?Crq?Donf!Donf!Crq?Donf ms!rq S SR RS R!Crq Fig. 8. MSC trtd from Automt of Figur 7 5 Disussion W hv ddrssd th prolm of rvrs modl nginring, nd mor prisly th utomti trnsltion of synhronous ntworks of finit utomt into mssg squn hrts. A trivil solution is to uild th produt utomton nd to intrprt trnsition lls s si MSCs. Unfortuntly, this dgnrtd MSC dos not fulfill th rquirmnts of rvrs nginring, whih r to prsnt th onurrnt historis of th systm using s muh s possil prtil ordr viw. This work introdus nw thniqus tht prmit to rovr glol prtilordr sd viw of systm dsrid y omposition of squntil omponnts, nd hn sms rlvnt for rvrs modl nginring. Th min lgorithm is th unfolding of th ntwork of utomt. It omputs th st of ll prtil ordr runs. Thnks to th finitnss of th systm, this st is finitly gnrtd y prfi. From this prfi, w showd wy to trt si prtil ordr pttrns (MSCs). Th rmovl of ths pttrns in th prfi, followd y lol projtion ld to n strt ntwork of mro-utomt. A HMSC with th sm hvior s th initil utomt ntwork n thn produd y omputing th produt of mro utomt. An ltrntiv ould to onsidr prlll onstrut in th HMSC, s proposd for instn in nthrts [6]. Th lgorithms hv n implmntd in softwr prototyp ( fw thousnd of lins of C-od). Th nt stp will to l to dl with mor

14 5 T. Chtin, L. Hélouët, nd C. Jrd ompl systms. First, w hv to rl th synhronous ssumption to tk nfit of th synhronous ommunition in MSCs. W think it is possil to find lss of systms in whih synhronous ommunition n sfly rpld y n synhronous on without hnging th st of prtil runs. Lt us rll nvrthlss tht synhronous ommuniting utomt nd MSC dfin unomprl lngugs. This mns tht trnsltion of utomt into MSC my not ists. Furthrmor, diding whthr ntwork of synhronous utomt dfins MSC lngug is n undidl prolm. Hn, to fftiv in n synhronous frmwork, our pproh will nssrily pply to rstritd lss of utomt. Sondly, th MSCs w otin r dpndnt of two things: th dfinition of ut-off vnts nd th dfinition of onfigurtions tht r trtd from th finit omplt prfi. So fr, n vnt is ut off vnt if its onfigurtion hs lrdy n sn in its usl pst. This lds to som duplitions of vnts in th finit omplt prfi. Th dfinition of ut-off vnts n rfind using th dqut ordrs proposd y J. Esprz in []. This nhnmnt will rdu th duplition of vnts. Conrning th dfinition of onfigurtions to trt (th X st), w n did to shr mor or lss ommon prfis in th MSCs, nd find trdoff twn th numr of duplitions nd th siz of th onsidrd MSCs. This ould prmtrizd. Rfrns. L. Hélouët nd C. Jrd. Conditions for Synthsis of Communiting Automt from HMSCs, 5th Intrntionl Workshop on Forml Mthods for Industril Critil Systms (FMICS), ARE. Stfni-Gnsi, I. Shifrdkr (d), GMD FOKUS, Apr... J. Esprz nd S. Römr. An Unfolding Algorithm for Synhronous Produts of Trnsition Systms, Pro. of Conur 999, Ltur Nots in Computr Sin 664, pp. -, A. Musholl nd D. Pld. From Finit Stt Communition Protools to High- Lvl Mssg Squn Chrts, Pro. of ICALP, Ltur Nots in Computr Sin 76, pp. 7-73,. 4. K. M Milln. A Thniqu of Stt Sp Srh Bsd on Unfolding, Journl of Forml Mthods nd Systm Dsign, 9, - (99), Kluwr. 5. M. Adllh, F. Khnd, nd G. Butlr. Nw Rsults on Driving SDL Spifitions from MSCs, Pro. of 9th SDL Forum, pp. 5-66, Montrl. 6. M. Mukund, K.N. Kumr, nd P.S. Thigrjn. Nthrts: Bridging th Gp twn HMSCs nd Eutl Spifitions, Pro. of Conur 3, Ltur Nots in Computr Sin 76, pp. 96-3, E. Rudolph, O. Grumnn nd J. Growski. Tutoril on Mssg Squn Chrts, Computr Ntworks nd ISDN Systms - SDL nd MSC, Vol. 8, G. Booh, I. Joson nd J. Rumugh. Unifid Modling Lngug Usr Guid, Addison-Wsly, ITU, Mssg Squn Chrts, stndrd Z.,.. C. Jrd, L. Hélouët nd T. Chtin. From Automt Ntworks to HMSCs: Rvrs Modl Enginring Prsptiv, INRIA/IRISA Rsrh Rport, Aug. 5, pgs.

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Generalized Robust Diagnosability of Discrete Event Systems

Generalized Robust Diagnosability of Discrete Event Systems Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, 2011 Gnrlizd Roust Dignosility of Disrt Evnt Systms Lilin K. Crvlho Mros V. Morir João C. Bsilio Univrsidd Fdrl do Rio d Jniro,

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

An SMT-based Discovery Algorithm for C-nets

An SMT-based Discovery Algorithm for C-nets An SMT-sd Disovry Algorithm for C-nts Mr Solé 1,2 nd Josp Crmon 2 1 Computr Arhittur Dprtmnt, UPC msol@.up.du 2 Softwr Dprtmnt, UPC jrmon@lsi.up.du Astrt. Rntly, Cusl nts hv n proposd s suitl modl for

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

CSCI Compiler Design

CSCI Compiler Design CSCI 565 - Compilr Dsign Spring 2013 Sond Tst - Solution My 1, 2013 t 3.30 PM in Room RTH 115 Durtion: 2h 30 min. Pls ll ll pgs you turn in with your nm nd studnt numr. Nm: Numr: Grd: Prolm 1 [20 points]:

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

A High-level Strategy for C-net Discovery

A High-level Strategy for C-net Discovery A High-lvl Strtgy for C-nt Disovry Mr Solé nd Josp Crmon Softwr Dprtmnt Univrsitt Politèni d Ctluny (UPC) Brlon, Spin msol@.up.du, jrmon@lsi.up.du Astrt Cusl nts hv n rntly proposd s suitl modl for pross

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Unfoldings of Networks of Timed Automata

Unfoldings of Networks of Timed Automata Unfolings of Networks of Time Automt Frnk Cssez Thoms Chtin Clue Jr Ptrii Bouyer Serge H Pierre-Alin Reynier Rennes, Deemer 3, 2008 Unfolings [MMilln 93] First efine for Petri nets Then extene to other

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Process Discovery. prof.dr.ir. Wil van der Aalst.

Process Discovery. prof.dr.ir. Wil van der Aalst. Pross Disovry prof.r.ir. Wil vn r Alst www.prossmining.org Positioning Pross Mining prformn-orint qustions, prolms n solutions pross mol nlysis (simultion, vrifition, t.) pross mining t-orint nlysis (t

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2

The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2 CS 540 Spring 2013 Th Cours covrs: Lxicl Anlysis Syntx Anlysis Smntic Anlysis Runtim nvironmnts Cod Gnrtion Cod Optimiztion CS 540 Spring 2013 GMU 2 Pr-rquisit courss Strong progrmming ckground in C, C++

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets Hrdy Sps, Hyprfuntions, Psudo-Diffrntil Oprtors nd Wvlts Colltions from lrtur Th Hrdy Sp nd Hilbrt Sls Lt : s /, t thn th Rimnn Hypothsis is th sttmnt tht / ( s is nlyti on th hlf-pln Th ppropr Hilbrt

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

In order to learn which questions have been answered correctly: 1. Print these pages. 2. Answer the questions.

In order to learn which questions have been answered correctly: 1. Print these pages. 2. Answer the questions. Crystl Rports for Visul Stuio.NET In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to

More information

Enforcement of Opacity Security Properties Using Insertion Functions

Enforcement of Opacity Security Properties Using Insertion Functions Enforcmnt of Opcity Scurity Proprtis Using Insrtion Functions Yi-Chin Wu nd Stéphn Lfortun EECS Dprtmnt, Univrsity of Michign CDC 12 Dc. 13 th, 2012 Motivtion Scurity nd privcy concrns in onlin srvics

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b)

a b v a v b v c v = a d + bd +c d +ae r = p + a 0 s = r + b 0 4 ac + ad + bc + bd + e 5 = a + b = q 0 c + qc 0 + qc (a) s v (b) Outlin MULTIPLE-LEVEL LOGIC OPTIMIZATION Gionni D Mihli Stnfor Unirsit Rprsnttions. Tonom of optimition mthos: { Gols: r/l. { Algorithms: lgri/booln. { Rul-s mthos. Empls of trnsformtions. Booln n lgri

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

Knowledge-Based Systems. Outline 1. Outline 2. Expert System. Page 1. Development of KB Systems. CI = Computational Intelligence.

Knowledge-Based Systems. Outline 1. Outline 2. Expert System. Page 1. Development of KB Systems. CI = Computational Intelligence. Knowldg-Bsd Systms Andrw Kusik, Profssor 9 Smns Cntr Iow City, Iow - 7 ndrw-kusik@uiow.du http://www.in.uiow.du/~nkusik Tl: 9-9 Fx: 9-9 Outlin INTRODUCTION KNOWLEDGE REPRESENTATION - First-Ordr Logi -

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information