Field and Wave Electromagnetic. Chapter.4

Size: px
Start display at page:

Download "Field and Wave Electromagnetic. Chapter.4"

Transcription

1 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems

2 Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc potental V ( ε V ) = ρ Rao Technology Laboratory

3 Posson s s an Laplace s Equatons Assumng ε constant for smple an homogeneous mea V = : ρ : Posson's equaton. ε Laplacan operator V V V V = + +, for cartesan coornate x y z 1 V 1 V ( r ) V = + +, for cylnrcal coornate r r r r φ z = ( V ) (sn V R + θ ) + V, for sphercal coornate R R R R snθ θ θ R snθ φ ρ = ε note : No free charge V = : Laplace's equaton Rao Technology Laboratory 3

4 Posson s s an Laplace s Equatons ex) Sphercal clou problem ρ = (a) R b, ρ= ρ ρ ρ V = = ε ε 1 V 1 V 1 V ρ + + = V= ( R ) (sn θ ) R R R R snθ θ θ R snθ φ ε By symmetry,, = = θ φ 1 V ( ρ ) R = R R R ε V ρ ( R ) = R R R ε V R 1 R b ρ = ρ ρ C = R + R = s sngular pont unless C 1 = 3ε Rao Technology Laboratory 4

5 Posson s s an Laplace s Equatons V E = V = R( ) R C1 =, snce E can not be nfnte at R= ρ E = R R, R b 3ε V R C1 6 ε ρ = + ( b) R b, ρ= V = 1 Vo Vo C ( R ) = R R R R = R Vo C Eo = Vo = R = R at R= b, E = E (homogeneous meum) R R C ρ ρ 3 = b C = b b 3ε 3ε ρ 3 E = R b, R b 3ε R Rao Technology Laboratory 5

6 Posson s s an Laplace s Equatons Total charge n the clou 4π 3 = Q Q= ρ b Eo R 3 4 πε R Vo b b ' ' V C, As R Vo C= R = ρ ρ 3ε R = + 3 R = Bounary conton at R = b 3 3 o ε ρ ρ b = b + C 3ε 6 ' 1 ε ρ ρ ρ 1 1 ρ C = b b = b ( ) = b ' 1 3ε 6ε ε 3 6 ε ρ 3b R ( ) 3ε V = Rao Technology Laboratory 6

7 Unqueness of Electrostatc Soluton Unqueness theorem A soluton of Posson's equaton that satsfes the gven bounary contons s a unque soluton proof of unqueness theorem charge conuctng boes wth surface S, S,..., S at specfe potental 1 S n Assume two solutons V an V of Posson's equaton n τ 1 ρ ρ V1 =, V = ε ε Assume that both V an V satsfy the same bounary conton on S, S,..., S 1 n 1 Rao Technology Laboratory 7

8 Unqueness of Electrostatc Soluton Defne V = V V V =, 1 then from, On conuctng bounares, the potentals t are specfe an = ( fa) = f A+ A f = + ( V V) V V ( V) ( V) ( V V ) v= V τ τ v = ( V V ) ns, s when n enote the unt normal outwar from τ. ( S, S1, S,..., Sn ) V over the conuctng bounares, V = VV 1,, V V, V but surface area S 3 R. R R R = τ lm ( V V ) ns V v= R s Rao Technology Laboratory 8

9 Unqueness of Electrostatc Soluton V for everywhere V v= V = only for τ n other wors V has the same value at all ponts n τ as well as on the conuctng surface V = throughout the volume τ. V = V 1 an there s only one possble soluton. Rao Technology Laboratory 9

10 Metho of mages V V V V = + + = for y> except at the pont charge. x y z The soluton V( x, y, z) shoul satsfy the followng contons V( x,, z) = Q V as R where Rs the stance to Q 4πε R At p ont P ( x ±, y ±, or z ± ), the potental V The potental functon s even wth respect to the x an z coornates V( x, y, z) = V( x, y, z), V( x, y, z) = V( x, y, z) very ffcult to satsfy all these conton Rao Technology Laboratory 1

11 Metho of mages From fgure (b), Q 1 1 V( x, y, z) = ( ) 4 R R πε + for y> = [ + ( ) + ] = [ + ( + ) + ] where, R x y z, R x y z satsfy all the contons mentone above. Ths s a soluton of ths problems by unquness theorem. E = V for y> Rao Technology Laboratory 11

12 Metho of mages F = F1+ F + F3 Q F1 = y 4 πε ( ) Q F = x 4 πε ( 1) Q F 3 = ( x1+ y ) 3 4 πε [( ) + ( ) ] 1 Q F = x + y πε 1 ( 1 + ) ( 1 + ) Note : Explan whether the force s n the recton to the conuctor or not? Rao Technology Laboratory 1

13 Lne Charge an Parallel Conuctng Cylner The mage must be a parallel lne charge nse the cylner n orer to make the cylnrcal l surface at r = a an equpotental t surface. Because of symmetry w.r.t. the lne OP, the mage lne charge must le somewhere along OP. At a pont P wth a stance from the axs. Two unknowns; ρ, Rao Technology Laboratory 13

14 Lne Charge an Parallel Conuctng Cylner Assume ρ = ρ ntellgent guess. l procee to check f ths fals to satsfy the B.C. or not. If ths satsfy all B.C.'s, then t s the only soluton by the unquness theorem. em Electrc fel ntensty an potental at a stance r from a lne charge ρl ρl E = r πε r r ρ r l 1 ρl r V = Err = r ln r πε = r πε r r note) reference pont for zer o potental r can not be, snce potental s fnte. Rao Technology Laboratory 14

15 Lne Charge an Parallel Conuctng Cylner The potental at a pont on or outse the cylnrcal surface: superposton of contrbutons by ρl an ρ, at a pont M ρl r ρl r ρl r VM = ln ln = ln πε r πε r πε r where reference pont for zero potental s at the same stance from ρl an ρ equpotental surface are specfe by r r = constant f an equpotental surface s to conse wth the cylnrcal surface (OM= a) Rao Technology Laboratory 15

16 Lne Charge an Parallel Conuctng Cylner a r cf) If an are constant an MOP common, then =constant. a r Snce ΔOMP an ΔOMP s smlar, r a = = = constant ( a,, fxe) r a r a can be constant over the cylnrcal surface then, P = Inverse pont r cf) As the pont M moves along the cylnrcal surface, r an r changes but ther rato s constant cf) By symmetry, parallel cylnrcal surface surrounng the orgnal lne charge ρ wth raus a an ts axs at a stance to the rght of P s also l equpotental surface. Rao Technology Laboratory 16

17 Ex 4-4) 4) Cross secton of two-wre wre transmsson lne Determne the capactance per unt length between two long gp parallel, crcular conuctng wres of raus a. the axes of the wre are seperate by a stance D. Rao Technology Laboratory 17

18 Ex 4-4) 4) Cross secton of two-wre wre transmsson lne Conuctng surface equpotental surfaces equpotental surfaces can be generate by two parallel lne charge + ρ, ρ seperate by a stance ( D ) =. Potental on 1 Potental on l l V V 1 = ρl a ln πε postve quantty. ρl a = ln πε negatve quantty. because (a<) ρl r r a (cf V = ln ), = = const. πε r r ρ f r s at the same stance from both ρl an l Rao Technology Laboratory 18

19 Ex 4-4) 4) Cross secton of two-wre wre transmsson lne ρ l V1 = ln πε a Q per unt length = ρl C ( per unt length) = Q πε = V 1 ln( ) a [ F / m] a = D = D, 1 ( = D± D a ) choose only +sgn ( D, a) πε πε C = = 1 ln ( D ) + ( D ) 1 cosh ( D / a ) a a cf) ln + 1 = cosh 1 x x x Rao Technology Laboratory 19

20 Pont Charge an Conuctng Sphere Conserng symmetry, assume the mage charge Q (negatve pont charge) nse the sphere an on the lne jonng O an Q. stance from orgn O Q Q to make the sphercal surface R= a a zero-potental surface. both an Q : unknowns Rao Technology Laboratory

21 Pont Charge an Conuctng Sphere At an arbtrary pont M on the equpotental surface V M 1 Q Q ( = + ) = 4πε r r r Q Q a = = const, = r Q Q a a Q = Q, = a E, an V can be calculate from two pont charge Q, Q Rao Technology Laboratory 1

22 Bounary value problem Develop a metho for solvng three-mensonal problems where the bounares, over whch the potental or ts normal ervatve s specfe, conce wth the coornate surfaces of an orthog onal, curvlnear system The metho of seperaton of varables Bounary value problems Drchlet problems : the value of potental s specfe everywhere on the bounares Neumann problems : the normal ervatve of the potental s specfe everywhere on the bounares Mxe bounary-value problems : the potental s specfe over the remanng ones. Rao Technology Laboratory

23 Cartesan coornate Laplace's equaton for scalar electrc potental V n Cartesan coornates V V V x y z + + =, Assume V( x, y, z) = X( x) Y( y) Z( z), where X( x), Y( y), Z( z) are functons of only xy,, an z, respectvely. Then, X ( x ) Y ( y) Zz ( ) Y ( y) Z( z) + X ( x) Z( z) + X ( x) Y ( y) = x y z ve by V( x, y, z), 1 X ( x ) 1 Y ( y ) 1 Z ( z ) + + = X ( x) x Y ( y) y Z( z) z 1 X( x) 1 Y( y) 1 Z( z) = k x x X ( x ) x Y ( y ) y + Z ( z ) z s nepenent of X( x) Y( y) Z( z) + k ( ), ( ), ( ) xx x = + k yy y = + k zz z = x y z kx, ky, kz :separaton constant Rao Technology Laboratory 3

24 Cartesan coornate Remns Possble soluton of X x k X x ''( ) + x ( ) = A, B, A1, B1, A, B can be etermne by the gven bounary conton Rao Technology Laboratory 4

PHZ 6607 Lecture Notes

PHZ 6607 Lecture Notes NOTE PHZ 6607 Lecture Notes 1. Lecture 2 1.1. Defntons Books: ( Tensor Analyss on Manfols ( The mathematcal theory of black holes ( Carroll (v Schutz Vector: ( In an N-Dmensonal space, a vector s efne

More information

8.022 (E&M) Lecture 4

8.022 (E&M) Lecture 4 Topcs: 8.0 (E&M) Lecture 4 More applcatons of vector calculus to electrostatcs: Laplacan: Posson and Laplace equaton url: concept and applcatons to electrostatcs Introducton to conductors Last tme Electrc

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

2. High dimensional data

2. High dimensional data /8/00. Hgh mensons. Hgh mensonal ata Conser representng a ocument by a vector each component of whch correspons to the number of occurrences of a partcular wor n the ocument. The Englsh language has on

More information

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy.

A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy. -1 apactors A capactor s smply two peces of metal near each other, separate by an nsulator or ar. A capactor s use to store charge an energy. A parallel-plate capactor conssts of two parallel plates separate

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 8, 014 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 3 Contnuous Systems an Fels (Chapter 3) Where Are We Now? We ve fnshe all the essentals Fnal wll cover Lectures through Last two lectures: Classcal Fel Theory Start wth wave equatons

More information

MA209 Variational Principles

MA209 Variational Principles MA209 Varatonal Prncples June 3, 203 The course covers the bascs of the calculus of varatons, an erves the Euler-Lagrange equatons for mnmsng functonals of the type Iy) = fx, y, y )x. It then gves examples

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

3 Basic boundary value problems for analytic function in the upper half plane

3 Basic boundary value problems for analytic function in the upper half plane 3 Basc boundary value problems for analytc functon n the upper half plane 3. Posson representaton formulas for the half plane Let f be an analytc functon of z throughout the half plane Imz > 0, contnuous

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Calculation of Coherent Synchrotron Radiation in General Particle Tracer

Calculation of Coherent Synchrotron Radiation in General Particle Tracer Calculaton of Coherent Synchrotron Raaton n General Partcle Tracer T. Myajma, Ivan V. Bazarov KEK-PF, Cornell Unversty 9 July, 008 CSR n GPT D CSR wake calculaton n GPT usng D. Sagan s formula. General

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

For all questions, answer choice E) NOTA" means none of the above answers is correct.

For all questions, answer choice E) NOTA means none of the above answers is correct. 0 MA Natonal Conventon For all questons, answer choce " means none of the above answers s correct.. In calculus, one learns of functon representatons that are nfnte seres called power 3 4 5 seres. For

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1) Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Physics 2113 Lecture 14: WED 18 FEB

Physics 2113 Lecture 14: WED 18 FEB Physcs 2113 Jonathan Dowlng Physcs 2113 Lecture 14: WED 18 FEB Electrc Potental II Danger! Electrc Potental Energy, Unts : Electrc Potental Potental Energy = U = [J] = Joules Electrc Potental = V = U/q

More information

Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem

Topological Sensitivity Analysis for Three-dimensional Linear Elasticity Problem 6 th Worl Congress on Structural an Multscplnary Optmzaton Ro e Janero, 30 May - 03 June 2005, Brazl Topologcal Senstvty Analyss for Three-mensonal Lnear Elastcty Problem A.A. Novotny 1, R.A. Fejóo 1,

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Confirmation of Gauss s law

Confirmation of Gauss s law Gauss s law Consder charge n a generc surface urround charge wth sphercal surface 1 concentrc to charge Consder cone of sold angle dω from charge to surface through the lttle sphere Electrc flu through

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Comparing Charge and Current Simulation Method with Boundary Element Method for Grounding System Calculations in Case of Multi-Layer Soil

Comparing Charge and Current Simulation Method with Boundary Element Method for Grounding System Calculations in Case of Multi-Layer Soil nternatonal Journal of Electrcal & Computer Scences JECS-JENS Vol: No:4 7 Comparng Charge an Current Smulaton Metho wth Bounary Element Metho for Grounng System Calculatons n Case of Mult-Layer Sol Sherf

More information

ENGI9496 Lecture Notes Multiport Models in Mechanics

ENGI9496 Lecture Notes Multiport Models in Mechanics ENGI9496 Moellng an Smulaton of Dynamc Systems Mechancs an Mechansms ENGI9496 Lecture Notes Multport Moels n Mechancs (New text Secton 4..3; Secton 9.1 generalzes to 3D moton) Defntons Generalze coornates

More information

LETTER A Mathematical Proof of Physical Optics Equivalent Edge Currents Based upon the Path of Most Rapid Phase Variation

LETTER A Mathematical Proof of Physical Optics Equivalent Edge Currents Based upon the Path of Most Rapid Phase Variation 659 A Mathematcal Proof of Physcal Optcs Equvalent Ege Currents Base upon the Path of Most Rap Phase Varaton Suomn CUI a), Nonmember, Ken-ch SAKINA, an Makoto ANDO, Members SUMMARY Mathematcal proof for

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Numerical Solution to Laplace s Equation

Numerical Solution to Laplace s Equation Numercal Soluton to Laplace s Equaton Carleton Unversty Department of Electroncs ELEC 3105 Laboratory Exercse 1 July 8 015 PRE-LABORATORY EXERCISE You need to complete the pre-lab and have the TA sgn off

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. ME 270 Fall 2012 Fnal Exam Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52 ontents ommonly Used Formulas. Estmaton, pproxmaton and Errors. Percentages. Polynomals and Formulas 8. Identtes and Factorzaton. Equatons and Inequaltes 66 6. Rate and Rato 8 7. Laws of Integral Indces

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Phys102 General Physics II

Phys102 General Physics II Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Electric Potential Energy & Potential. Electric Potential Energy. Potential Energy. Potential Energy. Example: Charge launcher

Electric Potential Energy & Potential. Electric Potential Energy. Potential Energy. Potential Energy. Example: Charge launcher Electrc & Electrc Gravtatonal Increases as you move farther from Earth mgh Sprng Increases as you ncrease sprng extenson/comp resson Δ Increases or decreases as you move farther from the charge U ncreases

More information

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim

Causal Diamonds. M. Aghili, L. Bombelli, B. Pilgrim Causal Damonds M. Aghl, L. Bombell, B. Plgrm Introducton The correcton to volume of a causal nterval due to curvature of spacetme has been done by Myrhem [] and recently by Gbbons & Solodukhn [] and later

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

% & 5.3 PRACTICAL APPLICATIONS. Given system, (49) , determine the Boolean Function, , in such a way that we always have expression: " Y1 = Y2

% & 5.3 PRACTICAL APPLICATIONS. Given system, (49) , determine the Boolean Function, , in such a way that we always have expression:  Y1 = Y2 5.3 PRACTICAL APPLICATIONS st EXAMPLE: Gven system, (49) & K K Y XvX 3 ( 2 & X ), determne the Boolean Functon, Y2 X2 & X 3 v X " X3 (X2,X)", n such a way that we always have expresson: " Y Y2 " (50).

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Vibrating Beam

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Vibrating Beam GEO-SLOPE Internatonal Ltd, Calgary, Alberta, Canada www.geo-slope.com Introducton Vbratng Beam Ths example looks at the dynamc response of a cantlever beam n response to a cyclc force at the free end.

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Ch. 7 Lagrangian and Hamiltonian dynamics Homework Problems 7-3, 7-7, 7-15, 7-16, 7-17, 7-18, 7-34, 7-37, where y'(x) dy dx Δ Δ Δ. f x.

Ch. 7 Lagrangian and Hamiltonian dynamics Homework Problems 7-3, 7-7, 7-15, 7-16, 7-17, 7-18, 7-34, 7-37, where y'(x) dy dx Δ Δ Δ. f x. Ch. 7 Laranan an Hamltonan namcs Homewor Problems 7-3 7-7 7-5 7-6 7-7 7-8 7-34 7-37 7-40 A. revew o calculus o varatons (Chapter 6. basc problem or J { ( '(; } where '( For e en ponts an ntereste n the

More information

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016 The Noether theorem Elsabet Evarsson Analytcal mechancs - FYGB08 January, 2016 1 1 Introucton The Noether theorem concerns the connecton between a certan kn of symmetres an conservaton laws n physcs. It

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q For orthogonal curvlnear coordnates, eˆ grad a a= ( aˆ ˆ e). h q (98) Expandng the dervatve, we have, eˆ aˆ ˆ e a= ˆ ˆ a h e + q q 1 aˆ ˆ ˆ a e = ee ˆˆ ˆ + e. h q h q Now expandng eˆ / q (some of the detals

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point. Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y

More information

Scattering by a perfectly conducting infinite cylinder

Scattering by a perfectly conducting infinite cylinder Scatterng by a perfectly conductng nfnte cylnder Reeber that ths s the full soluton everywhere. We are actually nterested n the scatterng n the far feld lt. We agan use the asyptotc relatonshp exp exp

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

A Generalization Of Gauss's Theorem In Electrostatics

A Generalization Of Gauss's Theorem In Electrostatics Proc. EA Annual Meetng on Electrostatcs A Generalzaton Of Gauss's Theorem In Electrostatcs Ishnath Pathak B.Tech tuent Dept. of Cvl Engneerng Inan Insttute Of Technology North Guwahat, Guwahat- 7839, Ina

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Numerical Solution to Laplace s Equation

Numerical Solution to Laplace s Equation Numercal Soluton to Laplace s Equaton Carleton Unversty Department of Electroncs ELEC 3105 Laboratory Exercse 1 January 019 PRE-LABORATORY EXERCISE You need to complete the pre-lab and have the TA sgn

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information