Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

Size: px
Start display at page:

Download "Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:"

Transcription

1 SPH4U: Inroducion o ork ork & Energy ork & Energy Discussion Definiion Do Produc ork of consn force ork/kineic energy heore ork of uliple consn forces Coens One of he os iporn conceps in physics Alernive pproch o echnics Mny pplicions beyond echnics Therodynics (oveen of he) Qunu echnics... Very useful ools You will lern new (soeies uch esier) wys o solve probles ors of Energy Mss = Energy Kineic: Energy of oion. A cr on he highwy hs kineic energy. Pricle Physics: E = ev () e- e+ + 5,000,000,000 V - 5,000,000,000 V e hve o reove his energy o sop i. The brkes of cr ge HOT! This is n exple of urning one for of energy ino noher (herl energy). (b) (c) M E = MC 2 ( poof! ) Pge 1

2 Energy Conservion Energy cnno be desroyed or creed. Jus chnged fro one for o noher. Definiion of ork: Ingrediens: orce (), displceen (r) e sy energy is conserved! True for ny closed syse. i.e. when we pu on he brkes, he kineic energy of he cr is urned ino he using fricion in he brkes. The ol energy of he cr-brkes-rod-osphere syse is he se. The energy of he cr lone is no conserved... I is reduced by he brking. Doing work on n isoled syse will chnge is energy... ork,, of consn force cing hrough displceen r is: = r = r cos = r r Do Produc r r The do produc llows us o uliply wo vecors, bu jus he coponens h re going in he se direcion (usully long he second vecor) Definiion of ork... Only he coponen of long he displceen is doing work. Exple: Trin on rck. r cos Aside: Do Produc (or Sclr Produc) Definiion:. b = b cos = [b cos ] = b = b[ cos ] = b b Soe properies: b = b q(b) = (qb) = b(q) (b + c) = (b) + (c) b b (q is sclr) (c is vecor) b b The do produc of perpendiculr vecors is 0!! Pge 2

3 Soluion ork & Energy Undersnding A box is pulled up rough ( > 0) incline by rope-pulley-weigh rrngeen s shown below. Drw BD of box: T v How ny forces re doing work on he box? Consider direcion of oion of he box () 2 (b) 3 (c) 4 Any force no perpendiculr o he oion will do work: does no work (perp. o v) T does posiive work f f does negive work g does negive work 3 forces do work g ork: Exple (consn force) A force = 10 pushes box cross fricionless floor for disnce x = 5. Unis of ork: orce x Disnce = ork ewon x [M][L] / [T] 2 Meer = Joule [L] [M][L] 2 / [T] 2 ks cgs oher x ork done by on box is: = x = x (since is prllel o x) - (Joule) Dyne-c (erg) = 10-7 J BTU = 1054 J clorie = J foo-lb = J ev = 1.6x10-19 J = (10 ) x (5 ) = 50 Joules (J) Pge 3

4 ork & Kineic Energy: A force = 10 pushes box cross fricionless floor for disnce x = 5. The speed of he box is v 1 before he push nd v 2 fer he push. ork & Kineic Energy... Since he force is consn, ccelerion will be consn. e hve shown h for consn : v v 2 1 = 2(x 2 -x 1 ) = 2x. uliply by 1 / 2 : 1 / 2 v / 2 v 2 1 = x Bu = 1 / 2 v / 2 v 2 1 = x v 1 v 2 v 1 v 2 x x ork & Kineic Energy... So we find h 1 / 2 v / 2 v 1 2 = x = Define Kineic Energy K: K = 1 / 2 v 2 K 2 - K 1 = = K v 1 (ork/kineic energy heore) v 2 ork/kineic Energy Theore: {e ork done on objec} = {chnge in kineic energy of objec} ne K K f K 1 1 v f v 2 2 i 2 2 i x Universiy will prove his for vrible force ler. Pge 4

5 ice o Know B ork & Energy Quesion B dx A B dx A B dv dx A d B dv vd A d B v vdv v A vb The 1work in 2 going fro v A o 2 B. va 1 1 v v B A KE KE B A KE A Two blocks hve sses 1 nd 2, where 1 > 2. They re sliding on fricionless floor nd hve he se kineic energy when hey encouner long rough srech (i.e. > 0) which slows he down o sop. hich one will go frher before sopping? () 1 (b) (c) hey will go he se disnce Soluion Soluion The work-energy heore sys h for ny objec ET = K In his exple he only force h does work is fricion (since boh nd g re perpendiculr o he block s oion). The work-energy heore sys h for ny objec ET = K In his exple he only force h does work is fricion (since boh nd g re perpendiculr o he blocks oion). The ne work done o sop he box is - fd = -gd. This work reoves he kineic energy h he box hd: ET = K 2 - K 1 = 0 - K 1 f g D Pge 5

6 Soluion The ne work done o sop box is - fd = -gd. This work reoves he kineic energy h he box hd: ET = K 2 - K 1 = 0 - K 1 This is he se for boh boxes (se sring kineic energy). A Siple Applicion: ork done by grviy on flling objec h is he speed of n objec fer flling disnce H, ssuing i srs res? g = r = g r cos(0) = gh v 0 = 0 2 gd 2 1 gd 1 2 D 2 1 D 1 Since 1 > 2 we cn see h D 2 > D 1 g = gh ork/kineic Energy Theore: H r g j g = gh = 1 / 2 v v 2gH v D 1 D 2 h bou uliple forces? Coens: Suppose ET = nd he displceen is r. The work done by ech force is: Tie inervl no relevn Run up he sirs quickly or slowly...se ork 1 = 1 r 2 = 2 r TOT = = 1 r + 2 r = ( ) r 1 ET r 2 Since = r o work is done if: = 0 or r = 0 or = 90 o TOT = TOT r I s he ol force h ers!! Pge 6

7 Coens... ork & Energy Quesion = r o work done if = 90 o. o work done by T. T v An inclined plne is ccelering wih consn ccelerion. A box resing on he plne is held in plce by sic fricion. How ny forces re doing work on he block? o work done by. v () 1 (b) 2 (c) 3 Soluion Soluion irs, drw ll he forces in he syse: Recll h = Δr so only forces h hve coponen long he direcion of he displceen re doing work. S S g g The nswer is (b) 2. Pge 7

8 POER Siply pu, power is he re which work ges done (or energy ges rnsferred). Suppose you nd I ech do 1000J of work, bu I do he work in 2 inues while you do i in 1 inue. e boh did he se oun of work, bu you did i ore quickly (you were ore powerful) ork Power ie Power Power is lso needed for ccelerion nd for oving gins he force of grviy. The verge power cn be wrien in ers of he force nd he verge velociy: d P v v v () P J s Undersnding Undersnding A over pushes lrge cre (= 75 kg) fro one side of ruck o he oher side ( disnce of 6 ), exering sedy push of 300. If she oves he cre in 20 s, wh is he power oupu during his ove? h us he power oupu of n elevor oor be such h i cn lif ol ss of 1000 kg, while inining consn speed of 8.0 /s? P d s 90 P d v gv 1000kg kg s 78,000 78k Pge 8

9 lsh Pge 9

Physics 207 Lecture 10

Physics 207 Lecture 10 Phyic 07 Lecure 0 MidTer I Phyic 07, Lecure 0, Oc. 9 Ex will be reurned in your nex dicuion ecion Regrde: Wrie down, on epre hee, wh you wn regrded nd why. Men: 64.6 Medin: 67 Sd. De.: 9.0 Rnge: High 00

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10 Chper 0 Siple Hronic Moion nd Elsiciy Gols or Chper 0 o ollow periodic oion o sudy o siple hronic oion. o sole equions o siple hronic oion. o use he pendulu s prooypicl syse undergoing siple hronic oion.

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

Version 001 test-1 swinney (57010) 1. is constant at m/s.

Version 001 test-1 swinney (57010) 1. is constant at m/s. Version 001 es-1 swinne (57010) 1 This prin-ou should hve 20 quesions. Muliple-choice quesions m coninue on he nex column or pge find ll choices before nswering. CubeUniVec1x76 001 10.0 poins Acubeis1.4fee

More information

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

f t f a f x dx By Lin McMullin f x dx= f b f a. 2 Accumulion: Thoughs On () By Lin McMullin f f f d = + The gols of he AP* Clculus progrm include he semen, Sudens should undersnd he definie inegrl s he ne ccumulion of chnge. 1 The Topicl Ouline includes

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Physics Worksheet Lesson 4: Linear Motion Section: Name:

Physics Worksheet Lesson 4: Linear Motion Section: Name: Physics Workshee Lesson 4: Liner Moion Secion: Nme: 1. Relie Moion:. All moion is. b. is n rbirry coorine sysem wih reference o which he posiion or moion of somehing is escribe or physicl lws re formule.

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor.

1. Consider a PSA initially at rest in the beginning of the left-hand end of a long ISS corridor. Assume xo = 0 on the left end of the ISS corridor. In Eercise 1, use sndrd recngulr Cresin coordine sysem. Le ime be represened long he horizonl is. Assume ll ccelerions nd decelerions re consn. 1. Consider PSA iniilly res in he beginning of he lef-hnd

More information

t v a t area Dynamic Physics for Simulation and Game Programming F a m v v a t x x v t Discrete Dynamics

t v a t area Dynamic Physics for Simulation and Game Programming F a m v v a t x x v t Discrete Dynamics Dynic Physics for Siulion n Ge Progring F Discree Dynics. Force equls ss ies ccelerion (F=) v v v v Mike Biley This work is license uner Creive Coons Aribuion-NonCoercil- NoDerivives.0 Inernionl License

More information

Motion in a Straight Line

Motion in a Straight Line Moion in Srigh Line. Preei reched he mero sion nd found h he esclor ws no working. She wlked up he sionry esclor in ime. On oher dys, if she remins sionry on he moing esclor, hen he esclor kes her up in

More information

Physics 101 Lecture 4 Motion in 2D and 3D

Physics 101 Lecture 4 Motion in 2D and 3D Phsics 11 Lecure 4 Moion in D nd 3D Dr. Ali ÖVGÜN EMU Phsics Deprmen www.ogun.com Vecor nd is componens The componens re he legs of he righ ringle whose hpoenuse is A A A A A n ( θ ) A Acos( θ) A A A nd

More information

Some Inequalities variations on a common theme Lecture I, UL 2007

Some Inequalities variations on a common theme Lecture I, UL 2007 Some Inequliies vriions on common heme Lecure I, UL 2007 Finbrr Hollnd, Deprmen of Mhemics, Universiy College Cork, fhollnd@uccie; July 2, 2007 Three Problems Problem Assume i, b i, c i, i =, 2, 3 re rel

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = = Mi i fd l Phsic 3 Lecure 4 Min poins of od s lecure: Emple: ddiion of elociies Trjecories of objecs in dimensions: dimensions: g 9.8m/s downwrds ( ) g o g g Emple: A foobll pler runs he pern gien in he

More information

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218 Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy

More information

A wire. 100 kg. Fig. 1.1

A wire. 100 kg. Fig. 1.1 1 Fig. 1.1 shows circulr cylinder of mss 100 kg being rised by light, inextensible verticl wire. There is negligible ir resistnce. wire 100 kg Fig. 1.1 (i) lculte the ccelertion of the cylinder when the

More information

Exam #2 PHYSICS 211 Monday July 6 th, 2009 Please write down your name also on the back page of this exam

Exam #2 PHYSICS 211 Monday July 6 th, 2009 Please write down your name also on the back page of this exam Exa #2 PHYSICS 211 Monday July 6 h, 29 NME Please wrie down your nae also on he back pae of his exa 1. The fiure ives how he force varies as a funcion of he posiion. Such force is acin on a paricle, which

More information

PHY2048 Exam 1 Formula Sheet Vectors. Motion. v ave (3 dim) ( (1 dim) dt. ( (3 dim) Equations of Motion (Constant Acceleration)

PHY2048 Exam 1 Formula Sheet Vectors. Motion. v ave (3 dim) ( (1 dim) dt. ( (3 dim) Equations of Motion (Constant Acceleration) Insrucors: Field/Mche PHYSICS DEPATMENT PHY 48 Em Ferur, 5 Nme prin, ls firs: Signure: On m honor, I he neiher gien nor receied unuhoried id on his eminion. YOU TEST NUMBE IS THE 5-DIGIT NUMBE AT THE TOP

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008) MATH 14 AND 15 FINAL EXAM REVIEW PACKET (Revised spring 8) The following quesions cn be used s review for Mh 14/ 15 These quesions re no cul smples of quesions h will pper on he finl em, bu hey will provide

More information

Collision Detection and Bouncing

Collision Detection and Bouncing Collision Deecion nd Bouncing Collisions re Hndled in Two Prs. Deecing he collision Mike Biley mj@cs.oregonse.edu. Hndling he physics of he collision collision-ouncing.ppx If You re Lucky, You Cn Deec

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63) . The -coordine of pricle in curiliner oion i gien b where i in eer nd i in econd. The -coponen of ccelerion in eer per econd ured i gien b =. If he pricle h -coponen = nd when = find he gniude of he eloci

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1.

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1. Viscous Daping: && + & + ω Viscous Daping Suary Shee No Daping Case: & + ω solve A ( ω + α ) Daped ehaviour depends on he relaive size of ω o and / 3 Cases:. Criical Daping Wee 5 Lecure solve sae BC s

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

3 Motion with constant acceleration: Linear and projectile motion

3 Motion with constant acceleration: Linear and projectile motion 3 Moion wih consn ccelerion: Liner nd projecile moion cons, In he precedin Lecure we he considered moion wih consn ccelerion lon he is: Noe h,, cn be posiie nd neie h leds o rie of behiors. Clerl similr

More information

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information. Nme D Moion WS The equions of moion h rele o projeciles were discussed in he Projecile Moion Anlsis Acii. ou found h projecile moes wih consn eloci in he horizonl direcion nd consn ccelerion in he ericl

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Introduction to LoggerPro

Introduction to LoggerPro Inroducion o LoggerPro Sr/Sop collecion Define zero Se d collecion prmeers Auoscle D Browser Open file Sensor seup window To sr d collecion, click he green Collec buon on he ool br. There is dely of second

More information

TEST - 4 (Paper-I) ANSWERS PHYSICS CHEMISTRY MATHEMATICS

TEST - 4 (Paper-I) ANSWERS PHYSICS CHEMISTRY MATHEMATICS TEST - 4 (Pper-I) NSWERS PHYSICS CHEMISTRY MTHEMTICS. (4). (). () 4. () 5. () 6. (4) 7. () 8. () 9. (). (). (). (). () 4. () 5. () 6. (4) 7. () 8. (4) 9. (). (). (). (). () 4. (4) 5. (4) 6. () 7. () 8.

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chapter 2 Exam Momentum & Impulse Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP UNIT # 09 PARABOLA, ELLIPSE & HYPERBOLA PARABOLA EXERCISE - 0 CHECK YOUR GRASP. Hin : Disnce beween direcri nd focus is 5. Given (, be one end of focl chord hen oher end be, lengh of focl chord 6. Focus

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

CBSE 2014 ANNUAL EXAMINATION ALL INDIA

CBSE 2014 ANNUAL EXAMINATION ALL INDIA CBSE ANNUAL EXAMINATION ALL INDIA SET Wih Complee Eplnions M Mrks : SECTION A Q If R = {(, y) : + y = 8} is relion on N, wrie he rnge of R Sol Since + y = 8 h implies, y = (8 ) R = {(, ), (, ), (6, )}

More information

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ]

Question Details Int Vocab 1 [ ] Question Details Int Vocab 2 [ ] /3/5 Assignmen Previewer 3 Bsic: Definie Inegrls (67795) Due: Wed Apr 5 5 9: AM MDT Quesion 3 5 6 7 8 9 3 5 6 7 8 9 3 5 6 Insrucions Red ody's Noes nd Lerning Gols. Quesion Deils In Vocb [37897] The chnge

More information

Physics 100: Lecture 1

Physics 100: Lecture 1 Physics : Lecure Agen for Toy Aice Scope of his course Mesuremen n Unis Funmenl unis Sysems of unis Conering beween sysems of unis Dimensionl Anlysis -D Kinemics (reiew) Aerge & insnneous elociy n ccelerion

More information

Location is relative. Coordinate Systems. Which of the following can be described with vectors??

Location is relative. Coordinate Systems. Which of the following can be described with vectors?? Locion is relive Coordine Sysems The posiion o hing is sed relive o noher hing (rel or virul) review o he physicl sis h governs mhemicl represenions Reerence oec mus e deined Disnce mus e nown Direcion

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

Lecture 3: 1-D Kinematics. This Week s Announcements: Class Webpage: visit regularly

Lecture 3: 1-D Kinematics. This Week s Announcements: Class Webpage:   visit regularly Lecure 3: 1-D Kinemics This Week s Announcemens: Clss Webpge: hp://kesrel.nm.edu/~dmeier/phys121/phys121.hml isi regulrly Our TA is Lorrine Bowmn Week 2 Reding: Chper 2 - Gincoli Week 2 Assignmens: Due:

More information

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F

First, we will find the components of the force of gravity: Perpendicular Forces (using away from the ramp as positive) ma F 1.. In Clss or Homework Eercise 1. An 18.0 kg bo is relesed on 33.0 o incline nd ccelertes t 0.300 m/s. Wht is the coeicient o riction? m 18.0kg 33.0? 0 0.300 m / s irst, we will ind the components o the

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

Motion in One Dimension 2

Motion in One Dimension 2 The curren bsolue lnd speed record holder is he Briish designed ThrusSSC, win urbofn-powered cr which chieved 763 miles per hour (1,8 km/h) for he mile (1.6 km), breking he sound brrier. The cr ws driven

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of. Inroducion o Nuerical Analysis oion In his lesson you will be aen hrough a pair of echniques ha will be used o solve he equaions of and v dx d a F d for siuaions in which F is well nown, and he iniial

More information

Lecture 23 Damped Motion

Lecture 23 Damped Motion Differenial Equaions (MTH40) Lecure Daped Moion In he previous lecure, we discussed he free haronic oion ha assues no rearding forces acing on he oving ass. However No rearding forces acing on he oving

More information

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas 6. Gs dynmics Dr. Gergely Krisóf De. of Fluid echnics, BE Februry, 009. Seed of infiniesiml disurbnces in sill gs dv d, dv d, Coninuiy: ( dv)( ) dv omenum r r heorem: ( ( dv) ) d 3443 4 q m dv d dv llievi

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment Mgneosics Br Mgne As fr bck s 4500 yers go, he Chinese discovered h cerin ypes of iron ore could rc ech oher nd cerin mels. Iron filings "mp" of br mgne s field Crefully suspended slivers of his mel were

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions

Practice Problems - Week #4 Higher-Order DEs, Applications Solutions Pracice Probles - Wee #4 Higher-Orer DEs, Applicaions Soluions 1. Solve he iniial value proble where y y = 0, y0 = 0, y 0 = 1, an y 0 =. r r = rr 1 = rr 1r + 1, so he general soluion is C 1 + C e x + C

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

Available Online :

Available Online : fo/u fopjr Hh# u] ugh vjehs de] foifr ns[ NsMs rqjr e/;e eu dj ';ea iq#" flg ldyi dj] lgrs foifr vusd] ^cu^ u NsMs /;s; ds] j?qcj j[s VsdAA jfpr% euo /ez iz.sr ln~xq# Jh j.nsmnlh egj STUDY PACKAGE Subjec

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Iporan Linear Moion, Speed & Velociy Page: 136 Linear Moion, Speed & Velociy NGSS Sandard: N/A MA Curriculu Fraework (2006): 1.1, 1.2 AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3 Knowledge/Underanding

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

FM Applications of Integration 1.Centroid of Area

FM Applications of Integration 1.Centroid of Area FM Applicions of Inegrion.Cenroid of Are The cenroid of ody is is geomeric cenre. For n ojec mde of uniform meril, he cenroid coincides wih he poin which he ody cn e suppored in perfecly lnced se ie, is

More information

Page 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle

Page 1. Motion in a Circle... Dynamics of Circular Motion. Motion in a Circle... Motion in a Circle... Discussion Problem 21: Motion in a Circle Dynics of Circulr Motion A boy ties rock of ss to the end of strin nd twirls it in the erticl plne. he distnce fro his hnd to the rock is. he speed of the rock t the top of its trectory is. Wht is the

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

Information thermodynamics reveals the robustness of biochemical signal transduction

Information thermodynamics reveals the robustness of biochemical signal transduction Bridging he gp beween er nd life! -Discussion wih Prof. Alber Libchber- 3/6/214 Inforion herodynics revels he robusness of biocheicl signl rnsducion Sosuke Io!! Dep. of Phys., he Univ. of Tokyo, Ph D suden

More information

REAL ANALYSIS I HOMEWORK 3. Chapter 1

REAL ANALYSIS I HOMEWORK 3. Chapter 1 REAL ANALYSIS I HOMEWORK 3 CİHAN BAHRAN The quesions re from Sein nd Shkrchi s e. Chper 1 18. Prove he following sserion: Every mesurble funcion is he limi.e. of sequence of coninuous funcions. We firs

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

An object moving with speed v around a point at distance r, has an angular velocity. m/s m Roion The mosphere roes wih he erh n moions wihin he mosphere clerly follow cure phs (cyclones, nicyclones, hurricnes, ornoes ec.) We nee o epress roion quniiely. For soli objec or ny mss h oes no isor

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Chapter 2 PROBLEM SOLUTIONS

Chapter 2 PROBLEM SOLUTIONS Chper PROBLEM SOLUTIONS. We ssume h you re pproximely m ll nd h he nere impulse rels uniform speed. The elpsed ime is hen Δ x m Δ = m s s. s.3 Disnces reled beween pirs of ciies re ( ) Δx = Δ = 8. km h.5

More information

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1.

white strictly far ) fnf regular [ with f fcs)8( hs ) as function Preliminary question jointly speaking does not exist! Brownian : APA Lecture 1. Am : APA Lecure 13 Brownin moion Preliminry quesion : Wh is he equivlen in coninuous ime of sequence of? iid Ncqe rndom vribles ( n nzn noise ( 4 e Re whie ( ie se every fm ( xh o + nd covrince E ( xrxs

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

[5] Solving Multiple Linear Equations A system of m linear equations and n unknown variables:

[5] Solving Multiple Linear Equations A system of m linear equations and n unknown variables: [5] Solving Muliple Liner Equions A syse of liner equions nd n unknown vribles: + + + nn = b + + + = b n n : + + + nn = b n n A= b, where A =, : : : n : : : : n = : n A = = = ( ) where, n j = ( ); = :

More information

Using hypothesis one, energy of gravitational waves is directly proportional to its frequency,

Using hypothesis one, energy of gravitational waves is directly proportional to its frequency, ushl nd Grviy Prshn Shool of Siene nd ngineering, Universiy of Glsgow, Glsgow-G18QQ, Unied ingdo. * orresponding uhor: : Prshn. Shool of Siene nd ngineering, Universiy of Glsgow, Glsgow-G18QQ, Unied ingdo,

More information

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E. /5/1 9:1 AM Chper 11 Kinemic of Pricle 1 /5/1 9:1 AM Inroducion Mechnic Mechnic i Th cience which decribe nd predic he condiion of re or moion of bodie under he cion of force I i diided ino hree pr 1.

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

JURONG JUNIOR COLLEGE

JURONG JUNIOR COLLEGE JURONG JUNIOR COLLEGE 2010 JC1 H1 8866 hysics utoril : Dynmics Lerning Outcomes Sub-topic utoril Questions Newton's lws of motion 1 1 st Lw, b, e f 2 nd Lw, including drwing FBDs nd solving problems by

More information

X Fx = F A. If applied force is small, book does not move (static), a x =0, then f=f s

X Fx = F A. If applied force is small, book does not move (static), a x =0, then f=f s A Appl ewton s nd Lw X 0 X A I pplied orce is sll, boo does not ove sttic, 0, then s A Increse pplied orce, boo still does not ove Increse A ore, now boo oves, 0 > A A here is soe iu sttic rictionl orce,

More information