WYSE Academic Challenge 2004 State Finals Physics Solution Set

Size: px
Start display at page:

Download "WYSE Academic Challenge 2004 State Finals Physics Solution Set"

Transcription

1 WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage elocty s splacement e by the tme oer whch the splacement occurre. The splacement s zero because the runner returne to the startng pont, so the aerage elocty s zero.. Answer: c. Usng the relatonshp between elocty an acceleraton or constant acceleraton an a coornate system wth east as the poste recton: + at.00 m/s + (.00 m/s )( 8.00 s).0 m/s The negate sgn on the result means that the nal elocty s.0 m/s towar the west. 5. Answer: b. Usng the relatonshp between splacement, elocty, an acceleraton or constant accelerate moton an agan usng a coornate system wth east as the poste recton: x x t + (.00 m/s)( 8.00 s) + (.00 m/s )( 8.00 s).0 m at The negate sgn on the result means that the splacement s.0 m to the west. 6. Answer: c. The object traels to the east, comes to a stop, an then traels west. Use the knematcal equaton relatng ntal elocty,, nal elocty,, acceleraton, a, an splacement, x - x, to etermne how ar east the object raels beore comng to rest: a 0 ( ) (.00 m/s) x x x x a (.00 m/s ).00 m Next, etermne how ar the objects nal poston usng the relatonshp between, a, x, x,, an tme, t: x (.00 m/s)( 8.00 s) + (.00 m/s )( 8.00 s).0 m x + t + at 0 + Ths poston s 6.0 m west o the arthest east poston. The object moe a stance.0 m east an then moe 6.0 m back to the west or a total o stance o 0.0 m. 00 State nals Physcs Soluton Set

2 7. Answer: c. Usng a ertcal coornate system wth the groun at y 0 an upwar poste, the ntal ertcal poston o the projectle s y +0 m an the nal poston s y 0. The ntal ertcal elocty s y ( 0.0 m/s) sn( 0.0 ) 0.0 m/s an the ertcal acceleraton s a constant 9.80 m/s. The tme that the project traels beore reachng the groun can be etermne rom the knematcal relatonshp y ( 0.0 m/s) t ( 9.80 ) y + yt + a t 0 m y m/s t Ths can be sole or t usng the quaratc ormula: 0.0 m / s ± t ( 0.0 m/s) ( 9.80 m/s )( 0.0 m) ( 9.80 m/s ).9s or 0.8s Obously, the poste tme soluton s the one we are seekng. 8. Answer: a. The horzontal component o the ntal elocty, x, s gen by ( 0.0 m/s) cos m/s cos θ x The horzontal component o the acceleraton s zero, so the horzontal elocty s constant. The horzontal component o elocty just beore the projectle reaches the groun s.6 m/s. 9. Answer: b. The mass o an object s a property o that object. It oes not epen on where the object s locate. 0. Answer: a. The acceleraton o the car s ts centrpetal acceleraton gen by a r ( 0.0 m/s) 00 m.00 m/s The roa s lat (horzontal) so the normal orce, N, s equal to the weght o the car, mg. The only horzontal orce s the statc rcton orce, r, between the tres an the roa. Rememberng that the upper lmt o the statc rcton orce s µ s N an applyng Newton's Secon Law mples r ma µ N ma µ ma N ma mg a g.0 m/s 9.80 m/s 0.0. Answer:. Impulse s equal to change n momentum an mpulse s the aerage orce multple by the tme the aerage orce s apple: ae t p p p t p p ae ( 00 kg m/s) ( 00 kg m/s) 0.0 N 0.0 s 00 State nals Physcs Soluton Set

3 . Answer: e. Work, W, s orce,, multple by the component o the splacement n the recton o the orce, r : W r W 0.0 J 5.0 N r.00 m. Answer:. The work-energy theorem states that the work s equal to the change n knetc energy: W KE m m Solng ths equaton or : + W / m (.00 m/s) + ( 0.0 J) /( 0.0 kg).5 m/s. Answer: a. The total change n gratatonal potental energy s PE gra mg h mg snθ 5 ( 80.0 kg)( 9.80 m / s )( m) sn J The bcyclst s 0% ecent at conertng chemcal potental energy nto gratatonal potental energy: PE t gra PE PE chem gra ( 0.00) ( 0.00)( 000 W) 00 W t.7 0 s T 00 W 00 W 5 J 5. Answer:. The translatonal spee,, o a pont n crcular moton s relate to the angular spee, ω, an the raus o the crcular moton, r, by ra re ωr π.00 re s ( 5.0 cm) 8cm/s 6. Answer:. I the angular elocty o the grnng wheel s constant, the net torque on the wheel must be zero. There are two torques actng on the wheel, the motor an the rctonal torque o the metal aganst the wheel These must be equal n magntue to a to zero.. (Note that the normal orce o the metal aganst the wheel causes no torque.) The rctonal orce, r acts a shown n the agram N m 5.00 N m 5.00 N m τ r R r sn 90 Rµ N µ 0.8 R N ( 0.00 m)( 60.0 N) 00 State nals Physcs Soluton Set

4 7. Answer:. Balancng requres the total torque to be zero. I the 0.0 kg s place a stance x to the let o the ulcrum, the total torque about an axs through the ulcrum s τ τ (.0 kg) gx + ( 0) m g( 0.00 m) ( 0.0 kg) g(.80 m) 0 0 kg + τ ulcrum + τ beam + τ 0kg 0 ulcrum beam Solng ths or x. m x beam g ( 0.00 m) + (.00 kg) g(.80 m) ( 0.0 kg) g ( 0.0 kg)( 0.00 m) + (.00 kg)(.80 m) ( 0.0 kg) 8. Answer: b. Drawng ree-boy agrams or each o the masses: m.00 kg 5.00 kg 0.0 N T s the tenson n the rope connectng the two masses. Newton's Secon Law can be wrtten or each mass. Here we only conser components n the horzontal recton wth a coornate system that has towar the rght as the poste recton. or the.00 kg mass: m a T (.00 kg) a or the 5.00 kg mass: 5 m 5 a N T ( 5.00 kg) a 5 Solng each equaton or the acceleraton an settng the two acceleratons equal: T 0.0 N T.00 kg 5.00 kg 0.0 N T 5.00 kg +.00 kg 5.00 kg. N 9. Answer: b. Uner these contons, the olume low rate o the water s unorm. Ths mples A A where A s the cross-sectonal area o the ppe an s the spee o the low. The ppes hae crcular cross-sectons so ths can be rewrtten as π π Applyng Bernoull's equaton to ths system ( h h ) + ( ) + ρ gh + ρ P + ρgh + ρ P P + ρg ρ P Makng the substtuton or ere aboe, P P P + ρg.8 0 ( ) 6 ( ) ( ) ( 0.0 cm) h h + ρ.00 0 N/m kg/m 6 N/m ( 0.0 cm) ( 5.00 m/s) 00 State nals Physcs Soluton Set

5 0. Answer: a. The work ae to the gas urng ths process can be etermne rom the rst Law o Thermoynamcs U Q W ( 60 J) 80 J Q U + W 0 J + The change n entropy s gen by S Q T 80 J 0. J/K.5 K Note that the temperature must be on an absolute scale. The numercal alue o the temperature n Kelns s obtane rom the numercal alue o the Celsus temperature by ang Answer: a. Coulomb's law relates the electrostatc orce to the charges an the separaton stance. Takng the rato o the rst orce to the secon orce: kq Q R kq Q R q ( q) R q( q) ( R) 8. Answer: c. The buoyant orce on an object epens on the ensty o the lu, ρ, the olume submerge, V, an the acceleraton o graty, g, an s gen by buoyant ρ Vg (.50 0 kg/cm )( 00 cm )( 9.80 m/s ) 5.88 N. Answer: c. Usng the rght-han rule, the magnetc el n the plane o the crcular loop ponts nto the page n the regon nse the loop. The magnetc el create by a long straght wre has a magntue nersely proportonal to the stance rom the wre. As the crcular loop moes away rom the wre, the magntue o the magnetc el, an hence the lux, s ecreasng. The magnetc el create by the nuce current opposes ths ecrease by ang to the magnetc el pontng nto the page. Agan applyng the rghthan rule, the current nuce n the crcular loop must low clockwse.. Answer: c. Ths may be remembere as a act that currents n opposte rectons are repelle by the magnetc nteracton between them. Howeer, the rght han rules or the recton o magnetc el aroun a straght wre an recton o magnetc orce on current can be use. Conser the two parallel wres shown below wth currents lowng n opposte rectons: The upper wre creates a magnetc el pontng nto the page at the poston o the lower. Usng the rght-han rule or the magnetc orce on the lower current ue to a magnetc el pontng nto the page, the magnetc orce on the lower wre s towar the bottom o the page. Ths s a repulse orce. 00 State nals Physcs Soluton Set

6 5. Answer: c. The.00 Ω an the let.00 Ω resstors are n parallel. They can be replace by an equalent resstance R A (.00 Ω)(.00 Ω) (.00 Ω) + (.00 Ω). Ω The equalent resstance R A wll be n seres wth the rght.00 Ω resstor. The equalent resstance wll be R +.00 Ω.Ω +.00 Ω. Ω R A 6. Answer:. rom the knetc theory o gases, the rms spee o gas molecules s proportonal to the square root o the absolute temperature. Ths mples rms rms T rms rms T T T 00 K 00 K ( 00 m/s) 00 m/s 7. Answer: c. In two-slt ntererence, constructe ntererence rnges occur uner the conton y n λ L where n s the orer o the rnge, λ s the waelength o the lght llumnatng the slts, s the separaton o the slts, y s the poston on the screen, an L s the stance rom the slts to the screen. The erence between the poston o the seenth orer an thr orer brght rnges on the screen, D, wll be gen by (.00 0 m)(.00 0 m) 7λL λl λl D 7 D y7 y λ m 500 nm L (.00 m) 8. Answer: b. In a seres crcut, whch contans an nuctor an no capactor, the current lags the oltage n phase. 9. Answer: b. The relatonshp between waelength an photon energy s hc E λ hc λ E 8 (.66 0 J s)( m/s) 6 7 (.00 ev)(.60 0 J/eV). 0 m nm 0. Answer: a. Applyng the thn lens equaton whch relates object poston, s, mage poston, s', an ocal length, : + s s s s s ( 0 cm)( 0 cm) ( 0 cm) ( 0 cm) cm The mage stance s negate because the mage s rtual. 00 State nals Physcs Soluton Set

7 . Answer: e. The ncent angle s the complementary angle to the 5.0 n the agram. Applyng Snell's Law to ths stuaton: (.00)( sn 6.0 ) n snθ n snθ n snθ θ arcsn 8. 5 n.600 Angle θ s the complementary angle to the reracte angle θ, so θ Answer: e. The two orces actng on the person are the orce o the scale an the orce o graty. Newton's Secon Law apple to the person s scale + graty ma 980 N mg m where we hae use a coornate system wth upwar poste. Solng ths or the mass m: (.00 m/s ) 980 N m.00 m/s + g 980 N.00 m/s m/s 8.kg. Answer: b. Ths s a act rom partcle physcs.. Answer: a. The Bohr moel o the atom prects energy leels or one-electron atoms to be E n.6 ev Z n where n s the prncpal quantum number an Z s the atomc number o the atom. Regarless o the atomc number, the lowest energy leel occurs when n. The next hgher energy leel occurs or n. 5. Answer: e. The mean letme, τ, o the sotope s relate to the hal-le, t / by /.00 yr τ t 5.77 yr ln ln The actty o a sample o raoacte sotope s relate to the number o nucle, N, an the mean letme, τ, o the sample: N A τ yr.7 0 / yr 00 State nals Physcs Soluton Set

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM

University of Bahrain College of Science Dept. of Physics PHYCS 102 FINAL EXAM Unversty o Bahran College o Scence Dept. o Physcs PHYCS 10 FINAL XAM Date: 15/1/001 Tme:Two Hours Name:-------------------------------------------------ID#---------------------- Secton:----------------

More information

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement. Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

More information

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force? Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any

More information

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions. Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulse-oentu theore. In words, the theore states that the change n lnear oentu

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11)

RE 11.e Mon. Review for Final (1-11) HW11: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. Final Exam (Ch. 1-11) We..7 -.9, (.) Moton Wth & Wthout Torque E. ab r. otaton ab Evals.0 Quantzaton, Quz, ect Evals E.e Mon. evew or nal (-) HW: Pr s 39, 57, 64, 74, 78 Sat. 9 a.m. nal Exam (Ch. -) Usng ngular Momentum The

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

Prof. Dr. I. Nasser T /16/2017

Prof. Dr. I. Nasser T /16/2017 Pro. Dr. I. Nasser T-171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons -,, 3, 4, 5 - Moton n 1 dmenson We le n a 3-dmensonal world, so why bother analyzng 1-dmensonal stuatons? Bascally, because

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART 2) LECTURE NO. Slde Kng Saud Unersty College of Scence Physcs & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 5: MOTION IN 1-D (PART ) LECTURE NO. 6 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

What happens when objects fall?!? g - The Magic Number

What happens when objects fall?!? g - The Magic Number NAME: DATE: PERIOD: AP1 PHYSICS Freeall Notes Teacher Key - Physcsts DO NOT KNOW WHY objects all! But, we can escrbe HOW they all As they all, THEY GO FASTER Ths means that they ACCELERATE! What happens

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES) PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to

More information

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Lnear Momentum and Collsons m = 3. kg r = ( ˆ ˆ j ) P9., r r (a) p m ( ˆ ˆj ) 3. 4. m s = = 9.. kg m s Thus, p x = 9. kg m s and p y =. kg m s (b) p px p y p y θ = tan = tan (.33) = 37 px = +

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

List of the Main Concepts. Study Suggestions. List Continued. List Continued. List Continued. List Continued

List of the Main Concepts. Study Suggestions. List Continued. List Continued. List Continued. List Continued Stuy Suggestons. ecture notes. evew the man concepts.. Prevous exams an quzzes.. Homework, especally textbook problems. 4. hapter summares n the textbook. AWAYS: emember n revewng problems, concentrate

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds

Use these variables to select a formula. x = t Average speed = 100 m/s = distance / time t = x/v = ~2 m / 100 m/s = 0.02 s or 20 milliseconds The speed o a nere mpulse n the human body s about 100 m/s. I you accdentally stub your toe n the dark, estmatethe tme t takes the nere mpulse to trael to your bran. Tps: pcture, poste drecton, and lst

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle.

From Newton s 2 nd Law: v v. The time rate of change of the linear momentum of a particle is equal to the net force acting on the particle. From Newton s 2 nd Law: F ma d dm ( ) m dt dt F d dt The tme rate of change of the lnear momentum of a artcle s equal to the net force actng on the artcle. Conseraton of Momentum +x The toy rocket n dee

More information

Motion in One Dimension

Motion in One Dimension Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Physic 231 Lecture 14

Physic 231 Lecture 14 Physc 3 Lecture 4 Man ponts o last lecture: Ipulses: orces that last only a short te Moentu p Ipulse-Moentu theore F t p ( ) Ipulse-Moentu theore ptot, p, p, p, p, ptot, Moentu and external orces F p ext

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy

Chapter 8. Momentum Impulse and Collisions. Analysis of motion: 2 key ideas. Newton s laws of motion. Conservation of Energy Chapter 8 Moentu Ipulse and Collsons Analyss o oton: key deas Newton s laws o oton Conseraton o Energy Newton s Laws st Law: An object at rest or traelng n unor oton wll rean at rest or traelng n unor

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

Field and Wave Electromagnetic. Chapter.4

Field and Wave Electromagnetic. Chapter.4 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc

More information

Conservation of Energy

Conservation of Energy Chapter 8 Conseraton o Ener 8.3 U + K = U + K mh + = m ( ) + m ( 3.5 ) = ( ) + F= m = 3. n+ m= m 3. n = m = m =.m 3 n =. 5. 9.8 m s =.98 N downward FIG. 8.3 (5. 3.) Δ A B 8.4 (a) K = W = W = m Δ h = m

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE. Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function Commun. Theor. Phys. Bejng, Chna 49 008 pp. 97 30 c Chnese Physcal Socety Vol. 49, No., February 15, 008 Hgh-Orer Hamlton s Prncple an the Hamlton s Prncple of Hgh-Orer Lagrangan Functon ZHAO Hong-Xa an

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Lesson 4: Relative motion, Forces, Newton s laws (sections )

Lesson 4: Relative motion, Forces, Newton s laws (sections ) Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.6-4.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

2.00 kg 4.00 kg 3.00 kg m. y com. (2.00 kg)(0.500 m) 4.00 kg m 3.00 kg m m m kg 4.00 kg 3.00 kg m.

2.00 kg 4.00 kg 3.00 kg m. y com. (2.00 kg)(0.500 m) 4.00 kg m 3.00 kg m m m kg 4.00 kg 3.00 kg m. Chapter 9. We use Eq. 9-5 to sole or ( x, y ). (a) The x coordnate o the system s center o mass s: x com x m x m (.00 kg)(.0 m) 4.00 kg 0.600 m.00 kg x mx m m m.00 kg 4.00 kg.00 kg 0.500 m. Solng the equaton

More information

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V. Physcs 4 Solutons to Chapter 3 HW Chapter 3: Questons:, 4, 1 Problems:, 15, 19, 7, 33, 41, 45, 54, 65 Queston 3-1 and 3 te (clockwse), then and 5 te (zero), then 4 and 6 te (counterclockwse) Queston 3-4

More information

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8) Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4 Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1 4V I 2V (I + ) 0 0 --- 3V 1 2 4Ω 6Ω 3Ω 3/27/2006 Crcuts ( F.obllard) 1 Introducton: Electrcal crcuts are ubqutous n the modern world, and t s dffcult to oerstate ther mportance. They range from smple drect

More information

Review & Summary. Questions

Review & Summary. Questions QUESTIONS 87 Reew & Summar Magnetc Fel A magnetc fel s efne n terms of the force F : actng on a test partcle wth charge q mong through the fel wth eloct : The SI unt for : : : F : q : :. s the tesla (T):

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Chapter 12 Equilibrium & Elasticity

Chapter 12 Equilibrium & Elasticity Chapter 12 Equlbrum & Elastcty If there s a net force, an object wll experence a lnear acceleraton. (perod, end of story!) If there s a net torque, an object wll experence an angular acceleraton. (perod,

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes

ESCI 341 Atmospheric Thermodynamics Lesson 6 Thermodynamic Processes ESCI 341 Atmosherc Thermodynamcs Lesson 6 Thermodynamc Processes Reerences: An Introducton to Atmosherc Thermodynamcs, Tsons Introducton to Theoretcal Meteorology, Hess Physcal Chemstry (4 th edton), Lene

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

Lecture 09 Systems of Particles and Conservation of Linear Momentum

Lecture 09 Systems of Particles and Conservation of Linear Momentum Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information