Path to static failure of machine components

Size: px
Start display at page:

Download "Path to static failure of machine components"

Transcription

1 Pat to static failure of macine components Load Stress Discussed last week (w) Ductile material Yield Strain Brittle material Fracture Fracture Dr. P. Buyung Kosasi,Spring 008 Name some of ductile and brittle materials Commonly used in engineering applications DUCTILE BRITTLE (S y close to S u ) Steel Plastics Rubbers Cast iron Hardened tool steel Concrete Woods Ceramics

2 Lecture 4 Failure under static load Failure of ductile material (C. 5 p. 9 5) Failure of brittle material (C. 5 p.54-6) Most common test to determine material strengt is Tensile test. Wat do we know from tensile test? Yield tensile stress (S y ) Ultimate tensile stress (S u ) 4

3 Mecanical properties of some material are listed in Appendi C (Norton). 5 How te yield tensile stress related to failure of part? F F y y Stress element of Tensile test specimen (uni-aial test) τ y y τ y τ y τ y y D stress element D stress element 6

4 Te answer is : 7 Using For ductile materials a) Te von Mises-Hencky teory (distortion energy teory) a) Te maimum Sear-Stress teory a) Maimum Normal-Stress teory For brittle materials b) Maimum Normal-Stress teory b) Te Coulomb-Mor teory b) Te Modified-Mor teory a) Te von Mises-Hencky or Distortion- Energy Teory Te total strain energy stored per unit volume in te material U (½) ε (J/m ) Etending to D stress state U ½ ( ε ε ε ) 8 In terms of principle normal stresses: [ ν ( )] U E 4

5 5 9 Component of strain energy ydrostatic distortion components U U U d d d d It is sown tat te ydrostatic stress is (page 4) ( ) / 0 Were U is due to ydrostatic loading i.e. equal principal stresses (volume cange witout canging sape no sear) [ ] υ E U U U U d d [ ] [ ] ) ( 6 ) ( υ υ E U E U U d is due to (angular) distortion (sape cange sear)

6 From tensile test, te uni-aial stress state at yield gives S y, 0. So, U yield υ S E y Comparing tis wit general stress state, so to prevent failure U > U yield d S y > or ) von Mises stress or effective stress or equivalent stress ` Te von Mises (effective) stress, `, can also be epressed in terms of applied stresses. > ( ) ( ) ( ) 6( τ τ τ ) y y z z y yz z For D case: y y τ y Factor of safety : N / S y 6

7 D visualization of te distortion energy failure teory. /S y Safe region (Distortion - Energy teory) /S y 0 /S y D visualization of te distortion energy failure teory. 4 7

8 a) Te maimum sear stress teory Te teory states tat failure occurs wen te maimum sear stress in a part eceeds te sear stress in a tensile specimen at yield (one-alf of te tensile yield strengt). i.e. part fails wen S ys 0.5 S y τ ma > S ys Factor of safety : /τ ma N S ys 5 D visualization of te maimum sear stress failure teory. /S y /S y -0.5 Safe region (Maimum Sear Stress teory)

9 a) Maimum normal stress teory Te teory states tat failure will occur wen te normal stress in te specimen reaces some limit on normal strengt suc as tensile yield strengt or ultimate tensile strengt. i.e. part fails wen {,, } > S y Factor of safety : N S y / ma{,, } 7 Safe region (Distortion - Energy teory) D visualization of te tree (ductile) failure teories. /S y Safe region (Maimum Normal Stress teory) 0 /S y Safe region (Maimum Sear Stress teory)

10 Wic teory sould we coose? 9 Application: For te loaded cantilever beam made of a material wit tensile yield strengt of 0 MPa. Wat is te maimum P tat te beam can support witout permanent yield? Te most critical spot P (N) m r 50 mm I πr 4 /4 M M ma P N.m m 4 A m V P N 0 0

11 Element y 0 τ y 04P 0 04P 0 04P 04 P τ y y τ y 0 M r/i 04 P (Pa) 04P 0 04P 0 0 τ y y 0 τ ma 00 P Based on te distortion energy teory Te von Mises stress at point is 04P For 04 P S y > 00 6 P < 4.7 kn > 04P

12 Based on te maimum sear stress teory S ys 0.5 S y 5 Mpa For τ ma 00 P < S ys 50 6 P < 4.7 kn Based on te maimum normal stress teory P < 4.7 kn (verify yourself) Element y 0 τ y ( 68.8 P) P 0 τ y y τ y 4V/A 68.8 P (Pa) ( 68.8 P) P τ y y 0 τ ma 68.8 P 4

13 Based on te distortion energy teory Te von Mises stress at point is 9.4 P For 9.4 P S y > 00 6 P < 08kN > 9.4 P 5 So te answer to te question Wat is te maimum P tat te beam can support witout permanent yielding? P <4. 7 kn 6

14 Failure mecanisms of brittle materials Ductile materials do not fracture on compression On tension fracture is due to normal stress alone On compression fracture is due to combination of normal stress and sear stress. 7 Caracteristics of brittle materials Failure mecanisms. In tension : due to normal stress alone In compression : due to combination of normal and sear stress Teir yield strengt (S y ) and ultimate strengt (S u ) are almost identical. So failure of brittle materials is normally associated wit fracture rater tan yield. And strengt refers to S u. S ut may be equal or not to S uc. Wen S uc > S ut, te materials are said to be uneven materials, or else tey are known as even materials. Teir sear strengt (S us ) can be greater tan teir tensile strengt (S ut ) unlike ductile materials were S us 0.5 S ut 8 4

15 Failure teories for brittle materials Even materials: b) Maimum Normal-Stress Teory Uneven materials: b) Te Coulomb-Mor Teory b) Te Modified-Mor Teory 9 b) Maimum Normal-Stress Teory for even materials.5 or /S uc Safe region (Maimum Normal Stress teory) or /S uc

16 b) Te Coulomb-Mor teory for uneven materials.0 (S ut, S ut ) Safe region (Coulomb-Mor teory) (-S uc, -S uc ) b) Modified-Mor teory for uneven materials Safe region (Modified-Mor teory) (S ut, S ut ) (-S uc, -S uc )

17 Wic teory sould we use for uneven materials? Calculation of factor of safety Safe region (Modified-Mor teory) N S ut / N S ut / / N S uc N S uc S ut S uc S ( ) ut 4 7

18 Modified-Mor effective stress by Dowling (for general D case and usually programmed) ~ ma( C, C C C 5, C,,, S N ~ut S ut Suc ( ) Suc Sut Suc ( ) Suc Sut Suc C ( ) Suc ~ 0 if ma < 0 ) Summary Lecture Static loading analysis Lecture Stress analysis of statically loaded parts Lecture 4 Failure analysis of stressed parts 6 8

19 Type of loadings Statically loaded parts Dynamically loaded parts Lecture 5 : Fatigue failure 7 9

3. Using your answers to the two previous questions, evaluate the Mratio

3. Using your answers to the two previous questions, evaluate the Mratio MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0219 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4 Distributed: Friday, April 2, 2004 Due: Friday,

More information

MAE 322 Machine Design Lecture 2. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 2. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 2 Dr. Hodge Jenkins Mercer University Statics Load Failure Theories to Understand Maximum Normal Stress (MNS) Maximum Shear Stress (MSS) Distortion Energy (DE) Coulomb-Mohr

More information

FME461 Engineering Design II

FME461 Engineering Design II FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

6. Non-uniform bending

6. Non-uniform bending . Non-uniform bending Introduction Definition A non-uniform bending is te case were te cross-section is not only bent but also seared. It is known from te statics tat in suc a case, te bending moment in

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000

ME111 Instructor: Peter Pinsky Class #21 November 13, 2000 Toda s Topics ME Instructor: Peter Pinsk Class # November,. Consider two designs of a lug wrench for an automobile: (a) single ended, (b) double ended. The distance between points A and B is in. and the

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

A Multiaxial Variable Amplitude Fatigue Life Prediction Method Based on a Plane Per Plane Damage Assessment

A Multiaxial Variable Amplitude Fatigue Life Prediction Method Based on a Plane Per Plane Damage Assessment American Journal of Mecanical and Industrial Engineering 28; 3(4): 47-54 ttp://www.sciencepublisinggroup.com/j/ajmie doi:.648/j.ajmie.2834.2 ISSN: 2575-679 (Print); ISSN: 2575-66 (Online) A Multiaxial

More information

Failure surface according to maximum principal stress theory

Failure surface according to maximum principal stress theory Maximum Principal Stress Theory (W. Rankin s Theory- 1850) Brittle Material The maximum principal stress criterion: Rankin stated max principal stress theory as follows- a material fails by fracturing

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

Fabric Evolution and Its Effect on Strain Localization in Sand

Fabric Evolution and Its Effect on Strain Localization in Sand Fabric Evolution and Its Effect on Strain Localization in Sand Ziwei Gao and Jidong Zao Abstract Fabric anisotropy affects importantly te overall beaviour of sand including its strengt and deformation

More information

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES Ice in te Environment: Proceedings of te 1t IAHR International Symposium on Ice Dunedin, New Zealand, nd t December International Association of Hydraulic Engineering and Researc AN ANALYSIS OF AMPLITUDE

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Recent developments in the design of anchor bolts

Recent developments in the design of anchor bolts Recent developments in te design of ancor bolts N. Subramanian Many structures suc as microwave and transmission line towers, industrial buildings, etc require tat te superstructure be secured safely into

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

COMPLEX STRESS TUTORIAL 4 THEORIES OF FAILURE. You should judge your progress by completing the self assessment exercises.

COMPLEX STRESS TUTORIAL 4 THEORIES OF FAILURE. You should judge your progress by completing the self assessment exercises. COMPLEX STRESS TUTORIAL 4 THEORIES OF FAILURE This short tutorial covers no known elements of the E.C. or Edexcel Exams but should be studied as part of complex stress, structures and materials. You should

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Chapter 9. τ all = min(0.30s ut,0.40s y ) = min[0.30(58), 0.40(32)] = min(17.4, 12.8) = 12.8 kpsi 2(32) (5/16)(4)(2) 2F hl. = 18.1 kpsi Ans. 1.

Chapter 9. τ all = min(0.30s ut,0.40s y ) = min[0.30(58), 0.40(32)] = min(17.4, 12.8) = 12.8 kpsi 2(32) (5/16)(4)(2) 2F hl. = 18.1 kpsi Ans. 1. budynas_sm_c09.qxd 01/9/007 18:5 Page 39 Capter 9 9-1 Eq. (9-3: F 0.707lτ 0.707(5/1(4(0 17.7 kip 9- Table 9-: τ all 1.0 kpsi f 14.85 kip/in 14.85(5/1 4.4 kip/in F fl 4.4(4 18.5 kip 9-3 Table A-0: 1018

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Sample Problems for Exam II

Sample Problems for Exam II Sample Problems for Exam 1. Te saft below as lengt L, Torsional stiffness GJ and torque T is applied at point C, wic is at a distance of 0.6L from te left (point ). Use Castigliano teorem to Calculate

More information

9 Strength Theories of Lamina

9 Strength Theories of Lamina 9 trength Theories of Lamina 9- TRENGTH O ORTHOTROPIC LAMINA or isotropic materials the simplest method to predict failure is to compare the applied stresses to the strengths or some other allowable stresses.

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

More information

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

More information

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2 Pysics 121, April 1, 2008. Pysics 121. April 1, 2008. Course Information Discussion of Exam # 2 Topics to be discussed today: Requirements for Equilibrium Gravitational Equilibrium Sample problems Pysics

More information

DESIGN FOR FATIGUE STRENGTH

DESIGN FOR FATIGUE STRENGTH UNIT 3 DESIGN FOR FATIGUE STRENGTH Instructional Objectives Mean and variable stresses and endurance limit. S-N plots for metals and non-metals and relation between endurance limit and ultimate tensile

More information

Nonlinear correction to the bending stiffness of a damaged composite beam

Nonlinear correction to the bending stiffness of a damaged composite beam Van Paepegem, W., Decaene, R. and Degrieck, J. (5). Nonlinear correction to te bending stiffness of a damaged composite beam. Nonlinear correction to te bending stiffness of a damaged composite beam W.

More information

Dr. Hazim Dwairi 10/16/2008

Dr. Hazim Dwairi 10/16/2008 10/16/2008 Department o Civil Engineering Flexural Design o R.C. Beams Tpes (Modes) o Failure Tension Failure (Dutile Failure): Reinorement ields eore onrete ruses. Su a eam is alled under- reinored eam.

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

Chapter 6: Plastic Theory

Chapter 6: Plastic Theory OHP Mechanical Properties of Materials Chapter 6: Plastic Theory Prof. Wenjea J. Tseng 曾文甲 Department of Materials Engineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W. F.

More information

Use Hooke s Law (as it applies in the uniaxial direction),

Use Hooke s Law (as it applies in the uniaxial direction), 0.6 STRSS-STRAIN RLATIONSHIP Use the principle of superposition Use Poisson s ratio, v lateral longitudinal Use Hooke s Law (as it applies in the uniaxial direction), x x v y z, y y vx z, z z vx y Copyright

More information

Endurance Strength Pg 274

Endurance Strength Pg 274 [Pg / 8] Fatigue Analysis Pg 257 The Units used as standard: in, kip, kpsi, sec, hp in, kip, kpsi, sec/min, hp Endurance Strength Pg 274 Fatigue failure occurs when a machine element is sujected to fluctuating

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Nanoindentation. M. R. VanLandingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol. 108, (2003).

Nanoindentation. M. R. VanLandingham, Review of instrumented indentation, J. Res. Natl. Inst. Stand. Technol. 108, (2003). Nanoindentation References Nanoindentation, nd Ed., Antony C. Fiscer-Cripps, Springer, 010. Introduction to Contact Mecanics, nd Ed., Antony C. Fiscer-Cripps, Springer, 007. Contact Mecanics, Kennet L.

More information

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY

CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY CALCULATION OF COLLAPSE PRESSURE IN SHALE GAS FORMATION AND THE INFLUENCE OF FORMATION ANISOTROPY L.Hu, J.Deng, F.Deng, H.Lin, C.Yan, Y.Li, H.Liu, W.Cao (Cina University of Petroleum) Sale gas formations

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

There are three main types of structure - mass, framed and shells.

There are three main types of structure - mass, framed and shells. STRUCTURES There are three main types of structure - mass, framed and shells. Mass structures perform due to their own weight. An example would be a dam. Frame structures resist loads due to the arrangement

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

ESE TOPICWISE OBJECTIVE SOLVED PAPER I

ESE TOPICWISE OBJECTIVE SOLVED PAPER I C I V I L E N G I N E E R I N G ESE TOPICWISE OBJECTIVE SOLVED PAPER I FROM 1995-018 UPSC Engineering Services Eamination, State Engineering Service Eamination & Public Sector Eamination. Regd. office

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

ANSYS Mechanical Basic Structural Nonlinearities

ANSYS Mechanical Basic Structural Nonlinearities Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

More information

DEBONDING FAILURES OF RC BEAMS STRENGTHENED WITH EXTERNALLY BONDED FRP REINFORCEMENT: BEHAVIOUR AND MODELLING

DEBONDING FAILURES OF RC BEAMS STRENGTHENED WITH EXTERNALLY BONDED FRP REINFORCEMENT: BEHAVIOUR AND MODELLING Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smit (ed) 2007 International Institute for FRP in Construction DEBONDING FAILURES OF RC BEAMS STRENGTHENED WITH EXTERNALLY BONDED FRP REINFORCEMENT:

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Principal Stresses, Yielding Criteria, wall structures

Principal Stresses, Yielding Criteria, wall structures Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal

More information

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

More information

Tribology in Industry

Tribology in Industry Vol. 4, No. (9) 34-4, DOI:.4874/ti.9.4..5 Triology in Industry www.triology.rs RESEARCH A Metod for Predicting Contact Strengt and Life of Arcimedes and Involute Worm Gears, Considering te Effect of Wear

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

More information

The development of contact and noncontact technique to study the heat dissipation in metals under loading

The development of contact and noncontact technique to study the heat dissipation in metals under loading Te development of contact and noncontact tecnique to study te eat dissipation in metals under loading More info about tis article: ttp://www.ndt.net/?id=73 Abstract * ICMM UB RAS, Ac. Koroleva Str., 63

More information

Figure 1: Throwing arm dimensions

Figure 1: Throwing arm dimensions I. Overview The objective of this report is to review the design of the trebuchet model from an engineering standpoint. This study analyzes the dimensions and material selection using the COMSOL multiphisics

More information

June : 2016 (CBCS) Body. Load

June : 2016 (CBCS) Body. Load Engineering Mecanics st Semester : Common to all rances Note : Max. marks : 6 (i) ttempt an five questions (ii) ll questions carr equal marks. (iii) nswer sould be precise and to te point onl (iv) ssume

More information

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT?

THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? CIE309 : PLASTICITY THEME IS FIRST OCCURANCE OF YIELDING THE LIMIT? M M - N N + + σ = σ = + f f BENDING EXTENSION Ir J.W. Welleman page nr 0 kn Normal conditions during the life time WHAT HAPPENS DUE TO

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Bulk Deformation Processes

Bulk Deformation Processes Capter 6 Bulk Deformation Processes Questions Forging 6.1 How can you tell weter a certain part is forged or cast? Describe te features tat you would investigate to arrive at a conclusion. Numerous tests

More information

8 Applications of Plane Stress (Pressure Vessels, Beams, and Combined Loadings)

8 Applications of Plane Stress (Pressure Vessels, Beams, and Combined Loadings) 8 pplications of Plane Stress (Pressure Vessels, Beams, and omined oadings) Sperical Pressure Vessels Wen solving te prolems for Section 8., assume tat te given radius or diameter is an inside dimension

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

Conceptual question Conceptual question 12.2

Conceptual question Conceptual question 12.2 Conceptual question 12.1 rigid cap of weight W t g r A thin-walled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Optimization of the thin-walled rod with an open profile

Optimization of the thin-walled rod with an open profile (1) DOI: 1.151/ matecconf/181 IPICSE-1 Optimization of te tin-walled rod wit an open profile Vladimir Andreev 1,* Elena Barmenkova 1, 1 Moccow State University of Civil Engineering, Yaroslavskoye s., Moscow

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

Vidmantas Jokūbaitis a, Linas Juknevičius b, *, Remigijus Šalna c

Vidmantas Jokūbaitis a, Linas Juknevičius b, *, Remigijus Šalna c Availale online at www.sciencedirect.com Procedia Engineering 57 ( 203 ) 466 472 t International Conference on Modern Building Materials, Structures and Tecniques, MBMST 203 Conditions for Failure of Normal

More information

DEPARTMENT OF CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SUBJECT: CE 2252 STRENGTH OF MATERIALS UNIT: I ENERGY METHODS 1. Define: Strain Energy When an elastic body is under the action of external

More information

Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage and Shrink & Creep Under Bending

Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage and Shrink & Creep Under Bending Send Orders for Reprints to reprints@bentamscience.ae Te Open Civil Engineering Journal 9 7-7 7 Open Access Analysis of Stress and Deflection about Steel-Concrete Composite Girders Considering Slippage

More information

Grade: 11 International Physics Olympiad Qualifier Set: 2

Grade: 11 International Physics Olympiad Qualifier Set: 2 Grade: 11 International Pysics Olympiad Qualifier Set: 2 --------------------------------------------------------------------------------------------------------------- Max Marks: 60 Test ID: 12111 Time

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

Journal of Engineering Science and Technology Review 7 (4) (2014) 40-45

Journal of Engineering Science and Technology Review 7 (4) (2014) 40-45 Jestr Journal of Engineering Science and Tecnology Review 7 (4) (14) -45 JOURNAL OF Engineering Science and Tecnology Review www.jestr.org Mecanics Evolution Caracteristics Analysis of in Fully-mecanized

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information