Deformation Processing - Rolling

Size: px
Start display at page:

Download "Deformation Processing - Rolling"

Transcription

1 Deformation Processing - olling ver. 1 1

2 Overview Process Equipment Products Mecanical Analysis Defects 2

3 Process 3

4 Process 4

5 Process 5

6 ing olling 6

7 Equipment 7

8 Equipment 8

9 Products 9

10 Sapes Products I-beams, railroad tracks Sections door frames, gutters Flat plates ings Screws 10

11 Products A greater volume of metal is rolled tan processed by any oter means. 11

12 Objectives olling Analysis Find distribution of roll pressure Calculate roll separation force ( rolling force ) and torque Processing Limits Calculate rolling power 12

13 Flat olling Analysis Consider rolling of a flat plate in a 2-ig rolling mill V 0 V f (> V 0 ) b θ f Widt of plate w is large plane strain 13

14 Flat olling Analysis α V 0 N V f (> V 0 ) b Entry Zone Exit Zone f L N Friction plays a critical role in enabling rolling cannot roll witout friction; for rolling to occur eversal of frictional forces at neutral plane (NN) µ tanα 14

15 Flat olling Analysis Stresses on Slab in Entry Zone p µp φ σ x + dσ x σ x N µp b f p dx N Stresses on Slab in Exit Zone p µp σ x + dσ x σ x µp p 15

16 Equilibrium Appling equilibrium in x (top entry, bottom exit) ( σ + dσ ) ( + d) 2 p dφ sinφ ± 2µ p dφ cosφ σ = 0 x x x Simplifying and ignoring HOTs ( σ ) d x dφ = 2 p m ( sinφ µ cosφ ) 16

17 Simplifying Since α << 1, ten sinφ = φ, cosφ = 1 ( σ ) d x = 2 p dφ ( φ m µ ) Plane strain, von Mises p σ = Y Y x flow flow 17

18 Differentiating Substituting or d [( ) ] p Y d flow φ = 2p ( φ m µ ) d p Y flow 1 = 2 p dφ Yflow ( φ m µ ) 18

19 19 Differentiating ( ) ( ) µ φ φ φ m = + p Y d d Y p Y p d d Y flow flow flow flow 2 1 earranging, te variation Y flow. wit respect to φ is small compared to te variation p/ Y flow wit respect to φ so te second term is ignored ( ) µ φ φ m Y p Y p d d flow flow 2 =

20 = + 2 f Tickness ( 1 cosφ ) or, after using a Taylor s series expansion, for small φ 2 = + φ f from te definition of a circular segment b 2 φ φ cosφ = 1 + L 2! 4! 2 0 φ L 4 b f 2 f 2 20

21 Substituting and integrating p d Y p Y flow flow = f 2 + φ 2 ( φ m µ ) dφ In[1]:= 2 Hφ µl f + φ 2 φ Out[1]= 2 µ ArcTanB φ F f f + LogAf + φ2 E 2 ln p Y f = ln m 2µ f tan 1 φ f + lnc 21

22 Eliminating ln() p = C Yflow exp m µ ( H ) H = 2 tan 1 φ f f 22

23 Entry region at φ = α, H = H b, p = C Y flow exp µ C = exp( µ Hb ) b ( H ) ( Y σ ) exp [ H H ] p = flow xb µ b p = Y flow exp µ ( ) b b ( [ H H ]) b Wit back tension=(y flow σ xb ) H b = 2 f tan 1 α f H = 2 tan 1 φ f f 23

24 Exit region at φ = 0, H = H f =0, C = p = f p = ( Y ) exp( H ) flow µ ( Y σ ) exp( H ) flow xf µ f f Wit forward tension H = 2 tan 1 φ f f 24

25 Effect of back and front tension pressure maximum pressure Y Y σ xb Y Y σ xf distance 25

26 Flat olling Analysis esults witout front and back tension Stresses on Slab in Entry Zone p µp Stresses on Slab in Exit Zone p µp σ x + dσ x σ x σ x + dσ x σ x µp p µp p Using slab analysis we can derive roll pressure distributions for te entry and exit zones as: 0 and b are te same ting 2 p= Yf e 3 0 Entry Zone ( H H ) µ 0 H = 2 tan f φ f 1 H 0 = = α 2 p = Yf e 3 Exit Zone f µ H 26

27 Average rolling pressure per unit widt p ave, entry = φ n n 1 1 p d p = entry φ; ave, exit ( α φn) φ α n 0 φ p exit dφ 27

28 olling force F = p ave,entry x Area entry + p ave,exit x Area exit 28

29 Force An alternative metod F = α w p entry dφ + φ n w p exit dφ φ n 0 again, very difficult to do. 29

30 Force - approximation F / roller = L w p ave L = b - f p ave = f ave L 30

31 Derivation of L circular segment φ = + 2 f Taylor s expansion ( 1 cosφ ) 2 φ cosφ = 1 + 2! 4 φ 4! 0 L b 2 L b f 2 f 2 2 = + φ f φ = L 31

32 Derivation of L setting = b at φ = α, substituting, and rearranging b f = = L 2 or L = 32

33 Approximation based on forging plane strain von Mises p ave µ L = 1.15 Y flow 1 + 2ave average flow stress: due to sape of element 33

34 Small rolls or small reductions = ave L >>1 friction is not significant (µ -> 0) p p ave ave µ L = 1.15 Y flow ave = Y flow 0 34

35 Large rolls or large reductions ave L <<1 Friction is significant (forging approximation) p ave µ L = 1.15 Y flow ave 35

36 Force approximation: low friction ave L >>1 F roller = LwY flow 36

37 Force approximation: ig friction ave L <<1 F roller µ L = 1.15 LwY flow ave 37

38 Zero slip (neutral) point Entrance: material is pulled into te nip roller is moving faster tan material Exit: material is pulled back into nip roller is moving slower tan material v b v f v v v material material pull-in pull-back 38

39 System equilibrium Frictional forces between roller and material must be in balance. or material will be torn apart Hence, te zero point must be were te two pressure equations are equal. b f ( µ H ) exp = b = exp µ exp ( 2µ H ) n ( ( H 2H )) b n 39

40 40 Neutral point = f b b n H H ln µ = H f n f n 2 tan φ

41 Torque L = b - f p ave A L/2 Fy = 0 F = roller p ave A T = α φ n wµ p 2 entry dφ φ n 0 F roller wµ p 2 exit dφ Torque / roller = r L Froller = Froller = 2 F roller 2 L 41

42 Power Power / roller = Tω = F roller Lω / 2 ω = 2πN N = [rev/min] 42

43 Processing limits Te material will be drawn into te nip if te orizontal component of te friction force (F f ) is larger, or at least equal to te opposing orizontal component of te normal force (F n ). F f cosα F sinα n F f α α α /2 F n F = µ f F n tanα = µ µ = friction coefficient 43

44 Processing limits Also and << cosα = 2 = 1 2 sinα = 2 1 cos α sinα = sinα tanα = 2 44

45 Processing limits So, approximately 2 ( tan α ) = µ 2 = Hence, maximum draft 2 max = µ Maximum angle of acceptance φ = α = max tan 1 µ 45

46 Processing Limits α 0 f Max. reduction in tickness 2 ( ) =µ max Max. angle of acceptance φ = α = max tan 1 µ 46

47 Cold rolling (below recrystallization point) strain ardening, plane strain von 2 τ flow = 1.15 Y Mises flow = 1.15 K ε n n + 1 average flow stress: due to sape of element 47

48 Hot rolling (above recrystallization point) strain rate effect, plane strain - von Mises Average strain rate ε& = 2τ flow ε t = V L ln flow b f = 1.15 Y = C & ε m average flow stress: due to sape of element 48

49 Example 1.1 Cold roll a 5% Sn-bronze Calculate force on roller Calculate power Plot pressure in nip (no back or forward tension) 49

50 Example 1.2 w = 10 mm b = 2 mm eigt reduction = 30% ( f = 0.7 b ) f = 1.4 mm = 75 mm v = 0.8 m/s mineral oil lubricant (µ = 0.1) K = 720 MPa, n =

51 Example 1.3 Maximum draft: max = µ 2 = (0.1) 2 75 = 0.75 mm actual = b - f = = 0.6 mm 51

52 Example 1.4 Maximum angle of acceptance φ max = tan -1 µ =tan -1 (0.1) = 0.1 radian α = = ( ) b f ( 2 1.4) rad = = o

53 Example 1.5 oller force: F = L w p ave L = ( ) 0.5 = [75 x (2-1.4)] 0.5 = 6.7 mm w = 10 mm ave = ( b + f ) / 2 = 1.7 mm ave / L = 1.7 / 6.7 = 0.25 < 1 friction is important F µ L = 1.15 LwY flow 1 + roller 2 ave 53

54 Example 1.6 ε f = f 1.4 ln = ln = b τ flow = 1.15 = 1.15 Y = 1.15 ( 0.36) n Kε f n + 1 = 354 MPa 54

55 Example 1.7 F = 1.15 roller = LwY flow = 28,392 N = 3.2 tons 1 + µ L ave 55

56 Example 1.8 Power ( kw ) roller = T ω = F L V 2 Power ( kw ) / roll = = 3 28, kW / roll = 1.35p 56

57 Example 1.9 Entrance p ( ' ) Y exp ( H H ) = flow σ xb µ b ( ) b Exit p = ( ' ) Y σ exp ( H ) flow xf µ f ( ) 57

58 Example 1.10 φ = ( ) f H = 2 tan 1 φ f f 58

59 Example 1.11 pressure / 2Tflow Friction ill Exit Entrance φ φ / φ max 59

60 olling Normal Stress Sear stress 60

61 61

62 Widening of material φ Side view Top view 62

63 esidual stresses - due to frictional constraints a) small rolls or small reduction (ignore friction) b) large rolls or large reduction (include friction) 63

64 Defects a) wavy edges roll deflection b) zipper cracks low ductility c) edge cracks barreling d) alligatoring piping, inomogeniety 64

65 oll deflection olls can deflect under load olls can be crowned 65

66 oll deflection olls can be stacked for stiffness 66

67 Metod to reduce roll deflection 67

68 Summary Process Equipment Products Mecanical Analysis Defects 68

69 69

Deformation Processing - Drawing

Deformation Processing - Drawing eformation Processing - rawing ver. Overview escription Characteristics Mechanical Analysis Thermal Analysis Tube drawing Geometry b α a F b, σ xb F a, σ xa 3 4 Equipment 5 Cold rawing 6 A. urer - Wire

More information

Deforma(on Processes Rolling

Deforma(on Processes Rolling Deforma(on Processes Rolling Rolling reducing the thickness or changing the cross- sec4on of a long workpiece by compressive forces applied through a set of rolls Accounts for 90% of all metals produced

More information

Friction Coefficient s Numerical Determination for Hot Flat Steel Rolling at Low Strain Rate

Friction Coefficient s Numerical Determination for Hot Flat Steel Rolling at Low Strain Rate American ournal of Applied Matematics 05; 3(5: -8 Publised online September 6, 05 (ttp://www.sciencepublisinggroup.com/j/ajam doi: 0.648/j.ajam.050305.3 ISS: 330-0043 (Print; ISS: 330-006X (Online riction

More information

6. Non-uniform bending

6. Non-uniform bending . Non-uniform bending Introduction Definition A non-uniform bending is te case were te cross-section is not only bent but also seared. It is known from te statics tat in suc a case, te bending moment in

More information

Analysis of cold rolling a more accurate method

Analysis of cold rolling a more accurate method Analysis of cold rolling a more accurate method 1.1 Rolling of stri more accurate slab analysis The revious lecture considered an aroximate analysis of the stri rolling. However, the deformation zone in

More information

3. Using your answers to the two previous questions, evaluate the Mratio

3. Using your answers to the two previous questions, evaluate the Mratio MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0219 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4 Distributed: Friday, April 2, 2004 Due: Friday,

More information

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES Ice in te Environment: Proceedings of te 1t IAHR International Symposium on Ice Dunedin, New Zealand, nd t December International Association of Hydraulic Engineering and Researc AN ANALYSIS OF AMPLITUDE

More information

Path to static failure of machine components

Path to static failure of machine components Pat to static failure of macine components Load Stress Discussed last week (w) Ductile material Yield Strain Brittle material Fracture Fracture Dr. P. Buyung Kosasi,Spring 008 Name some of ductile and

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Sample Problems for Exam II

Sample Problems for Exam II Sample Problems for Exam 1. Te saft below as lengt L, Torsional stiffness GJ and torque T is applied at point C, wic is at a distance of 0.6L from te left (point ). Use Castigliano teorem to Calculate

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

Bioen MIDTERM. Covers: Weeks 1-4, FBD, stress/strain, stress analysis, rods and beams (not deflections).

Bioen MIDTERM. Covers: Weeks 1-4, FBD, stress/strain, stress analysis, rods and beams (not deflections). Name Bioen 326 Midterm 2013 Page 1 Bioen 326 2013 MIDTERM Covers: Weeks 1-4, FBD, stress/strain, stress analysis, rods and beams (not deflections). Rules: Closed Book Exam: Please put away all notes and

More information

Chapter 18: Multiple Choice Questions 18.2 (b) 18.6 (a), (c), (e), and (f) 18.8 (b)

Chapter 18: Multiple Choice Questions 18.2 (b) 18.6 (a), (c), (e), and (f) 18.8 (b) ME477: Manufacturing Processes Fall 2005 Homework #3 Chapter 18: Multiple Choice Questions (18.2, 18.6, 18.8) Problems (18.4, 18.11) Chapter 19: Multiple Choice Questions (19.3, 19.8, 19.9) Problems (19.6,

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Chapter 2 GEOMETRIC ASPECT OF THE STATE OF SOLICITATION

Chapter 2 GEOMETRIC ASPECT OF THE STATE OF SOLICITATION Capter GEOMETRC SPECT OF THE STTE OF SOLCTTON. THE DEFORMTON ROUND PONT.. Te relative displacement Due to te influence of external forces, temperature variation, magnetic and electric fields, te construction

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Bulk Deformation Processes

Bulk Deformation Processes Capter 6 Bulk Deformation Processes Questions Forging 6.1 How can you tell weter a certain part is forged or cast? Describe te features tat you would investigate to arrive at a conclusion. Numerous tests

More information

Week #15 - Word Problems & Differential Equations Section 8.2

Week #15 - Word Problems & Differential Equations Section 8.2 Week #1 - Word Problems & Differential Equations Section 8. From Calculus, Single Variable by Huges-Hallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission

More information

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the

More information

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities.

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities. Ch.6 Friction Types of friction a) Dry friction: occurs when non smooth (non ideal) surfaces of two solids are in contact under a condition of sliding or a tendency to slide. (also called Coulomb friction)

More information

Reinforced Concrete Structures/Design Aids

Reinforced Concrete Structures/Design Aids AREA OF BARS (mm 2 ) Reinforced Concrete Structures/Design Aids Size of s (mm) Number of s 1 2 3 4 5 6 7 8 8 50 101 151 201 251 302 352 402 10 79 157 236 314 393 471 550 628 12 113 226 339 452 566 679

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

Mock Exam II PH 201-2F

Mock Exam II PH 201-2F Mock Exam II PH 201-2F Garrett Higginbotham March 3, 2015 You will have 50 minutes to complete this exam. Each problem is worth 20 points, for a total grade of 100. Formulas 1. Kinematics (a) v = v 0 +

More information

Chapter 9. τ all = min(0.30s ut,0.40s y ) = min[0.30(58), 0.40(32)] = min(17.4, 12.8) = 12.8 kpsi 2(32) (5/16)(4)(2) 2F hl. = 18.1 kpsi Ans. 1.

Chapter 9. τ all = min(0.30s ut,0.40s y ) = min[0.30(58), 0.40(32)] = min(17.4, 12.8) = 12.8 kpsi 2(32) (5/16)(4)(2) 2F hl. = 18.1 kpsi Ans. 1. budynas_sm_c09.qxd 01/9/007 18:5 Page 39 Capter 9 9-1 Eq. (9-3: F 0.707lτ 0.707(5/1(4(0 17.7 kip 9- Table 9-: τ all 1.0 kpsi f 14.85 kip/in 14.85(5/1 4.4 kip/in F fl 4.4(4 18.5 kip 9-3 Table A-0: 1018

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

2016 PRELIM 2 PAPER 2 MARK SCHEME

2016 PRELIM 2 PAPER 2 MARK SCHEME 06 River Valley Hig Scool Prelim Paper Mark Sceme 06 PRELIM PAPER MARK SCHEME (a) V 5.00 X 85. 9V 3 I.7 0 X V I X V I X 0.03 0. 85.9 5.00.7 X 48.3 00 X X 900 00 [A0] Anomalous data can be identified. Systematic

More information

Engineering Mechanics: Statics

Engineering Mechanics: Statics Engineering Mechanics: Statics Chapter 6B: Applications of Friction in Machines Wedges Used to produce small position adjustments of a body or to apply large forces When sliding is impending, the resultant

More information

Nonlinear correction to the bending stiffness of a damaged composite beam

Nonlinear correction to the bending stiffness of a damaged composite beam Van Paepegem, W., Decaene, R. and Degrieck, J. (5). Nonlinear correction to te bending stiffness of a damaged composite beam. Nonlinear correction to te bending stiffness of a damaged composite beam W.

More information

Model development for the beveling of quartz crystal blanks

Model development for the beveling of quartz crystal blanks 9t International Congress on Modelling and Simulation, Pert, Australia, 6 December 0 ttp://mssanz.org.au/modsim0 Model development for te beveling of quartz crystal blanks C. Dong a a Department of Mecanical

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Z.-D. Ma C. Scholar N. C. Perkins University of Michigan Objective Efficient simulation of vehicle response including track

More information

ME 243. Lecture 10: Combined stresses

ME 243. Lecture 10: Combined stresses ME 243 Mechanics of Solids Lecture 10: Combined stresses Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without

Chapter 10: Friction A gem cannot be polished without friction, nor an individual perfected without Chapter 10: Friction 10-1 Chapter 10 Friction A gem cannot be polished without friction, nor an individual perfected without trials. Lucius Annaeus Seneca (4 BC - 65 AD) 10.1 Overview When two bodies are

More information

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Finite Element Analysis of J-Integral for Surface Cracks in Round Bars under Combined Mode I Loading

Finite Element Analysis of J-Integral for Surface Cracks in Round Bars under Combined Mode I Loading nternational Journal of ntegrated Engineering, Vol. 9 No. 2 (207) p. -8 Finite Element Analysis of J-ntegral for Surface Cracks in Round Bars under Combined Mode Loading A.E smail, A.K Ariffin 2, S. Abdulla

More information

Stress Analysis of Mandrel Used In Pilger Technology

Stress Analysis of Mandrel Used In Pilger Technology Stress Analysis of Mandrel Used In Pilger Technology Ruchil A. Patel 1, Apurvkumar Patel 2, Rajesh Kumar 3, Dr. D. V. Patel 4 1, 2, 3,4 Mechanical Engineering, GTU, Ahmedabad Abstract Cold pilgering is

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage and Shrink & Creep Under Bending

Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage and Shrink & Creep Under Bending Send Orders for Reprints to reprints@bentamscience.ae Te Open Civil Engineering Journal 9 7-7 7 Open Access Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage

More information

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures Final Exam - 53 - Ship Structures - 16 Page 1 MEMORIA UNIVERSITY OF NEWFOUNDAND Faculty of Engineering and Applied Science Engineering 53 - Ship Structures FINA EXAMINATION SONS Date: Wednesday April 13,

More information

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender

Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender International Journal of Engineering Trends and Technology (IJETT) Volume0Number - Apr 0 Design and Analysis of Adjustable Inside Diameter Mandrel for Induction Pipe Bender S.Nantha Gopan, M.Gowtham J.Kirubakaran

More information

Forging Analysis - 2. ver. 1. Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Forging Analysis - 2. ver. 1. Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton Foging Analysis - ve. 1 Pof. ames Sing, Notes by D. Sing/ D. Colton 1 Slab analysis fictionless wit fiction ectangula Cylindical Oveview Stain adening and ate effects Flas edundant wo Pof. ames Sing, Notes

More information

Chapter 5: Torsion. 1. Torsional Deformation of a Circular Shaft 2. The Torsion Formula 3. Power Transmission 4. Angle of Twist CHAPTER OBJECTIVES

Chapter 5: Torsion. 1. Torsional Deformation of a Circular Shaft 2. The Torsion Formula 3. Power Transmission 4. Angle of Twist CHAPTER OBJECTIVES CHAPTER OBJECTIVES Chapter 5: Torsion Discuss effects of applying torsional loading to a long straight member (shaft or tube) Determine stress distribution within the member under torsional load Determine

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N 5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

More information

Exam paper: Biomechanics

Exam paper: Biomechanics Exam paper: Biomechanics Tuesday August 10th 2010; 9.00-12.00 AM Code: 8W020 Biomedical Engineering Department, Eindhoven University of Technology The exam comprises 10 problems. Every problem has a maximum

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

More information

Selec%on fo the Manufacturing Processes

Selec%on fo the Manufacturing Processes Selecon fo te Manufacturing Processes How would we manufacture a mountain bike? Te selec7on of a specific manufacturing process requires te knowledge of te following: (a) How te material performance is

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

Fundamental concept of metal rolling

Fundamental concept of metal rolling Fundamental cncept metal rlling Assumptins 1) Te arc cntact between te rlls and te metal is a part a circle. v x x α L p y y R v 2) Te ceicient rictin, µ, is cnstant in tery, but in reality µ varies alng

More information

June : 2016 (CBCS) Body. Load

June : 2016 (CBCS) Body. Load Engineering Mecanics st Semester : Common to all rances Note : Max. marks : 6 (i) ttempt an five questions (ii) ll questions carr equal marks. (iii) nswer sould be precise and to te point onl (iv) ssume

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

CHAPTER 17 FLEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HAFTIRMAN

CHAPTER 17 FLEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HAFTIRMAN CHAPTER 17 LEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HATIRMAN lexible Mechanical Elements Belts Roller chains Wire rope lexible shafts lexible Mechanical Elements Belts, ropes, chains, and other similar

More information

Direct and Shear Stress

Direct and Shear Stress Direct and Shear Stress 1 Direct & Shear Stress When a body is pulled by a tensile force or crushed by a compressive force, the loading is said to be direct. Direct stresses are also found to arise when

More information

Stability of Smart Beams with Varying Properties Based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Stability of Smart Beams with Varying Properties Based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation Australian Journal of Basic and Applied Sciences, 5(7): 743-747, ISSN 99-878 Stability of Smart Beams wit Varying Properties Based on te First Order Sear Deformation Teory ocated on a Continuous Elastic

More information

Chapter 9. Figure for Probs. 9-1 to Given, b = 50 mm, d = 50 mm, h = 5 mm, allow = 140 MPa.

Chapter 9. Figure for Probs. 9-1 to Given, b = 50 mm, d = 50 mm, h = 5 mm, allow = 140 MPa. Capter 9 Figure for Probs. 9-1 to 9-4 9-1 Given, b = 50 mm, d = 50 mm, = 5 mm, allow = 140 MPa. F = 0.707 l allow = 0.707(5)[(50)](140)(10 ) = 49.5 kn Ans. 9- Given, b = in, d = in, = 5/16 in, allow =

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

Mechanical Design. Design of Shaft

Mechanical Design. Design of Shaft Mechanical Design Design of Shaft Outline Practical information Shaft design Definition of shaft? It is a rotating member, in general, has a circular cross-section and is used to transmit power. The shaft

More information

First-Year Engineering Program. Physics RC Reading Module

First-Year Engineering Program. Physics RC Reading Module Physics RC Reading Module Frictional Force: A Contact Force Friction is caused by the microscopic interactions between the two surfaces. Direction is parallel to the contact surfaces and proportional to

More information

ME311 Machine Design

ME311 Machine Design ME311 Machine Design Lecture : Materials; Stress & Strain; Power Transmission W Dornfeld 13Sep018 airfield University School of Engineering Stress-Strain Curve for Ductile Material Ultimate Tensile racture

More information

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Homework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2

Homework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2 Engineering Sciences 47: Fracture Mechanics J. R. Rice, 1991 Homework Problems 1) Assuming that the stress field near a crack tip in a linear elastic solid is singular in the form σ ij = rλ Σ ij (θ), it

More information

A study of forming pressure in the tube-hydroforming process

A study of forming pressure in the tube-hydroforming process Journal of Materials Processing Technology 192 19 (2007) 404 409 A study of forming pressure in the tube-hydroforming process Fuh-Kuo Chen, Shao-Jun Wang, Ray-Hau Lin Department of Mechanical Engineering,

More information

NCCI: Simple methods for second order effects in portal frames

NCCI: Simple methods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames NCC: Simple metods for second order effects in portal frames Tis NCC presents information

More information

ACET 406 Mid-Term Exam B

ACET 406 Mid-Term Exam B ACET 406 Mid-Term Exam B SUBJECT: ACET 406, INSTRUCTOR: Dr Antonis Michael, DATE: 24/11/09 INSTRUCTIONS You are required to answer all of the following questions within the specified time (90 minutes).you

More information

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2 Pysics 121, April 1, 2008. Pysics 121. April 1, 2008. Course Information Discussion of Exam # 2 Topics to be discussed today: Requirements for Equilibrium Gravitational Equilibrium Sample problems Pysics

More information

Balancing of Rotating Masses

Balancing of Rotating Masses Balancing of Rotating Masses 1 Balancing of Rotating Masses m Consider first a single mass m moving in a circular arc of radius r with an angular velocity rad/s. The mass has a centripetal (centre 2 seeking)

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Review Lecture AE1108-II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System

More information

Theory of Structures

Theory of Structures SAMPLE STUDY MATERIAL Postal Correspondence Course GATE, IES & PSUs Civil Engineering Theory of Structures C O N T E N T 1. ARCES... 3-14. ROLLING LOADS AND INFLUENCE LINES. 15-9 3. DETERMINACY AND INDETERMINACY..

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

BEAMS AND PLATES ANALYSIS

BEAMS AND PLATES ANALYSIS BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels Classical beam versus typical modern vehicle beam sections Assumptions:

More information

ME 323 Examination #2

ME 323 Examination #2 ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using

More information

Flexible Mechanical Elements

Flexible Mechanical Elements lexible Mechanical Elements INTRODUCTION Belts, ropes, chains, and other similar elastic or flexible machine elements are used in conveying systems and in the transmission of power over comparatively long

More information

Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant

Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant Indian Journal of Engineering & Materials Sciences Vol. 13, August 2006, pp. 281-292 Effect of various stress ratio parameters on cold upset forging of irregular shaped billets using white grease as lubricant

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the

More information

POE Practice Test - Materials

POE Practice Test - Materials Class: Date: POE Practice Test - Materials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A student weighs 150 lbs and is standing on a beam which spans

More information

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction

Dynamic analysis of a reinforced concrete shear wall with strain rate effect. Synopsis. Introduction Dynamic analysis of a reinforced concrete shear wall with strain rate effect Synopsis A simplified analysis method for a reinforced concrete shear wall structure considering strain rate effects is presented.

More information