NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

Size: px
Start display at page:

Download "NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model"

Transcription

1 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory nd Applicion o He Trnsfer Model by Abdon ATANGANA * nd Dumiru BALEANU b, c Insiue for Groundwer Sudies, Fculy of Nurl nd Agriculurl Sciences, Universiy of he Free Se, Bloemfonein, Souh Afric b Deprmen of Mhemics nd Compuer Sciences, Cny Universiy, Anr, Turey c Insiue of Spce Sciences, Mgurele-Buchres, Romni Inroducion Originl scienific pper DOI: /TSCI A In his pper new frcionl derivive wih non-locl nd no-singulr ernel is proposed. Some useful properies of he new derivive re presened nd pplied o solve he frcionl he rnsfer model. Key words: frcionl derivive, non-locl ernel, non-singulr ernel, generlized Mig-Leffler funcion, frcionl he rnsfer model A new derivive ws recenly lunched by Cpuo nd Fbrizio [1] nd i ws followed by some reled heoreicl nd pplied resuls (for exmple [2-4] nd he references herein). We recll h he exising frcionl derivives hve been used in mny rel world problems wih gre success (for exmple [5-12] nd he references herein) bu sill here re mny hins o be done in his direcion. Definiion 1: [1] Le f H 1 ( b, ), < b, [,1] hen, he definiion of he new Cpuo frcionl derivive is: ' (1) M( ) x D [ f( )] = f ( x)exp dx 1 1 where M() denoes normlizion funcion obeying M() = M(1) = 1. However, if he funcion does no belong o H 1 (,b) hen, he derivive hs he form: M( ) x D [ f( )] = [ f( ) f( x)] exp dx 1 1 (2) If σ = (1 )/ [, ], = 1/(1 + σ) [, 1], hen eq. (2) ssumes he form: * Corresponding uhor; e-mil: bdonngn@yhoo.fr

2 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd 764 THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp σ N( σ ) ' x D [ f( )] = f ( x)exp d x, N() N( ) 1 σ = = σ The im of [1] ws o inroduce of new derivive wih exponenil ernel. Is niderivive ws repored in [2] nd i ws found o be he verge of given funcion. The derivive inroduced in [1] cnno produce he originl funcion when = 1. However, his issue ws, so fr, independenly solved in [13, 14], respecively. We believe h he min messge presened in [1] ws o find wy o describe even beer he dynmics of sysems wih memory effec. For given d we s he following quesion: wh is he mos ccure ernel which beer describe i? We sugges possible nswer in he following secions. New derivives wih non-locl ernel We recll h he Mig-Leffler funcion is he soluion of he following frcionl ordinry differenil equion [12, 15, 16]: d y = y, < < 1 (3) dx The Mig-Leffler funcion nd is generlized versions re herefore considered s non-locl funcions. Le us consider he following generlized Mig-Leffler funcion: = ( ) E ( ) = (4) Γ( + 1) The Tylor series of exp [ ( y)] he poin is given by: [ ( y)] exp[ ( y)] = (5)! If we chose = /(1 ) nd replce expression (5) ino Cpuo-Fbrizio derivive we conclude h: = = M( ) ( ) d f( y) D [ f( )] = [( y)] dy 1! dy (6) To solve he problem of non-locliy, we derive he following expression. In eq. (6), we replce! by Γ( + 1) lso ( y) is replced by ( y) o obin: M( ) ( ) d f( y) D [ f( )] = [( y)] dy 1 Γ( + 1) dy = Thus, he following derivive is proposed. Definiion 2: Le f H 1 ( b, ), < b, [,1] hen, he definiion of he new frcionl derivive is given: ' (7) B( ) ( x) D [ f( )] = f( xe ) dx 1 1

3 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp Of course, B() hs he sme properies s in Cpuo nd Fbrizio cse. The previous definiion will be helpful o discuss rel world problems nd i lso will hve gre dvnge when using he Lplce rnsform o solve some physicl problem wih iniil condiion. However, when = we do no recover he originl funcion excep when he origin he funcion vnishes. To void his issue, we propose definiion 3. Definiion 3: Le f H 1 ( b, ), < b, [,1] hen, he definiion of he new frcionl derivive is given: B( ) d ( x) D [ f( )] = f( xe ) dx 1 d 1 (8) Equions (7) nd (8) hve non-locl ernel. Also in eq. (7) when he funcion is consn we ge zero. Properies of he new derivives In his secion, we sr by presening he relion beween boh derivives wih Lplce rnsform. By simple clculion we conclude h: nd B( ) p A{ f( )}( p) A { D [ f( )]}( p) = (9) 1 p B( ) p A{ f( )}( p) p f() A { D [ f( )]}( p) = (1) 1 p + 1 respecively. The following heorem cn herefore be esblished. Theorem 1: Le f H 1 ( b, ), < b, [,1] hen, he following relion is obined: D [ f()] = D [ f()] + H() (11) Proof: By using he definiion (11) nd he Lplce rnsform pplied on boh sides we obin esily he resul: B( ) p A{ f( )}( p) p f() B( ) A { D [ f( )]}( p) = (12) 1 p + p Following eq. (9) we hve: 1 1 A p f() B( ) { D [ f( )]}( p) = A { D [ f( )]}( p) p + 1 (13) 1 Applying he inverse Lplce on boh sides of eq. (13) we obin:

4 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd 766 THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp B( ) 1 1 D [ f( )] = D [ f( )] f() E This complees he proof. Theorem 2: Le f be coninuous funcion on closed inervl [, b]. Then he following inequliy is obined on [, b]: Proof: B( ) D [ f()] < K, h () = mx h () 1 b B( ) d ( x) B( ) d B( ) D [ f( )] = f( x) E d x < f( x)d x = f( x) 1 d 1 1 d 1 Then ing K o be f( x) he proof is compleed. Theorem 3: The A.B. derivive in Riemnn nd Cpuo sense possess he Lipschiz condiion, h is o sy, for given couple funcion f nd h, he following inequliies cn be esblished: nd lso: (14) (15) D [ f()] D [ h ()] H f() h () (16) D [ f()] D [ h ()] H f() h () (17) We presen he proof of (16) s he proof of (17) nd i cn be obined similrly. Proof: B( ) d ( x) D [ f( )] D [ h ( )] = f( xe ) dx 1 d 1 B( ) d ( x) hxe ( ) dx 1 d 1 Using he Lipschiz condiion of he firs order derivive, we cn find smll posiive consn such h: B( ) 1 D [ f( )] D [ f( )] < θ E f( x)d x h( x)dx 1 1 nd hen he following resul is obined: (18) B( ) 1 D [ f( )] D [ f( )] < θ E f( x) hx ( ) H f( x) hx ( ) 1 1 = which produces he requesed resul.

5 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp Le f be n n-imes differenible wih nurl number nd f () () =, = 1, 2, 3, n, hen by inspecion we obin: n n d f( x) d n n D = { D [ f( )]} (19) d d Now, we cn esily prove by ing he inverse Lplce rnsform nd using he convoluion heorem h he following ime frcionl ordinry differenil equion: hs unique soluion, nmely: D [ f()] = u () (2) 1 1 f() = u () + uy ( )( y) dy B( ) B( )Γ( ) Definiion 4: The frcionl inegrl ssocie o he new frcionl derivive wih non-locl ernel is defined: When = we recover he iniil funcion, nd if = 1, we obin he ordinry inegrl. 1 I { f( )} = f( ) + f( y)( y) dy B( ) B( )Γ( ) AB 1 (21) Applicion o herml science: A new he rnsfer model The nlyses of he experimenl d coming from he invesigion of dynmics of complex sysems is sill n ineresing open problem. Therefore, new mehods nd echniques re sill o be discovered o nd pply wih more success o hve n even beer descripion of he dynmics of rel world problems. Priculrly, finding new derivives suggesed in his mnuscrip is becuse of he necessiy of employing beer model porrying he behviour of orhodox viscoelsic merils, herml medium, nd oher. The new pproch is ble o porry meril heerogeneiies nd some srucure or medi wih differen scles. The nonlocliy of he new ernel llows beer descripion of he memory wihin srucure nd medi wih differen scles. In ddiion of his, we lso rely h his new derivive cn ply specific role in he sudy of mcroscopic behvior of some merils, reled wih non-locl exchnges, which re predominn in defining he properies of he meril [1]. Thus, his new derivive will be very useful in describing mny complex problems in herml science. We recll here h noher derivive ws inroduced in [17, 18] wih he im of solving some problems wihin he scope of herml science. To describe he ime re of he rnsfer hrough meril wih differen scle or heerogeneous, we propose new lw of he conducion which will be refereed s frcionl Fourier s lw. The frcionl Fourier lw ses h ime re of he rnsfer vi meril wih differen scle is proporionl o negive grdien in emperure nd re righ ngles o h grdien vi which he he flows nd is given: D Q = T d d A (22) S

6 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd 768 THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp where D Qr (,) is he moun of he rnsferred wihin meril wih differen scle per uni ime. Now, for heerogeneous meril of 1-D geomery beween wo endpoins consn emperure, produced new he flow re: dq = A Dr T (23) d For insnce, in cylindricl heerogeneous shells lie pipes, he he conducion vi n heerogeneous shell will be deermined from inernl rdius, r 1, nd he exernl rdius, r 2, he lengh, LL, nd he difference beween inner nd ouer wll we hve: dq = 2πlrA (24) d Rerrnging nd pply he Lplce rnsform on boh sides, hen pplying he inverse Lplce rnsform, we obin: Q + 1 r1 T1 T2 = 1+ r2 Hyper geomeric PFQ {1, 1, 1 }, {2, 2}, r1 2πl 1 r2 1 Hrmonic number [ ] ln r + r r2 where K is he consn, L [m] he lengh, R [m] he rdius, nd T [ C] he emperure. Conclusions The im of his pper ws o sugges new derivives wih non-locl nd nonsingulr ernel. To chieve his gol, we me use he generlized Mig-Leffler funcion o build he non-locl ernel. One derivive is bsed upon he Cpuo viewpoin nd he second on he Riemnn-Liouville pproch. We derive he frcionl inegrl ssocie using he Lplce rnsform operor. The new derivive ws used o model he flow of he in meril wih differen scle nd lso hose wih heerogeneous medi. References [1] Cpuo, M., Fbrizio M., A New Definiion of Frcionl Derivive wihou Singulr Kernel, Progress in Frcionl Differeniion nd Applicions, 1 (215), 2, pp [2] Losd, J., Nieo, J. J., Properies of New Frcionl Derivive wihou Singulr Kernel, Progress in Frcionl Differeniion nd Applicions, 1 (215), 2, pp [3] Angn, A., On he New Frcionl Derivive nd Applicion o Nonliner Fisher s Recion- Diffusion Equion, Applied Mhemics nd Compuion, 273 (216), Jn., pp [4] Angn, A., Nieo, J. J., Numericl Soluion for he Model of RLC Circui Vi he Frcionl Derivive wihou Singulr Kernel, Advnces in Mechnicl Engineering, 7 (215), 1, pp. 1-7 [5] Benson, D., e l., Applicion of Frcionl Advecion-Dispersion Equion, Wer Resources Reserch, 36 (2), 6, pp [6] Cpuo, M., Liner Model of Dissipion whose Q is Almos Frequency Independen-II, Geophysicl Journl Royl Asronomicl Sociey, 13 (1967), 5, pp [7] Whecrf, S. W., Meerscher, M. M., Frcionl Conservion of Mss, Advnces in Wer Resources, 31 (28), 1, pp [8] Nsholm, S. P., Holm, S., Lining Muliple Relxion, Power-Lw Aenuion, nd Frcionl Wve Equions, Journl of he Acousicl Sociey of Americ, 13 (211), 5, pp (25)

7 Angn, A., e l.: New Frcionl Derivives wih Non-Locl nd THERMAL SCIENCE, Yer 216, Vol. 2, No. 2, pp [9] Hrisov, J., Double Inegrl-Blnce Mehod o he Frcionl Subdiffusion Equion: Approxime Soluions, Opimizion Problems o be Resolved nd Numericl Simulions, Journl of Vibrion nd Conrol, doi: / [1] Pedro, H. T. C., e l., Vrible Order Modeling of Diffusive-Convecive Effecs on he Oscillory Flow Ps Sphere, Journl of Vibrion nd Conrol, 14 (28), 9-1, pp [11] Wu, G. C., Blenu, D., Jcobin Mrix Algorihm for Lypunov Exponens of he Discree Frcionl Mps, Communicions in Nonliner Science nd Numericl Simulion, 22 (215), 1-3, pp [12] Kilbs, A. A., e l., Theory nd Applicions of Frcionl Differenil Equions, Elsevier, Amserdm, The Neherlnd, 26 [13] Cpuo, M., Fbrizio, M., Applicions of New Time nd Spil Frcionl Derivives wih Exponenil Kernels, Progress in Frcionl Differeniion nd Applicions, 2 (216), 1, pp [14] Doungmo Goufo, E. M., Applicion of he Cpuo-Fbrizio Frcionl Derivive wihou Singulr Kernel o Koreweg-de Vries-Bergers Equion, Mhemicl Modelling nd Anlysis, 21 (215), 2, pp [15] Hrisov, J., Diffusion Models wih Wely Singulr Kernels in he Fding Memories: How he Inegrl- Blnce Mehod Cn be Applied?, Therml Science, 19 (215), 3, pp [16] Hrisov, J., Approxime Soluions o Time-Frcionl Models by Inegrl Blnce Approch, in: Frcionl Dynmics, Chper 5, (Ed. C. Cni, H. M. Srivsv, X. J. Yng), De Gruyer Open, Wrsw, 215, pp [17] Liu, F. J., e l., He's Frcionl Derivive for He Conducion in Frcl Medium Arising in Silworm Cocoon Hierrchy, Therml Science, 19 (215), 4, pp [18] He, J. H., A New Frcl Derivion, Therml Science, 15 (211), Suppl. 1, pp. S145-S147 Pper submied: Jnury 11, 216 Pper revised: Jnury 17, 216 Pper cceped: Jnury 19, 216

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS Wu, G.-.: Lplce Trnsform Overcoming Principle Drwbcks in Applicion... THERMAL SIENE: Yer 22, Vol. 6, No. 4, pp. 257-26 257 Open forum LAPLAE TRANSFORM OVEROMING PRINIPLE DRAWBAKS IN APPLIATION OF THE VARIATIONAL

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE Ibrhim, R. W., e l.: Soluion for Sysem of Frcionl He Equions of THERMA SCIENCE, Yer 015, Vol. 19, Suppl. 1, pp. S51-S57 S51 SOUTION FOR A SYSTEM OF FRACTIONA HEAT EQUATIONS OF NANOFUID AONG A WEDGE by

More information

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS - TAMKANG JOURNAL OF MATHEMATICS Volume 5, Number, 7-5, June doi:5556/jkjm555 Avilble online hp://journlsmhkueduw/ - - - GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS MARCELA

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function Anlyic soluion of liner frcionl differenil equion wih Jumrie derivive in erm of Mig-Leffler funcion Um Ghosh (), Srijn Sengup (2), Susmi Srkr (2b), Shnnu Ds (3) (): Deprmen of Mhemics, Nbdwip Vidysgr College,

More information

Procedia Computer Science

Procedia Computer Science Procedi Compuer Science 00 (0) 000 000 Procedi Compuer Science www.elsevier.com/loce/procedi The Third Informion Sysems Inernionl Conference The Exisence of Polynomil Soluion of he Nonliner Dynmicl Sysems

More information

Fractional operators with exponential kernels and a Lyapunov type inequality

Fractional operators with exponential kernels and a Lyapunov type inequality Abdeljwd Advnces in Difference Equions (2017) 2017:313 DOI 10.1186/s13662-017-1285-0 RESEARCH Open Access Frcionl operors wih exponenil kernels nd Lypunov ype inequliy Thbe Abdeljwd* * Correspondence: bdeljwd@psu.edu.s

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM Elecronic Journl of Differenil Equions, Vol. 208 (208), No. 50, pp. 6. ISSN: 072-669. URL: hp://ejde.mh.xse.edu or hp://ejde.mh.un.edu EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE

More information

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR Romnin Repors in Physics, Vol. 64, Supplemen, P. 7 77, Dediced o Professor Ion-Ioviz Popescu s 8 h Anniversry FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR D. BALEANU,,3, J. H. ASAD

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 335-347 ISSN 1307-5543 www.ejpm.com Published by New York Business Globl Convergence of Singulr Inegrl Operors in Weighed Lebesgue

More information

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals Hindwi Pulishing orporion Inernionl Journl of Anlysis, Aricle ID 35394, 8 pges hp://d.doi.org/0.55/04/35394 Reserch Aricle New Generl Inegrl Inequliies for Lipschizin Funcions vi Hdmrd Frcionl Inegrls

More information

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method IOSR Journl of Mhemics (IOSR-JM) e-issn: 78-578. Volume 5, Issue 3 (Jn. - Feb. 13), PP 6-11 Soluions for Nonliner Pril Differenil Equions By Tn-Co Mehod Mhmood Jwd Abdul Rsool Abu Al-Sheer Al -Rfidin Universiy

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives In J Nonliner Anl Appl 9 8 No, 69-8 ISSN: 8-68 elecronic hp://dxdoiorg/75/ijn8745 On Hdmrd nd Fejér-Hdmrd inequliies for Cpuo -frcionl derivives Ghulm Frid, Anum Jved Deprmen of Mhemics, COMSATS Universiy

More information

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales Asympoic relionship beween rjecories of nominl nd uncerin nonliner sysems on ime scles Fim Zohr Tousser 1,2, Michel Defoor 1, Boudekhil Chfi 2 nd Mohmed Djemï 1 Absrc This pper sudies he relionship beween

More information

Thermal neutron self-shielding factor in foils: a universal curve

Thermal neutron self-shielding factor in foils: a universal curve Proceedings of he Inernionl Conference on Reserch Recor Uilizion, Sfey, Decommissioning, Fuel nd Wse Mngemen (Snigo, Chile, -4 Nov.3) Pper IAEA-CN-/, IAEA Proceedings Series, Vienn, 5 Therml neuron self-shielding

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains Green s Funcions nd Comprison Theorems for Differenil Equions on Mesure Chins Lynn Erbe nd Alln Peerson Deprmen of Mhemics nd Sisics, Universiy of Nebrsk-Lincoln Lincoln,NE 68588-0323 lerbe@@mh.unl.edu

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

3. Renewal Limit Theorems

3. Renewal Limit Theorems Virul Lborories > 14. Renewl Processes > 1 2 3 3. Renewl Limi Theorems In he inroducion o renewl processes, we noed h he rrivl ime process nd he couning process re inverses, in sens The rrivl ime process

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS Hceepe Journl of Mhemics nd Sisics Volume 45) 0), 65 655 ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS M Emin Özdemir, Ahme Ock Akdemir nd Erhn Se Received 6:06:0 : Acceped

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic Journl of Applied Mhemics & Bioinformics, vol.2, no.2, 2012, 1-10 ISSN: 1792-6602 prin, 1792-6939 online Scienpress Ld, 2012 Applicion on Inner Produc Spce wih Fixed Poin Theorem in Probbilisic Rjesh Shrivsv

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π RESPONSE UNDER A GENERAL PERIODIC FORCE When he exernl force F() is periodic wih periodτ / ω,i cn be expnded in Fourier series F( ) o α ω α b ω () where τ F( ) ω d, τ,,,... () nd b τ F( ) ω d, τ,,... (3)

More information

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION Avilble online hp://scik.org Eng. Mh. Le. 15, 15:4 ISSN: 49-9337 CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION PANDEY, C. P. 1, RAKESH MOHAN AND BHAIRAW NATH TRIPATHI 3 1 Deprmen o Mhemics, Ajy

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform Inegrl Trnsform Definiions Funcion Spce funcion spce A funcion spce is liner spce of funcions defined on he sme domins & rnges. Liner Mpping liner mpping Le VF, WF e liner spces over he field F. A mpping

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

Think of the Relationship Between Time and Space Again

Think of the Relationship Between Time and Space Again Repor nd Opinion, 1(3),009 hp://wwwsciencepubne sciencepub@gmilcom Think of he Relionship Beween Time nd Spce Agin Yng F-cheng Compny of Ruid Cenre in Xinjing 15 Hongxing Sree, Klmyi, Xingjing 834000,

More information

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES LAGRANGIAN AND HAMILTONIAN MEHANIS WITH FRATIONAL DERIVATIVES EMIL POPESU 2,1 1 Asronomicl Insiue of Romnin Acdemy Sr uiul de Argin 5, 40557 Buchres, Romni 2 Technicl Universiy of ivil Engineering, Bd

More information

IX.2 THE FOURIER TRANSFORM

IX.2 THE FOURIER TRANSFORM Chper IX The Inegrl Trnsform Mehods IX. The Fourier Trnsform November, 7 7 IX. THE FOURIER TRANSFORM IX.. The Fourier Trnsform Definiion 7 IX.. Properies 73 IX..3 Emples 74 IX..4 Soluion of ODE 76 IX..5

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR j IAN KNOWLES 1. Inroducion Consider he forml differenil operor T defined by el, (1) where he funcion q{) is rel-vlued nd loclly

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang jordnmcd Eigenvlue-eigenvecor pproch o solving firs order ODEs -- ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x

More information

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX Journl of Applied Mhemics, Sisics nd Informics JAMSI), 9 ), No. ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX MEHMET ZEKI SARIKAYA, ERHAN. SET

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

FRACTIONAL-order differential equations (FDEs) are

FRACTIONAL-order differential equations (FDEs) are Proceedings of he Inernionl MuliConference of Engineers nd Compuer Scieniss 218 Vol I IMECS 218 Mrch 14-16 218 Hong Kong Comprison of Anlyicl nd Numericl Soluions of Frcionl-Order Bloch Equions using Relible

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Systems Variables and Structural Controllability: An Inverted Pendulum Case Reserch Journl of Applied Sciences, Engineering nd echnology 6(: 46-4, 3 ISSN: 4-7459; e-issn: 4-7467 Mxwell Scienific Orgniion, 3 Submied: Jnury 5, 3 Acceped: Mrch 7, 3 Published: November, 3 Sysems Vribles

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Neural assembly binding in linguistic representation

Neural assembly binding in linguistic representation Neurl ssembly binding in linguisic represenion Frnk vn der Velde & Mrc de Kmps Cogniive Psychology Uni, Universiy of Leiden, Wssenrseweg 52, 2333 AK Leiden, The Neherlnds, vdvelde@fsw.leidenuniv.nl Absrc.

More information

New Inequalities in Fractional Integrals

New Inequalities in Fractional Integrals ISSN 1749-3889 (prin), 1749-3897 (online) Inernionl Journl of Nonliner Science Vol.9(21) No.4,pp.493-497 New Inequliies in Frcionl Inegrls Zoubir Dhmni Zoubir DAHMANI Lborory of Pure nd Applied Mhemics,

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

A new model for solving fuzzy linear fractional programming problem with ranking function

A new model for solving fuzzy linear fractional programming problem with ranking function J. ppl. Res. Ind. Eng. Vol. 4 No. 07 89 96 Journl of pplied Reserch on Indusril Engineering www.journl-prie.com new model for solving fuzzy liner frcionl progrmming prolem wih rning funcion Spn Kumr Ds

More information

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose

ON THE STABILITY OF DELAY POPULATION DYNAMICS RELATED WITH ALLEE EFFECTS. O. A. Gumus and H. Kose Mhemicl nd Compuionl Applicions Vol. 7 o. pp. 56-67 O THE STABILITY O DELAY POPULATIO DYAMICS RELATED WITH ALLEE EECTS O. A. Gumus nd H. Kose Deprmen o Mhemics Selcu Universiy 47 Kony Turey ozlem@selcu.edu.r

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions ISSNOnline : 39-8753 ISSN Prin : 347-67 An ISO 397: 7 Cerified Orgnizion Vol. 5, Issue 5, My 6 A Time Trunced Improved Group Smpling Plns for Ryleigh nd og - ogisic Disribuions P.Kvipriy, A.R. Sudmni Rmswmy

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

A FINITE-DIFFERENCE SCHEME FOR SOLUTION OF A FRACTIONAL HEAT DIFFUSION-WAVE EQUATION WITHOUT INITIAL CONDITIONS

A FINITE-DIFFERENCE SCHEME FOR SOLUTION OF A FRACTIONAL HEAT DIFFUSION-WAVE EQUATION WITHOUT INITIAL CONDITIONS Beilev, V. D., e l.: A Finie-Difference Scheme for Soluion of... THERMAL SCIENCE: Yer 5, Vol. 9, No.,. 53-536 53 A FINITE-DIFFERENCE SCHEME FOR SOLUTION OF A FRACTIONAL HEAT DIFFUSION-WAVE EQUATION WITHOUT

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

..,..,.,

..,..,., 57.95. «..» 7, 9,,. 3 DOI:.459/mmph7..,..,., E-mil: yshr_ze@mil.ru -,,. -, -.. -. - - ( ). -., -. ( - ). - - -., - -., - -, -., -. -., - - -, -., -. : ; ; - ;., -,., - -, []., -, [].,, - [3, 4]. -. 3 (

More information

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Communicions on Sochsic Anlysis Vol 6, No 4 2012 603-614 Serils Publicions wwwserilspublicionscom THE ITÔ FORMULA FOR A NEW STOCHASTIC INTEGRAL HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA Absrc

More information

Calculation method of flux measurements by static chambers

Calculation method of flux measurements by static chambers lculion mehod of flux mesuremens by sic chmbers P.S. Kroon Presened he NiroEurope Workshop, 15h - 17h December 28, openhgen, Denmrk EN-L--9-11 December 28 lculion mehod of flux mesuremens by sic chmbers

More information

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION Ausrlin Journl of Bsic nd Applied Sciences, 6(6): -6, 0 ISSN 99-878 A Simple Mehod o Solve Quric Equions Amir Fhi, Poo Mobdersn, Rhim Fhi Deprmen of Elecricl Engineering, Urmi brnch, Islmic Ad Universi,

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations Journl of Mhemics nd Sisics 5 ():136-14, 9 ISS 1549-3644 9 Science Publicions On he Pseudo-Specrl Mehod of Solving Liner Ordinry Differenil Equions B.S. Ogundre Deprmen of Pure nd Applied Mhemics, Universiy

More information

Fractional Calculus. Connor Wiegand. 6 th June 2017

Fractional Calculus. Connor Wiegand. 6 th June 2017 Frcionl Clculus Connor Wiegnd 6 h June 217 Absrc This pper ims o give he reder comforble inroducion o Frcionl Clculus. Frcionl Derivives nd Inegrls re defined in muliple wys nd hen conneced o ech oher

More information

1. Introduction. 1 b b

1. Introduction. 1 b b Journl of Mhemicl Inequliies Volume, Number 3 (007), 45 436 SOME IMPROVEMENTS OF GRÜSS TYPE INEQUALITY N. ELEZOVIĆ, LJ. MARANGUNIĆ AND J. PEČARIĆ (communiced b A. Čižmešij) Absrc. In his pper some inequliies

More information

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables Journl of Proiliy nd Sisics Volume 2015, Aricle ID 958980, 7 pges hp://dx.doi.org/10.1155/2015/958980 Reserch Aricle Generlized Frcionl Inegrl Inequliies for Coninuous Rndom Vriles Adullh Akkur, Zeynep

More information

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas 6. Gs dynmics Dr. Gergely Krisóf De. of Fluid echnics, BE Februry, 009. Seed of infiniesiml disurbnces in sill gs dv d, dv d, Coninuiy: ( dv)( ) dv omenum r r heorem: ( ( dv) ) d 3443 4 q m dv d dv llievi

More information

arxiv: v1 [math.gm] 30 Dec 2015

arxiv: v1 [math.gm] 30 Dec 2015 A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL: APPLICATION TO THE MODELLING OF THE STEADY HEAT FLOW rxiv:161.1623v1 [mth.gm] 3 Dec 215 by Xio-Jun YANG, H. M. SRIVASTAVA b,c, J. A. Tenreiro MACHADO

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

On Tempered and Substantial Fractional Calculus

On Tempered and Substantial Fractional Calculus On Tempered nd Subsnil Frcionl Clculus Jiniong Co,2, Chngpin Li nd YngQun Chen 2, Absrc In his pper, we discuss he differences beween he empered frcionl clculus nd subsnil frcionl operors in nomlous diffusion

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L ) Scholrs Journl of Engineering d Technology SJET) Sch. J. Eng. Tech., ; A):8-6 Scholrs Acdemic d Scienific Publisher An Inernionl Publisher for Acdemic d Scienific Resources) www.sspublisher.com ISSN -X

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order Hindwi Pulishing Corporion The Scienific World Journl Volume 23, Aricle ID 95437, pges hp://dx.doi.org/.55/23/95437 Reserch Aricle An Expnsion Formul wih Higher-Order Derivives for Frcionl Operors of Vrile

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swiss Federl Insiue of Pge 1 The Finie Elemen Mehod for he Anlysis of Non-Liner nd Dynmic Sysems Prof. Dr. Michel Hvbro Fber Dr. Nebojs Mojsilovic Swiss Federl Insiue of ETH Zurich, Swizerlnd Mehod of

More information

Temperature Rise of the Earth

Temperature Rise of the Earth Avilble online www.sciencedirec.com ScienceDirec Procedi - Socil nd Behviorl Scien ce s 88 ( 2013 ) 220 224 Socil nd Behviorl Sciences Symposium, 4 h Inernionl Science, Socil Science, Engineering nd Energy

More information

Necessary and Sufficient Conditions for Asynchronous Exponential Growth in Age Structured Cell Populations with Quiescence

Necessary and Sufficient Conditions for Asynchronous Exponential Growth in Age Structured Cell Populations with Quiescence JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 25, 49953 997 ARTICLE NO. AY975654 Necessry nd Sufficien Condiions for Asynchronous Exponenil Growh in Age Srucured Cell Populions wih Quiescence O. Arino

More information

New Energy-Preserving Finite Volume Element Scheme for the Korteweg-de Vries Equation

New Energy-Preserving Finite Volume Element Scheme for the Korteweg-de Vries Equation IAENG Inernionl Journl of Applied Mhemics, 47:, IJAM_47 3 New Energy-Preserving Finie Volume Elemen Scheme for he Koreweg-de Vries Equion Jin-ling Yn nd Ling-hong Zheng Absrc In his pper, n -preserving

More information

Abstract. W.W. Memudu 1 and O.A. Taiwo, 2

Abstract. W.W. Memudu 1 and O.A. Taiwo, 2 Theoreicl Mhemics & Applicions, vol. 6, no., 06, 3-50 ISS: 79-9687 prin, 79-9709 online Scienpress d, 06 Eponenilly fied collocion pproimion mehod for he numericl soluions of Higher Order iner Fredholm

More information

A new model for limit order book dynamics

A new model for limit order book dynamics Anewmodelforlimiorderbookdynmics JeffreyR.Russell UniversiyofChicgo,GrdueSchoolofBusiness TejinKim UniversiyofChicgo,DeprmenofSisics Absrc:Thispperproposesnewmodelforlimiorderbookdynmics.Thelimiorderbookconsiss

More information

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations Honours Inroducory Mhs Course 0 Inegrion, Differenil nd Difference Equions Reding: Ching Chper 4 Noe: These noes do no fully cover he meril in Ching, u re men o supplemen your reding in Ching. Thus fr

More information

Soliton Scattering on the External Potential in Weakly Nonlocal Nonlinear Media

Soliton Scattering on the External Potential in Weakly Nonlocal Nonlinear Media Mlysin Journl of Mhemicl Sciences 1(S) Februry: 219 226 (216) Specil Issue: The 3 rd Inernionl Conference on Mhemicl Applicions in Engineering 214 (ICMAE 14) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

The Dynamics of Two Harvesting Species with variable Effort Rate with the Optimum Harvest Policy

The Dynamics of Two Harvesting Species with variable Effort Rate with the Optimum Harvest Policy Inernionl OPEN ACCESS Journl Of Modern Engineering Reserch (IJMER) The Dynmics of Two Hrvesing Species wih vrible Effor Re wih he Opimum Hrves Policy Brhmpl Singh; nd Professor Suni Gkkhr; Deprmen of Mhemics,

More information

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m) Univ. Beogrd. Pul. Elekroehn. Fk. Ser. M. 8 (997), 79{83 FUTHE GENEALIZATIONS OF INEQUALITIES FO AN INTEGAL QI Feng Using he Tylor's formul we prove wo inegrl inequliies, h generlize K. S. K. Iyengr's

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics: SPH4U: Inroducion o ork ork & Energy ork & Energy Discussion Definiion Do Produc ork of consn force ork/kineic energy heore ork of uliple consn forces Coens One of he os iporn conceps in physics Alernive

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control

Numerical Approximations to Fractional Problems of the Calculus of Variations and Optimal Control Numericl Approximions o Frcionl Problems of he Clculus of Vriions nd Opiml Conrol Shkoor Pooseh, Ricrdo Almeid, Delfim F. M. Torres To cie his version: Shkoor Pooseh, Ricrdo Almeid, Delfim F. M. Torres.

More information

Tax Audit and Vertical Externalities

Tax Audit and Vertical Externalities T Audi nd Vericl Eernliies Hidey Ko Misuyoshi Yngihr Ngoy Keizi Universiy Ngoy Universiy 1. Inroducion The vericl fiscl eernliies rise when he differen levels of governmens, such s he federl nd se governmens,

More information