Generalized Robust Diagnosability of Discrete Event Systems

Size: px
Start display at page:

Download "Generalized Robust Diagnosability of Discrete Event Systems"

Transcription

1 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, 2011 Gnrlizd Roust Dignosility of Disrt Evnt Systms Lilin K. Crvlho Mros V. Morir João C. Bsilio Univrsidd Fdrl do Rio d Jniro, COPPE Progrm d Engnhri Elétri, Cidd Univrsitári, Ilh do Fundão, Rio d Jniro, , RJ, Brzil (-mils: lilin@op.ufrj.r, morir@d.ufrj.r, silio@d.ufrj.r). Astrt: W ddrss th prolm of roust dignosility of disrt vnt systms dsrid y lss of utomt, whr h utomton in th lss gnrts distint lngug. W introdu nw dfinition whih gnrlizs ll prvious dfinitions of roust dignosility; for this rson it is rfrrd hr to s gnrlizd roust dignosility. W lso prsnt nssry nd suffiint ondition for th gnrlizd roust dignosility nd propos polynomil tim lgorithm for its vrifition. Kywords: Disrt vnt systms, fult dignosis, finit utomt, roust dignosis. 1. INTRODUCTION Th usul pproh to fult dignosis of disrt vnt systms (DES) modld y utomt ssums tht th lngug gnrtd is uniquly dtrmind y th modl; s.g. Smpth t l. (1995), Douk t l. (2000), Zd t l. (2003), Qiu nd Kumr (2006) nd th rfrns thrin. Th noti of lngug unrtinty in fult dignosis of DES hs n introdud y Bsilio nd Lfortun (2009), initilly, in th ontxt of dntrlizd dignosility, ssuming unrlil ommunition twn lol sit nd th oordintor. Mor rntly, this notion hs n xtndd to lso nompss prmnnt nd intrmittnt snsor filurs (Lim t l., 2010; Crvlho t l., 2010), nd modl unrtinty du to inxt knowldg of th rl systm (Tki, 2010). Th dfinition of roust dignosility of disrt vnt systms (DES) sujt to prmnnt snsor filurs proposd in Lim t l. (2010) dploys th rdundny tht my xist in st of dignosis ss (st of vnts tht gurnt fult dignosility) with th viw to vrifying fult dignosility vn in th ourrn of prmnnt snsor filurs. A roust dignosr is otind using svrl prtil dignosrs, h on uilt for prtiulr dignosis sis nd onstrutd from th sm plnt G with spifi st of osrvl vnts tht is rltd to th dignoss sis of th prtil dignosr. Th roust dignosility prolm posd in Lim t l. (2010) n rgrdd s th prolm of idntifying th ourrn of n unosrvl fult vnt with unrtintis in th st of osrvl vnts. Th dfinition of roust dignosility introdud y Tki (2010) rquirs tht th systm dsrid y st of possil modls {G i : i I m } ovr ommon vnt Th rsrh works of L. K. Crvlho nd M. V. Morir hv n prtilly supportd y Crlos Chgs Foundtion (FAPERJ) nd th rsrh work of J. C. Bsilio hs n prtilly supportd y th Brzilin Rsrh Counil (CNPq), grnt / st Σ, whr I m := {1, 2,..., m} nd m N dnots th numr of systm modls. In this dfinition, h possil modl hs its own non-fulty spifition nd th lngug gnrtd y h modl is liv. Diffrntly from Lim t l. (2010), ll modls G i in Tki (2010) r ssumd to hv th sm osrvl vnt st. An lgorithm for th vrifition of th roust dignosility ondition sd on prviously proposd lgorithm y Qiu nd Kumr (2006) is lso prsntd in Tki (2010). W introdu hr nw dfinition of roust dignosility, lld gnrlizd roust dignosility, tht gnrlizs th roust dignosility dfinitions of Lim t l. (2010) nd Tki (2010), in th sns tht unrtintis r onsidrd oth in th systm modl nd in th osrvl vnt st. In our pproh, th systm modl longs to st of possil modls ovr ommon vnt st Σ s in Tki (2010) with th diffrn tht, hr, h modl my hv distint st of osrvl vnts. This sitution my hppn, for instn, du to snsor filur tht hngs th hvior of systm undr suprvision, lding to ompltly nw utomton modl with distint sts of stts nd osrvl vnts, nd with diffrnt trnsition funtion; th rdr is rfrrd to th works y Lin (1993), Young nd Grg (1991), nd Soori nd Hshtrudi-Zd (1993), whih onsidr modl unrtintis in th ontxt of suprvisory ontrol. W lso propos polynomil tim lgorithm for th vrifition of th gnrlizd roust dignosility of DES whih hs lowr omputtionl omplxity thn tht proposd y Tki (2010). This ppr is orgnizd s follows: in Stion 2 w prsnt th prliminry onpts, nd in Stion 3 w introdu th dfinition of gnrlizd roust dignosility; in Stion 4, w propos polynomil tim lgorithm for th vrifition of roust dignosility nd, in th squl, w dtrmin its omputtionl omplxity; w prsnt n xmpl in Stion 5 to illustrt th lgorithm proposd in th ppr, nd drw onlusions in Stion 6. Copyright y th Intrntionl Fdrtion of Automti Control (IFAC) 8737

2 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, PRELIMINARIES Lt G = (X, Σ, Γ, f, x 0 ) dnot th utomton modl of DES, whr X is th finit stt sp, Σ is th st of vnts, Γ is th fsil vnt funtion, f is th trnsition funtion, nd x 0 is th initil stt. Lt us dnot th lngug gnrtd y G s L(G) = L, nd lt pth dfind s squn of stts nd vnts (x k, σ 1, x k+1, σ 2,..., σ l, x k+l ), for l > 0, suh tht x k+i = f(x k+i 1, σ i ), i {1, 2,..., l}. A pth forms yl if x k+l = x k. Lt us prtition Σ s Σ = Σ o Σ uo, whr Σ o nd Σ uo r, rsptivly, th st of osrvl nd unosrvl vnts, nd lt Σ f Σ uo dnot th st of fult vnts. In ddition, ssum, without loss of gnrlity, tht Σ f = { }. Assum lso tht G modls th norml nd th fulty hvior of th systm nd lt H th suutomton of G tht rprsnts th non-fulty hvior of th systm. Thus, th lngug gnrtd y H, dnotd s K, is prfix-losd lngug formd with ll trs of L tht do not hv ny vnt from th fult vnt st Σ f. Th fult vnt is sid to dignosl if th ourrn of n dttd within finit numr of trnsitions ftr its ourrn using only trs formd with vnts in Σ o. Formlly, lngug dignosility is dfind s follows (Smpth t l., 1995). Dfinition 1. Lt L th prfix-losd lngug gnrtd y th systm G nd lt K L dnot th prfixlosd lngug gnrtd y H. Assum lso tht L is liv. Thn, L is dignosl with rspt to P o : Σ Σ o nd Σ f if nd only if ( n N)( s L \ K)( st L \ K, t n) ( w K, P o (st) P o (w)). 3. GENERALIZED ROBUST DIAGNOSABILITY A dfinition of roust dignosility of DES ginst prmnnt snsor filurs is prsntd in Lim t l. (2010), undr th following ssumptions: (i) snsor filurs n only our for th first ourrn of th vnt rordd y th snsors whos filurs r ing invstigtd; (ii) th non-osrvtion of th vnts dos not hng th lngug gnrtd y th systm; (iii) th roust dignosility is sttd in trms of distint sts of osrvl vnts Σ oi, i = 1,..., m, m N, whr Σ oi is sis for dignosility, i.., L is dignosl with rspt to projtions P oi : Σ Σ o i, i = 1,..., m, nd Σ f, s follows. Dfinition 2. (Roust dignosility ginst prmnnt snsor filurs) Lt L th liv prfix-losd lngug gnrtd y utomton G nd lt K L dnot th prfix-losd lngug gnrtd y H. In ddition, ssum tht Σ oi, i = 1,..., m, is dignosis sis for L. Thn, L is roustly dignosl ginst prmnnt snsor filurs with rspt to projtions P oi : Σ Σ o i, for i = 1,..., m, nd Σ f = { }, if nd only if ( n N)( s L \ K)( st L \ K, t n) ( i, j {1, 2,..., m}, i j)( w K, P oi (st) P oj (w)). Instd of using singl modl, Tki (2010) dploys st of possil utomt to modl th systm, nd introdus nothr dfinition of roust dignosility, similr to tht prsntd in Lim t l. (2010), ssuming tht: (i) th rl systm modl longs to st of possil modls G i = (X i, Σ, f i, x 0i ), i = 1, 2,..., m; (ii) h utomton modl G i gnrts diffrnt lngug L i nd hs distint non-fulty hvior, dsrid y nonmpty losd sulngug K i L i ; (iii) thy ll shr th sm osrvl vnt st Σ o. In th work y Lim t l. (2010), th systm is modld y uniqu utomton G nd th unrtintis r du to loss of osrvl vnts. On th othr hnd, th roust dignosility prolm formultd in Tki (2010) is only suitl whn th modl is sujt to hng nd nnot usd in strightforwrd wy whn th modl unrtintis r du to ithr prmnnt (Lim t l., 2010) or intrmittnt (Crvlho t l., 2010) loss of osrvl vnts. In ordr to nompss oth, distint osrvl vnt sts nd diffrnt utomton modls thrfor gnrlizing th roust dignosility dfinitions prsntd in Lim t l. (2010) nd Tki (2010) w prsnt th following dfinition. Dfinition 3. (Gnrlizd roust dignosility) Lt L i Σ th lngug gnrtd y G i, i = 1,..., m, nd ssum tht L i is liv. In ddition, ssum tht h modl i I m hs projtion P oi : Σ Σ o i, nd tht L i is dignosl with rspt to P oi nd Σ f. Lt us dnot H i s th suutomton of G i tht modls th non-fulty hvior of th orrsponding modl, nd K i L i th lngug gnrtd y H i. Thn, L = {L i : i I m }, th lss of ll possil lngugs gnrtd y th lss of utomt G = {G i : i I m }, is roustly dignosl with rspt to projtions P oi, i = 1,..., m, nd Σ f = { }, if nd only if ( i I m )( n i N)( s i L i \K i )( s i t i L i \K i, t i n i ) ( j I m, j i)( w j K j, P oi (s i t i ) P oj (w j )). 4. VERIFICATION OF GENERALIZED ROBUST DIAGNOSABILITY Aording to Dfinition 3, th prolm of vrifying th gnrlizd roust dignosility of DES n formultd s th prolm of srhing for trs s i t i L i \ K i nd w j K j, i j, whr s i L i \ K i nd t i is n ritrrily long tr, suh tht P oi (s i t i ) = P oj (w j ). If thr xist trs s i, t i, nd w j tht stisfy ths onditions, thn th lngug lss L will non-roustly dignosl with rspt to projtions P oi, i = 1, 2,..., m, nd Σ f. Lt G i G possil modl for th systm ovr th vnt st Σ nd ssum tht G i gnrts lngug L i L. Lt us prtition Σ s Σ = Σ oi Σ uoi whr Σ oi nd Σ uoi r th osrvl nd unosrvl vnt sts for modl G i, rsptivly, nd dfin Σ o = m i=1 Σ o i. W mk th following ssumption. A1. L i is dignosl with rspt to projtion P oi : Σ Σ o i nd Σ f, for i = 1, 2,..., m. 8738

3 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, 2011 Lt us now dfin th following on-to-on funtions R i : Σ Σ Ri, for i = 1, 2,..., m, s (Morir t l., 2010, 2011) { σ, if σ Σoi Σ R i (σ) = f. (1) σ Ri, if σ Σ uoi \ Σ f It is worth rmrking tht funtion R i just rnms th vnts in Σ uoi \ Σ f. Furthrmor, noti tht funtion R i n xtndd to domin Σ in th usul wy, s follows: R i (ε) = ε, nd R i (sσ) = R i (s)r i (σ), s Σ nd σ Σ. As onsqun, R i n lso xtndd to lngug L Σ y simply pplying it to ll strings in L. Bsd on R i, w n lso dfin th invrs rnming funtion, s follows: R 1 i : Σ Ri Σ σ Ri σ, whr σ Ri = R i (σ), with th following xtnsion to domin Σ R i : R 1 i (s Ri σ Ri ) = R 1 i (s Ri )R 1 i (σ Ri ) for ll s Ri Σ R i nd σ Ri Σ Ri, nd R 1 i (ε) = ε. In ordr to vrify th xistn of trs tht ld to violtion of th gnrlizd roust dignosility ondition givn in Dfinition 3, w will prsnt polynomil tim lgorithm nd, in th squl, thorm tht provs its orrtnss. W lso rry out th omputtionl omplxity nlysis of th lgorithm. 4.1 Vrifition Algorithm W now prsnt n lgorithm for th vrifition of th gnrlizd roust dignosility. Algorithm 1. Stp 1 For h modl G i = (X i, Σ, f i, Γ i, x i,0 ), uild utomton G Ri = (X i, Σ Ri, f Ri, Γ Ri, x i,0 ), whr Σ Ri = R i (Σ), Γ Ri (x) = R i [Γ i (x)], nd f Ri (x, R i (σ)) = f i (x, σ) for ll x X i nd σ Γ i (x). Stp 2 Comput th fulty hvior utomton s follows: Stp 2.1: Build th fulty ll utomton A l = (X Al, Σ f, f Al, x 0,Al ), whr X Al = {N, Y }, x 0,Al = N, nd f Al (N, ) = Y nd f Al (Y, ) = Y. Stp 2.2: Comput G Ri = G Ri A l nd mrk ll stts of G Ri tht hv th sond omponnt qul to Y. Stp 2.3: Comput th ossil prt of utomton G Ri nd dfin th fulty hvior utomton = (X Fi, Σ Ri, f Fi, x 0,Fi ), y unmrking ll mrkd stts of CoA( G Ri ). Stp 2.4: Rdfin th vnt st of s Σ Fi = Σ Ri Σ o. Stp 3 Build th non-fulty utomton H Ri s: Stp 3.1: Dfin Σ Zi = Σ Ri \ Σ f, nd uild utomton Z i = ({N}, Σ Zi, f Zi, N), omposd of singl stt with slf-loop lld with ll vnts in Σ Zi. Stp 3.2: Construt H Ri = G Ri Z i = (X HRi, Σ Ri, f HRi, Γ HRi, x 0,HRi ). Stp 3.3: Rdfin th vnt st of h H Ri s Σ HRi = Σ Ri \ Σ f. Stp 4 Construt th ugmntd utomton H i = (X Hi, Σ Hi, f Hi, x 0,Hi ) from utomton H Ri s follows: Stp 4.1: Dfin Σ Hi = Σ HRi Σ o. Stp 4.2: Dfin x 0,Hi = x 0,HRi. Stp 4.3: Add nw stt D i to th stt sp of H Ri. Thus, X Hi = X HRi {D i }. Stp 4.4: For h x Hi X HRi dfin: f HRi (x Hi, σ), if σ Γ HRi (x HRi ) f Hi (x Hi, σ) = D i, if σ Σ o \ Γ HRi (x HRi ), undfind, othrwis (2) nd for x Hi = D i dfin: { Di, for ll σ Σ f Hi (x Hi, σ) = o undfind, othrwis. (3) Stp 5 For i = 1, 2,..., m, omput vrifir V i whos jth stt x Vij X Fi ( m q=1,q i X H q ) nd th jth stt of X Fi is x Fij X i X Al, y mking omposition of, H 1,..., H i 1, H i+1,..., H m, following th sm produr s for th prlll omposition ( m j=1,j i H j), xpt tht if stt (x Fi, D 1,..., D i 1, D i+1,..., D m ) is rhd, whr x Fi X Fi, thn its fsil vnt st is ford to th mpty st 1, i., Γ Vi (x Fi, D 1,..., D i 1, D i+1,..., D m ) =. Th following rsult provids nssry nd suffiint ondition for gnrlizd roust dignosility. Thorm 1. Th lss L is not roustly dignosl with rspt to P oi, i = 1, 2,..., m, nd Σ f if nd only if thr xists yl l i = (x Vik, σ k, x Vik+1, σ k+1,..., σ l, x Vik ), whr l k > 0, in t lst on vrifir V i, i I m, stisfying th following ondition: j {k, k+1,..., l} s.t. (σ j Σ Ri ) (x Fij = {x ij,y }). (4) Proof. ( =) Suppos tht thr xists yl l i = (x Vik, σ k, x Vik+1, σ k+1,..., σ l, x Vik ), whr l k > 0, in vrifir V i tht stisfis ondition (4). Sin x Fij = {x ij, Y } for on j {k, k +1,..., l}, thn, y onstrution of V i, w hv tht x Fij = {x ij, Y } for ll j {k, k + 1,..., l}. Thus, thr xists tr s t L(V i ), suh tht s ontins th fult vnt, nd t = (σ k σ k+1... σ l ) n, n N. Aording to Algorithm 1, th stts of V i tht r qul to (x Fi, D 1,..., D i 1, D i+1,..., D m ) r ddlok stts. Thrfor, if vrifir V i posssss yl l i tht stisfis ondition (4), thn thr will xist q I mi := {1,..., i 1, i + 1,..., m} suh tht x Hq j D q for ll j {k, k + 1,..., l}. Lt Σ R = m ν=1σ Rν, nd dfin th following projtions: P Fi : Σ R Σ, (5) P Hp : Σ R Σ H p, (6) for p I mi. Aording to Algorithm 1, V i is otind through n utomton oprtion tht is prformd in th sm mnnr s th prlll omposition xpt for th ddlok stt. Thrfor [ ] L(V i ) P 1 [L( )] m p=1,p ip 1 H p [L(H p )], 1 This is quivlnt to sying tht stt (x Fi, D 1,..., D i 1, D i+1,..., D m ) is ford to ddlok stt. 8739

4 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, 2011 whih implis tht s t P 1 [L( )] sin, y ssumption, s t L(V i ). Lt s t = [ P Fi (s t ), whr s = P Fi (s ) nd t = P Fi (t ). Sin P Fi P 1 (L( )) ] = L( ), it is not diffiult to s tht s t L( ). In ddition, sin t = (σ k σ k+1... σ l ) n, n N, nd, y ssumption, thr xists n vnt σ j Σ Ri for som j {k, k + 1,..., l}, w my onlud tht tr t = P Fi (t ) n md ritrrily long. At this point, it is worth rminding tht L( G Ri ) = L(G Ri ) nd L( ) L( G Ri ). As onsqun, s t L(G Ri ). In ddition, sin G Ri is otind from G i y rnming its vnts in Σ through th rnming funtion R i, dfind in Eqution (1), it is lr tht, ssoitd with s t L(G Ri ), thr xists squn st L i tht is otind s follows: st = R 1 i ( s t). Lt s q = P Hq (s t ). Thn s t P 1 H q [L(H q )] sin s t L(V i ). In ddition, using th ft tht P Hq [P 1 H q (L(H q ))] = L(H q ), thn s q L(H q ). By ssumption, stt x Hq j, is diffrnt from D q for ll j {k, k + 1,..., l}, nd thus s q L(H Rq ). Noti tht H Rq is otind from H q ftr rnming th vnts of th st Σ y using funtion R q. Thus, ssoitd with s q thr xists non-fulty tr s q L(G q ) whih is givn s: s q = R 1 q ( s q ). To onlud th if prt of th proof, noti tht, du to th onstrution of, H q nd V i Stps 2, 4 nd 5, rsptivly, of Algorithm 1 nd sd on th ft tht x Hq j D q for ll j {k, k + 1,..., l} in yl l i, thn ll vnts in Σ o tht r usd to form tr s t nd onsquntly, st nd s q r in Σ oi Σ oq. Thrfor, P oi (st) = P oq (s q ), whih lds to violtion of th roust dignosility ondition in Dfinition 3. (= ) Assum tht th lss L is not roustly dignosl with rspt to projtions P oi, i = 1,..., m, nd Σ f = { }. Thrfor, thr xists pir (i, q) I m I mi suh tht for som s i t i L i \ K i, with s i L i \ K i nd t i n i, n i N, nd for som w q K q (w q not nssrily ritrrily long), P oi (s i t i ) = P oq (w q ). Aording to Algorithm 1, G Ri nd G Rq r otind y rnming th unosrvl vnts of G i nd G q, rsptivly, through th rnming funtions R i nd R q. Thrfor, th following onlusions n drwn: C1. Thr xists tr s i t i = R i (s i t i ), with s i = R i (s i ) nd t i = R i (t i ), s i t i L(G Ri ). In ddition, sin s i t i L i \ K i, i.. s i t i is fulty tr, s i t i L( ). It is importnt to rmrk tht sin t i is ritrrily long, so is t i. C2. Thr xists tr w q L(G Rq ) suh tht w q = R q (w q ). In ddition, sin w q is non-fulty tr of G q, w q L(H Rq ) nd, s onsqun, w q L(H q ). C3. f Fi (x 0,Fi, s i t) = {x i, Y }, whr x i X i, for ll t pr( t i ), whr pr(.) dnots prfix-losur. C4. f Hq (x 0,Hq, w) D q for ll w pr( w q ). Du to Assumption A1, L i is dignosl with rspt to projtion P oi nd Σ f, for i = 1, 2,..., m. Thrfor, it is not diffiult to s tht P oi (s i t i ) ε, nd sin P oi (s i t i ) = Tl 1. Computtionl omplxity of Algorithm 1 No. of stts G i X i X i Σ A l 2 2 G Ri 2 X i 2 X Σ 2 X i 2 X i Σ No. of trnsitions Z i 1 Σ Σ f H Ri X i X i ( Σ Σ f ) H i X i + 1 X i ( Σ uoi Σ f + Σ o )+ Σ o [ ] V i N Vi =2 X i j i ( X j +1) N Vi m( Σ Σf ) + Σ f ( ) Complxity O m X i j i X j ( Σ Σ f ) P oq (w q ), w my onlud tht Σ oi Σ oq. Thrfor, sin L(V i ) P 1 [L( )] [ m p=1,p i P 1 H p [L(H p )]], [ P Fi P 1 (L( )) ] = L( ) nd P Hq [P 1 H q (L(H q ))] = L(H q ), it is possil to find tr s t L(V i ) suh tht s i t i = P Fi (s t ) nd w q = P Hq (s t ), whr s i = P Fi (s ) nd t i = P Fi (t ), with t ritrrily long. To onlud th only if prt of th proof, noti tht vrifir V i is finit stt utomton nd thrfor, sin t is ritrrily long, it n writtn s t = t f (σ kσ k+1... σ l ) n, n N, whr t f is finit lngth tr nd σ k σ k+1... σ l r th vnts of yl l i = (x Vik, σ k, x Vik+1, σ k+1,..., σ l, x Vik ), l k > 0, in whih, σ j Σ Ri for som j {k, k + 1,..., l}. In ddition, sd on onlusions C3) nd C4) ov, it is not hrd to s tht for ll trs s t f t, t pr((σ kσ k+1... σ l ) n ) thn f Vi (x 0,Vi, s t f t) = x V ij, whr th first omponnt of x Vij is {x ij, Y }, x ij X i, nd th q-th omponnt of x Vij is diffrnt from D q. 4.2 Computtionl omplxity of lgorithm 1 Tl 1 shows th mximum numr of stts nd trnsitions of ll utomt tht must omputd in ordr to otin V i ording to Algorithm 1, ssuming tht thr r m possil modls G i G. It n hkd tht th numr of stts nd trnsitions of V i r, in th worst s, qul to 2 X i m j=1,j i ( X j + 1) nd [2 X i m j=1,j i ( X j + 1)][m( Σ Σ f ) + Σ f ], rsptivly. Thrfor, th omplxity of Algorithm 1 is O(m X i m j=1,j i X j ( Σ Σ f )). Th intrmdit stps tht ld to th worst s ound ov r prsntd in Crvlho (2011). Rmrk 1. Noti tht th omputtionl omplxity of Algorithm 1 is O(m X i m j=1,j i X j ( Σ Σ f )), whih is smllr thn th omplxity of th lgorithm proposd y Tki (2010), onsidring th numr of stts of H Ri nd G i r qul, whih is O( X i 3 m j=1,j i X j Σ m+1 ). It is lso importnt to rmrk tht th siz of th vrifir utomton V i is, in gnrl, smllr thn th worst s prsntd in Tl 1 sin th lgorithm srhs only for thos trs in L i \ K i nd K j, i j, tht my ld to violtion of th roust dignosility ondition. 8740

5 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, EXAMPLE Lt G = {G 1, G 2, G 3 } th lss of utomt shown in Figur 1, nd ssum tht Σ = {,,, d,, σ u, } is th st of ll vnts usd in th modling of th systm. In ddition, lt Σ o1 = {,, }, Σ o2 = {,,, } nd Σ o3 = {,, d, }, rsptivly, th osrvl vnt sts of G 1, G 2 nd G 3. Th ojtiv hr is to vrify if th lss L of lngugs gnrtd y th utomt in G is roustly dignosl with rspt to P oi, i = 1, 2,..., m, nd Σ f = { }. 1N 2N 3Y 4Y () 1N 2N 3Y () 1N 2N 3Y 4Y () R1 Fig. 2. Fulty utomt F 1 (), F 2 (), nd F 3 () d 1 σ u () () () Fig. 1. Clss of utomt G = {G 1, G 2, G 3 }: () G 1 with Σ o1 = {,, }; () G 2 with Σ o2 = {,,, }; () G 3 with Σ o3 = {,, d, }. Initilly, not tht Σ o = 3 i=1 Σ o i = {,,, d, }. Now, ording to Algorithm 1, th first stp is to otin utomton G Ri, i = 1, 2, 3, y rnming th vnts in Σ uoi \Σ f. Thrfor vnts d, nd σ u should rnmd, rsptivly, s, R1 nd σ ur1, in G 1, nd vnt s R3 in G 3. Noti tht no vnt nds to rnmd in G 2. Th stt trnsition digrm of utomt G Ri, i = 1, 2, 3, r not shown sin thy r idntil to thos of G i, i = 1, 2, 3, xpt for th ov rnming. Th nxt stp of Algorithm 1 is to omput th fulty utomt, i = 1, 2, 3. Following Stps , utomt F 1, F 2 nd F 3, shown in Figur 2, r otind. Noti tht, lthough only vnts,, R1 nd ppr in th stt trnsition digrm of F 1, its vnt st is Σ F1 = Σ R1 Σ o = {,,, d,,, R1, σ ur1, }. Sm nlysis n rrid out for F 2 nd F 3 lding to Σ F2 = {,,, d,, d R2, σ ur2, } nd Σ F3 = {,,, d,, R3, σ ur3, }. Th nxt stp of Algorithm 1 is to otin th non-fulty utomt H R1, H R2 nd H R3 tht ounts for th nonfulty hvior of G R1, G R2 nd G R3, rsptivly, nd, in th squl to otin th ugmntd utomt H 1, H 2 nd H 3, whos stt trnsition digrms r dpitd in Figur 3. It is worth rmrking tht Σ H1 = Σ F1 \ { }, Σ H2 = Σ F2 \ { } nd Σ H3 = Σ F3 \ { } Proding in ordn with Stp 5 of Algorithm 1, th vrifir utomt V 1, V 2 nd V 3 must omputd. Figurs 4() nd 4() show th stt trnsition digrm of vrifirs V 1 nd V 3, rsptivly; th stt trnsition digrm of vrifir V 2 hs n omittd sin it lds to onlusion similr to tht drwn from V 3. Th vrifition of roust dignosility of L with rspt to P oi, i = 1, 2,..., m, nd Σ f = { } is rrid out in ordn with Thorm 1. W first onsidr vrifir V 1 shown in Figur 4(). Noti tht sin yl (4Y D 2 6N, R1, 4Y D 2 6N) is formd with n vnt in Σ R1, w my onlud tht L is not roustly dignosl with rspt to P oi, i = 1, 2,..., m, nd Σ f = { }, in spit of th ft tht vrifirs V 2 (not shown in th ppr) nd V 3 (dpitd in Figur 4()) do not hv ny yls with vnts in Σ R2 nd Σ R3, rsptivly, whos first omponnts of thir stts hv fult lls. A los xmintion of vrifir V 1 rvls th trs rsponsil for th non-roust dignosility. Noti tht tr s V1 = R3 n R 1, whr n n ritrrily lrg, tks V 1 from its initil stt to stt 4Y D 2 6N nd yls ovr this stt. Sin s F1 = P F1 (s V1 ) = n R 1 nd s H3 = P H3 (s V1 ) = R3, thn ftr invrs rnm w otin s 1 = d n L 1 nd s 3 = L 3. Furthrmor, P o1 (s 1 ) = P o3 (s 3 ) =, whih implis tht whn tr s 1 ours, it is not possil to onlud tht th systm is ithr in stt 4 of G 1, whih is ftr th ourrn of fult vnt, or in stt 6 of G 3, whih is in norml pth. 6. CONCLUSION W hv proposd nw dfinition of roust dignosility tht nompsss prviously introdud dfinitions of roust dignosility. Instd of singl lngug, w hv onsidrd lss of lngugs gnrtd y lss of utomt tht modl th systm hvior. W hv givn nssry nd suffiint onditions for roust dignosility nd dvlopd polynomil-tim lgorithm for th vrifition of th roust dignosility of lss of lngugs. REFERENCES Bsilio, J.C. nd Lfortun, S. (2009). Roust odignosility of disrt vnt systms. In Prodings of th Amrin Control Confrn, St. Louis, Missouri. 8741

6 Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, N 2N σ ur1,,, d, 5N,,, d, 6N,, d, D 1,,, d, (), d,,, d, 8N 7N,, d, 2N1N1N 1N1N1N C R3 3Y 1N1N 4Y D 2D 3 C R3 3Y 1N5N C R3 1N1N5N 2N1N5N 1N1N1N 2ND 1 2N 1N5N1N 3ND 1 2N σ ur1 1N2N1N 1N 2N 4N 5N 4Y D 26N R1 () 4Y D 1 D 2 () 1N 2N,,, d,, d,,, d, R3,,, d,,, d, D 2,,, d, () () 5N D 3,, d,,,, d,,, d, 6N,, d, Fig. 3. Augmntd non-fulty utomt H 1 (), H 2 (), nd H 3 (). Crvlho, L.K. (2011). Roust dignosility of disrt vnt systms (in Portugus). Ph.D. thsis, Fdrl Univrsity of Rio d Jniro, COPPE-Eltril Enginring Progrm, Rio d Jniro, Brzil. Crvlho, L.K., Bsilio, J.C., nd Morir, M.V. (2010). Roust dignosility of disrt vnt systms sujt to intrmittnt snsor filurs. In Prprints of th 10th Intrntionl Workshop on Disrt Evnt Systms, Brlin, Grmny. Douk, R., Lfortun, S., nd Tnktzis, D. (2000). Coordintd dntrlizd protools for filur dignosis of disrt vnt systms. Disrt Evnt Dynmi Systms: Thory nd Applitions, 10, Lim, S.T.S., Bsilio, J.C., Lfortun, S., nd Morir, M.V. (2010). Roust dignosis of disrt-vnt systms Fig. 4. Vrifir utomt V 1 () nd V 3 (). sujt to prmnnt snsor filurs. In Prprints of th 10th Intrntionl Workshop on Disrt Evnt Systms, Brlin, Grmny. Lin, F. (1993). Roust nd dptiv suprvisory ontrol of disrt vnt systms. IEEE Trnstions on Automti Control, 38(12), Morir, M.V., Jsus, T.C., nd Bsilio, J.C. (2010). Polynomil tim vrifition of dntrlizd dignosility of disrt vnt systms. In Prodings of th 2010 Amrin Control Confrn, Bltimor, MD. Morir, M.V., Jsus, T.C., nd Bsilio, J.C. (2011). Polynomil tim vrifition of dntrlizd dignosility of disrt vnt systms. IEEE Trnstions on Automti Control (to ppr). Qiu, W. nd Kumr, R. (2006). Dntrlizd filur dignosis of disrt vnt systms. IEEE Trnstions on Systms, Mn nd Cyrntis, Prt A, 36(2), Soori, A. nd Hshtrudi-Zd, S. (1993). Roust nd dptiv suprvisory ontrol of disrt vnt systms. IEEE Trnstions on Automti Control, 38(12), Smpth, M., Sngupt, R., Lfortun, S., Sinnmohidn, K., nd Tnktzis, D. (1995). Dignosility of disrt-vnt systms. IEEE Trns. on Automti Control, 40, Tki, S. (2010). Roust filur dignosis of prtilly osrvd disrt vnt systms. In Prprints of th 10th Intrntionl Workshop on Disrt Evnt Systms, Brlin, Grmny. Young, S. nd Grg, V.K. (1991). Trnsition unrtinty in disrt vnt systms. In Prodings of th IEEE Intrntionl Symposium on Intllignt Control, Arlington, Virgini. Zd, S.H., Kwong, R.H., nd Wonhm, W.M. (2003). Fult dignosis in disrt-vnt systms: frmwork nd modl rdution. IEEE Trnstions on Automti Control, 48(7),

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Enforcement of Opacity Security Properties Using Insertion Functions

Enforcement of Opacity Security Properties Using Insertion Functions Enforcmnt of Opcity Scurity Proprtis Using Insrtion Functions Yi-Chin Wu nd Stéphn Lfortun EECS Dprtmnt, Univrsity of Michign CDC 12 Dc. 13 th, 2012 Motivtion Scurity nd privcy concrns in onlin srvics

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

From Automata Networks to HMSCs: A Reverse Model Engineering Perspective

From Automata Networks to HMSCs: A Reverse Model Engineering Perspective From Automt Ntworks to HMSCs: A Rvrs Modl Enginring Prsptiv Thoms Chtin,Loï Hélouët, nd Clud Jrd 3 IRISA/ENS Chn-Brtgn, Cmpus d Buliu, F-354 Rnns d, Frn Thoms.Chtin@iris.fr IRISA/INRIA, Cmpus d Buliu,

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

An SMT-based Discovery Algorithm for C-nets

An SMT-based Discovery Algorithm for C-nets An SMT-sd Disovry Algorithm for C-nts Mr Solé 1,2 nd Josp Crmon 2 1 Computr Arhittur Dprtmnt, UPC msol@.up.du 2 Softwr Dprtmnt, UPC jrmon@lsi.up.du Astrt. Rntly, Cusl nts hv n proposd s suitl modl for

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k.

Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k. Finit Automt Bsic id: FA is mchin tht chngs stts whil procssing symols, on t tim. Finit st of stts: Q = {q 0, q 1, q 3,..., q k } Trnsition function: Initil stt: Finl stts: d: Q S Q q 0 Q F Q Finit utomton

More information

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN Som Rsults on ntrval Valud uzzy Nutrosophi Soft Sts SSN 239-9725. rokiarani Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator amilnadu ndia. R. Sumathi Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Nondeterministic Automata vs Deterministic Automata

Nondeterministic Automata vs Deterministic Automata Nondeterministi Automt vs Deterministi Automt We lerned tht NFA is onvenient model for showing the reltionships mong regulr grmmrs, FA, nd regulr expressions, nd designing them. However, we know tht n

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Multiple Faults: Modeling, Simulation and Test Λ

Multiple Faults: Modeling, Simulation and Test Λ Multipl Fults: Modling, Simultion nd Tst Λ Yong hng Kim y Vishwni. grwl Kwl K. Sluj Univrsity of Wisonsin-Mdison gr Systms Univrsity of Wisonsin-Mdison Mdison, WI 53706 US Murry Hill, NJ 07974 US Mdison,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

A High-level Strategy for C-net Discovery

A High-level Strategy for C-net Discovery A High-lvl Strtgy for C-nt Disovry Mr Solé nd Josp Crmon Softwr Dprtmnt Univrsitt Politèni d Ctluny (UPC) Brlon, Spin msol@.up.du, jrmon@lsi.up.du Astrt Cusl nts hv n rntly proposd s suitl modl for pross

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

arxiv:cs/ v1 [cs.cl] 18 Sep 1998

arxiv:cs/ v1 [cs.cl] 18 Sep 1998 riv:s/9809029v1 [s.cl] 18 p 1998 Inrmntl Prsr Gnrtion for Tr djoining Grmmrs noop rkr Univrsity of Pnnsylvni Dprtmnt of Computr nd Informtion in Phildlphi P 19104 noop@lin.is.upnn.du 2 Fbrury 1996 bstrt

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information