A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy.

Size: px
Start display at page:

Download "A capacitor is simply two pieces of metal near each other, separated by an insulator or air. A capacitor is used to store charge and energy."

Transcription

1 -1 apactors A capactor s smply two peces of metal near each other, separate by an nsulator or ar. A capactor s use to store charge an energy. A parallel-plate capactor conssts of two parallel plates separate by a stance, each plate wth area A. If A s large an s small, the plates are effectvely nfnte planes, an the -fel s unform an entrely n-between the plates. W L h V + on top plate area A L W lo V on top plate harges are always on the nse surfaces, because (+) attracts ( ). The outse surfaces reman uncharge. "harge on a capactor" always means + on one plate, on the other plate. apactors are charge by transferrng ( ) charge from one plate to the other. Takng ( ) charge off a plate leaves behn an equal-sze (+) charge. The charges make an -fel, whch means a voltage fference between the plates. The "voltage V on a capactor" always means the voltage fference V between the plates. V V V rato constant V It s always true that V, snce oubles.) An t s always true the, snce f V r (ouble the -fel everywhere an V q k r ˆ (ouble all the charges r everywhere an oubles). So the rato /V s always a constant: f you ouble the charge, the V ( V) s guarantee to ouble. Phys110 Dubson 9/18/009 Unversty of olorao at Bouler

2 - Defnton: capactance of a capactor: V If we ouble the charge, the voltage V oubles, but the rato /V remans constant. [Remember: means + an, V means V.] unts [] coulomb / volt fara (F) Bg capactance (1F) can store a bg wth a small V Small capactance (nf 10 9 F) small store wth a bg V For a parallel-plate capactor, wth ar or vacuum between the plates, the capactance s ε (ar or vacuum separatng plates) o A area A ε o ("epslon-naught") s the same constant that appeare n Gauss's Law. Proof: σ V V ε A ε Rearrangng, we get 0 0 ε. Done. V o A (We have use σ ε for a capactor.) Notce that the capactance of a parallel-plate capactor epens only on the sze an shape of the two metal parts. Ths turns out to true of all capactors. The capactance of two peces of metal epens solely on ther geometry. 0 Note that ths formula means ncreases as ecreases. Why? If s kept fxe, we have the same magntue -fel (because same charge ensty σ /A creates the σ/ε 0 ). Smaller an same-sze means smaller voltage V. Same an smaller V means bgger /V. smaller bgger Phys110 Dubson 9/18/009 Unversty of olorao at Bouler

3 -3 A fara s a huge capactance. For example, suppose we make a parallel plate capactor wth area A 1 m (bg) an separaton 1 mm m. The capactance s only 1 εo A ( )(1) F 9nF 3 10 (tny!) Mult-fara capactors n small packages are mae by makng very small. atomc mensons nm (nanometer) s possble. Store nergy n apactors It takes work to charge a capactor, because t s ffcult to transfer more electrons from the (+) plate to the ( ) plate. The work requre to transfer a charge q across a voltage fference "V" V s P q V. When we charge up a capactor from q ntal 0 to q fnal, we transfer electrons one at a tme. The frst electron s easy to transfer snce V V 0 ntally, but the later electrons take more an more work to transfer as (an V) buls up. q e (easy) e (har) Total work to charge capactor electrostatc potental energy store n capactor U 1 V (We use U for energy to avo confuson wth for electrc fel.) Why the (1/)? Why not P W ext V? Whle transferrng the total charge, the voltage fference ncrease from 0 to V. The average value was (1/)V. We can show ths more rgorously by ong an ntegral. When the voltage fference between the plates s V, the work requre to transfer an extra bt of charge q s U V q (q/) q. The total work ( total P) to charge the capactors s the sum (the ntegral) of the works one to transfer all the bts of charge: q U U q 0 an rewrte U n varous ways usng / V, V, V / : Phys110 Dubson 9/18/009 Unversty of olorao at Bouler

4 U V V Where s ths energy? The -fel contans the energy. It takes work to create an -fel. It turns out that the energy per volume (the energy ensty) of the -fel s gven by U 1 u o Vol. ε ε A "Proof": U V ( ) ε0 (A volume ) U 1 u 0 Vol. ε (Ths s a proof for the specal case of a parallel-plate capactor only, but the result turns out to be true always.) The energy U (1/)V of a charge capactor s n the -fel between the plates. If we pull the plates apart, keepng the charge fxe, we ncrease the volume whch contans -fel an the total energy ncreases. It was har to pull the plates apart, because opposte charges attract. The work we went nto creatng more -fel (same sze -fel over larger volume). It turns out that the work one to assemble a collecton of charges (W ext U q V) s equal to 1 the energy n the -fel create: U ( ε0 ) (volume ntegral) V apactors n parallel or n seres. Symbol for capactor : For capactors n parallel, Phys110 Dubson 9/18/009 Unversty of olorao at Bouler

5 -5 A bg s equvalent to two smaller se by se: "Proof" : For capactors n seres: seres seres apactors flle wth electrcs The capactance of a capactor can be ncrease by placng an nsulator ("electrc") between plates. The electrc s polarze by the charges on the plates. + polarze nsulator For fxe on the plates, the -fel between the plates s reuce when a electrc s nserte because the polarzaton charge on the electrc partally cancels the charge on the plates. smaller smaller V V, smaller V an same on plates larger / V Let's call the orgnal -fel 0 an the fnal, smaller, -fel. The orgnal -fel between the plates has been reuce by a mensonless factor calle K (K electrc constant): 0 K. The electrc constant K s greater than 1 an the value epens on the materal the nsulator s mae of. εo For a capactor flle wth a electrc: KA Phys110 Dubson 9/18/009 Unversty of olorao at Bouler

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

guns in TV tubes. These devices play important role in time varying voltages and currents, in generating and receiving electromagnetic

guns in TV tubes. These devices play important role in time varying voltages and currents, in generating and receiving electromagnetic Lecture 8 DILTRI RORTIS OF MTRILS Lecture 8 - apactor system of charges charge of the sngle plate: total charge of the system = potental fference between plates: S W.H.Freeman & co V r r S // r S V V V

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

Dr. Fritz Wilhelm, Physics 230 E:\Excel files\230 lecture\ch26 capacitance.docx 1 of 13 Last saved: 12/27/2008; 8:40 PM. Homework: See website.

Dr. Fritz Wilhelm, Physics 230 E:\Excel files\230 lecture\ch26 capacitance.docx 1 of 13 Last saved: 12/27/2008; 8:40 PM. Homework: See website. Dr. Frtz Wlhelm, Physcs 3 E:\Excel fles\3 lecture\ch6 capactance.docx of 3 Last saved: /7/8; 8:4 PM Homework: See webste. Table of ontents: h.6. Defnton of apactance, 6. alculatng apactance, 6.a Parallel

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Field and Wave Electromagnetic. Chapter.4

Field and Wave Electromagnetic. Chapter.4 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation Measurement of Radaton: Exposure George Starkschall, Ph.D. Department of Radaton Physcs U.T. M.D. Anderson Cancer Center Purpose To ntroduce the concept of radaton exposure and to descrbe and evaluate

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Chapter 2: Electric Energy and Capacitance

Chapter 2: Electric Energy and Capacitance Chapter : Electrc Energy and Capactance Potental One goal of physcs s to dentfy basc forces n our world, such as the electrc force as studed n the prevous lectures. Expermentally, we dscovered that the

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

CHAPTER 17 Amortized Analysis

CHAPTER 17 Amortized Analysis CHAPTER 7 Amortzed Analyss In an amortzed analyss, the tme requred to perform a sequence of data structure operatons s averaged over all the operatons performed. It can be used to show that the average

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 3 Contnuous Systems an Fels (Chapter 3) Where Are We Now? We ve fnshe all the essentals Fnal wll cover Lectures through Last two lectures: Classcal Fel Theory Start wth wave equatons

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4 Physcs - lectrcty and Magnetsm ecture - Inductance, Crcuts Y&F Chapter 30, Sect - 4 Inductors and Inductance Self-Inductance Crcuts Current Growth Crcuts Current Decay nergy Stored n a Magnetc Feld nergy

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Discussion 11 Summary 11/20/2018

Discussion 11 Summary 11/20/2018 Dscusson 11 Summary 11/20/2018 1 Quz 8 1. Prove for any sets A, B that A = A B ff B A. Soluton: There are two drectons we need to prove: (a) A = A B B A, (b) B A A = A B. (a) Frst, we prove A = A B B A.

More information

Physics 2102 Spring 2007 Lecture 10 Current and Resistance

Physics 2102 Spring 2007 Lecture 10 Current and Resistance esstance Is Futle! Physcs 0 Sprng 007 Jonathan Dowlng Physcs 0 Sprng 007 Lecture 0 Current and esstance Georg Smon Ohm (789-854) What are we gong to learn? A road map lectrc charge lectrc force on other

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Matrix Mechanics Exercises Using Polarized Light

Matrix Mechanics Exercises Using Polarized Light Matrx Mechancs Exercses Usng Polarzed Lght Frank Roux Egenstates and operators are provded for a seres of matrx mechancs exercses nvolvng polarzed lght. Egenstate for a -polarzed lght: Θ( θ) ( ) smplfy

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

CONDUCTORS AND INSULATORS

CONDUCTORS AND INSULATORS CONDUCTORS AND INSULATORS We defne a conductor as a materal n whch charges are free to move over macroscopc dstances.e., they can leave ther nucle and move around the materal. An nsulator s anythng else.

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

Physics 2113 Lecture 14: WED 18 FEB

Physics 2113 Lecture 14: WED 18 FEB Physcs 2113 Jonathan Dowlng Physcs 2113 Lecture 14: WED 18 FEB Electrc Potental II Danger! Electrc Potental Energy, Unts : Electrc Potental Potental Energy = U = [J] = Joules Electrc Potental = V = U/q

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 8, 014 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch: UNIERSITY OF UTH ELECTRICL & COMPUTER ENGINEERING DEPRTMENT ECE 70 HOMEWORK #6 Soluton Summer 009. fter beng closed a long tme, the swtch opens at t = 0. Fnd (t) for t > 0. t = 0 0kΩ 0kΩ 3mH Step : (Redraw

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

kq r 2 2kQ 2kQ (A) (B) (C) (D)

kq r 2 2kQ 2kQ (A) (B) (C) (D) PHYS 1202W MULTIPL CHOIC QUSTIONS QUIZ #1 Answer the followng multple choce questons on the bubble sheet. Choose the best answer, 5 pts each. MC1 An uncharged metal sphere wll (A) be repelled by a charged

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Electrochemistry Thermodynamics

Electrochemistry Thermodynamics CHEM 51 Analytcal Electrochemstry Chapter Oct 5, 016 Electrochemstry Thermodynamcs Bo Zhang Department of Chemstry Unversty of Washngton Seattle, WA 98195 Former SEAC presdent Andy Ewng sellng T-shrts

More information

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation /9/7 Dren rcut: Equaton EE Electrc rcut Analyss I ecture 8(a) an rcuts: Sngle Swtch THE ITADE, THE MIITAY OEGE OF SOUTH AOINA All sles an content 7 Moultre courtesy Street, of harleston, Dr. Gregory S

More information

2. High dimensional data

2. High dimensional data /8/00. Hgh mensons. Hgh mensonal ata Conser representng a ocument by a vector each component of whch correspons to the number of occurrences of a partcular wor n the ocument. The Englsh language has on

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

8.022 (E&M) Lecture 4

8.022 (E&M) Lecture 4 Topcs: 8.0 (E&M) Lecture 4 More applcatons of vector calculus to electrostatcs: Laplacan: Posson and Laplace equaton url: concept and applcatons to electrostatcs Introducton to conductors Last tme Electrc

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008 Reprnt (R34) Accurate ransmsson Measurements Of ranslucent Materals January 2008 Gooch & Housego 4632 36 th Street, Orlando, FL 32811 el: 1 407 422 3171 Fax: 1 407 648 5412 Emal: sales@goochandhousego.com

More information

WYSE Academic Challenge 2004 State Finals Physics Solution Set

WYSE Academic Challenge 2004 State Finals Physics Solution Set WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Statistical Evaluation of WATFLOOD

Statistical Evaluation of WATFLOOD tatstcal Evaluaton of WATFLD By: Angela MacLean, Dept. of Cvl & Envronmental Engneerng, Unversty of Waterloo, n. ctober, 005 The statstcs program assocated wth WATFLD uses spl.csv fle that s produced wth

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

AS-Level Maths: Statistics 1 for Edexcel

AS-Level Maths: Statistics 1 for Edexcel 1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

TP A SOLUTION. For an ideal monatomic gas U=3/2nRT, Since the process is at constant pressure Q = C. giving ) =1000/(5/2*8.31*10)

TP A SOLUTION. For an ideal monatomic gas U=3/2nRT, Since the process is at constant pressure Q = C. giving ) =1000/(5/2*8.31*10) T A SOLUTION For an deal monatomc gas U/nRT, Snce the process s at constant pressure Q C pn T gvng a: n Q /( 5 / R T ) /(5/*8.*) C V / R and C / R + R 5 / R. U U / nr T (/ ) R T ( Q / 5 / R T ) Q / 5 Q

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer. CHE465/865, 6-3, Lecture 1, 7 nd Sep., 6 Gouy-Chapman model (191) The double layer s not as compact as n Helmholtz rgd layer. Consder thermal motons of ons: Tendency to ncrease the entropy and make the

More information

Introductory Cardinality Theory Alan Kaylor Cline

Introductory Cardinality Theory Alan Kaylor Cline Introductory Cardnalty Theory lan Kaylor Clne lthough by name the theory of set cardnalty may seem to be an offshoot of combnatorcs, the central nterest s actually nfnte sets. Combnatorcs deals wth fnte

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Calculation of Coherent Synchrotron Radiation in General Particle Tracer

Calculation of Coherent Synchrotron Radiation in General Particle Tracer Calculaton of Coherent Synchrotron Raaton n General Partcle Tracer T. Myajma, Ivan V. Bazarov KEK-PF, Cornell Unversty 9 July, 008 CSR n GPT D CSR wake calculaton n GPT usng D. Sagan s formula. General

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

( ) Energy storage in CAPACITORs. q C

( ) Energy storage in CAPACITORs. q C Energy storage in CAPACITORs Charge capacitor by transferring bits of charge q at a time from bottom to top plate. Can use a battery to o this. Battery oes work which increase potential energy of capacitor.

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information