# Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Size: px
Start display at page:

Download "Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty"

Transcription

1 Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n HACTproect/HACT_Numercal_Appendx.pdf, t s useful to frst really understand the case wthout uncertanty: ρv(a) = max u(c) + v (a)[w + ra c] (1) c wth a state constrant a a, and we assume r < ρ and w > 0 and a > w/r. For future reference denote by s(a) = w + ra c(a) where c(a) s the optmal choce n (1). The state constrant mples s(a) = w + ra c(a) 0. Snce u (c(a)) = v (a) and snce u s concave therefore v (a) u (w + ra) (2) As above, we use a fnte dfference method and approxmate the functon v at J dscrete ponts n the space dmenson, a, = 1,..., J. We use equspaced grds, denote by a the dstance between grd ponts, and use the short-hand notaton v v(a ). Agan as before, one can mplement ether a so-called explct method or an mplct method. As usual, the mplct method s the preferred approach because t s both more effcent and more stable/relable. However, the explct method s easer to explan so we turn to t frst. 1.1 Explct Method Smplest Possble Algorthm. See matlab program HJB_no_uncertanty_smple.m. Gven that there s no uncertanty and r < ρ, we know the followng propertes of the soluton to (1): frst, savngs wll be negatve everywhere, s(a) 0 all a; and the borrowng constrant wll always bnd and hence (2) holds wth equalty. Gven these propertes, an extremely smple algorthm can be used. In partcular, use a backward dfference approxmaton to v everywhere v = v v 1, 2, v 1 = u (w + ra 1 ) (3) a 1

2 and update the value functon usng v n + ρv n = u(c n ) + (v n ) [w + ra c n ] (4) where c n = (u ) 1 [(v n ) ]. As above s the step sze of the explct scheme whch cannot be too large (CFL condton). A small enough also guarantees that the Barles-Sougands condtons are satsfed. See and prnceton.edu/~moll/hactproect/hact_numercal_appendx.pdf for more dscusson. Summary of Algorthm. Summarzng, the algorthm for fndng a soluton to the HJB equaton (1) s as follows. Guess v 0, = 1,..., J and for n = 0, 1, 2,... follow 1. Compute (v n ) from (3). 2. Compute c n from c n = (u ) 1 [(v n ) ] 3. Fnd from (4). 4. If s close enough to v n : stop. Otherwse, go to step 1. Upwnd Scheme. Note that (3) s an upwnd scheme. As explaned above, an upwnd scheme uses a forward dfference approxmaton whenever the drft of the state varable (here, savngs s n = w + ra c n ) s postve and a backwards dfference whenever t s negatve. In the specal case wthout uncertanty, we know that savngs are negatve everywhere and hence that one should always use the backwards dfference approxmaton. Instead of mposng that the backwards dfference s always used, we could have let the upwnd scheme choose the correct approxmaton as follows: frst compute savngs accordng to both the backwards and forward dfference approxmatons v,f and v,b s,f = w + ra (u ) 1 (v,f ), s,b = w + ra (u ) 1 (v,b) where we suppress n superscrpts for notatonal smplcty. Then use the followng approxmaton for v : v = v,f 1 {s,f >0} + v,b1 {s,b <0} + v 1 {s,f <0<s,B } (5) where 1 { } denotes the ndcator functon, and where v = u (w + ra ). Ths scheme would fnd that 1 {s,b <0} for all 2 and hence would pck the approxmaton n (3) by tself. Ths slghtly more general soluton algorthm s programmed up n HJB_no_uncertanty_explct.m. 1.2 Implct Method See HJB_no_uncertanty_mplct.m and also see Secton 1.2 of edu/~moll/hactproect/hact_numercal_appendx.pdf for a detaled explanaton n the 2

3 verson wth uncertanty. Relatve to the explct scheme n (4), an mplct dffers n how v n s updated. In partcular, s now mplctly defned by the equaton v n + ρ = u(c n ) + ( ) F (w + ra c n,f ) + + ( ) B(w + ra c n,b) (6) where c n = (u ) 1 [(v n ) ] and (v n ) s gven by (5). For any number x, the notaton x + means the postve part of x,.e. x + = max{x, 0} and analogously x = mn{x, 0},.e. [w+ra c n,f ]+ = max{w + ra c n,f, 0} and [w + ra c n,b ] = mn{w + ra c n,b, 0}. Equaton (6) consttutes a system of J lnear equatons, and t can be wrtten n matrx notaton usng the followng steps. Substtutng the fnte dfference approxmatons to the dervatves, and defnng s n,f = w + ra c n,f and smlarly for sn,b, (6) s v n + ρ = u(c n ) + vn+1 +1 vn+1 a (s n,f ) + + vn+1 1 a Collectng terms wth the same subscrpts on the rght-hand sde (s n,b) v n + ρ = u(c n ) + 1 x + y + +1 z where x = (sn,b ) a, y = (sn,f )+ + (sn,b ) a a, z = (sn,f )+ a (7) Note that mportantly x 1 = z J = 0 so v0 n+1 and J+1 are never used. Equaton (7) s a lnear system whch can be wrtten n matrx notaton as: 1.3 Results 1 (vn+1 v n ) + ρ = u n + A n, A n = Fgure 1 plots the functon s(a). y 1 z x 2 y 2 z x 3 y 3 z xi y I 3

4 0 x s(a) a Fgure 1: Savngs Behavor n Model Wthout Uncertanty 2 Solvng the Neoclasscal Growth Model See matlab codes HJB_NGM.m and HJB_NGM_mplct. Fnally and for completeness, let us solve the neoclasscal growth model whch s the prototypcal dynamc programmng problem n macroeconomcs. The HJB equaton s ρv (k) = max c U(c) + V (k)[f (k) δk c] (8) As before s(k) = F (k) δk c(k) and c(k) = (U ) 1 (V (k)) denote optmal savngs and consumpton. We approxmate V at I dscrete grds ponts and use the short-hand notaton V = V (k ). We frst mplement an explct and then an mplct method. As usual, the mplct method s preferable due to better effcency and stablty propertes. 2.1 Explct Method See HJB_NGM.m. The explct method starts wth a guess V 0 = (V1 0,..., VI 0 ) and for n = 0, 1, 2,... updates V accordng to V n+1 V n + ρv n = U(c n ) + (V n ) [F (k ) δk c n ] (9) c n = (U ) 1 [(V n ) ] (10) Upwnd Scheme. The dervatve V (k ) s agan approxmated usng an upwnd scheme. That s compute savngs accordng to both the backwards and forward dfference approxma- 4

5 tons V,F and V,B s,f = F (k ) δk (U ) 1 (V,F ), s,b = F (k ) δk (U ) 1 (V,B) and then use the followng approxmaton for V : V = V,F 1 {s,f >0} + V,B1 {s,b <0} + V 1 {s,f <0<s,B } where V concave. = u (F (k ) δk ). Note agan that the case s,f > s,b wll not occur because V s Remark. We know that the neoclasscal growth model (8) has a steady state k satsfyng F (k ) = ρ + δ and that at ths steady state V (k ) = U (F (k ) δk ). Note that the upwnd scheme n effect uses the condton on the value functon at the steady state k as a boundary condton. It then uses a backward dfference approxmaton below the steady state, and a forward dfference approxmaton above the steady state. 2.2 Implct Method See HJB_NGM_mplct.m. The algorthm s exactly the same as n Secton 1.2. Also see Secton 1.2 of Results. Fgure 2 plots the savngs polcy functon n the neoclasscal growth model s(k) k Fgure 2: Savngs Polcy Functon n Neoclasscal Growth Model 5

### CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

### Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

### Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

### Appendix B. The Finite Difference Scheme

140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

### Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

### MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

### Errors for Linear Systems

Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons Â and ˆb avalable. Then the best thng we can do s to solve Âˆx ˆb exactly whch

### Difference Equations

Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

### APPENDIX A Some Linear Algebra

APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

### Chapter Newton s Method

Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

### U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

### DUE: WEDS FEB 21ST 2018

HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

### Report on Image warping

Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

### The Geometry of Logit and Probit

The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

### 2 Finite difference basics

Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

### Some modelling aspects for the Matlab implementation of MMA

Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

### Lecture Notes on Linear Regression

Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

### Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

### Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

### Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

### Lecture 12: Discrete Laplacian

Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

### How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

How Strong Are Weak Patents? Joseph Farrell and Carl Shapro Supplementary Materal Lcensng Probablstc Patents to Cournot Olgopolsts * September 007 We study here the specal case n whch downstream competton

### Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

### Online Appendix. t=1 (p t w)q t. Then the first order condition shows that

Artcle forthcomng to ; manuscrpt no (Please, provde the manuscrpt number!) 1 Onlne Appendx Appendx E: Proofs Proof of Proposton 1 Frst we derve the equlbrum when the manufacturer does not vertcally ntegrate

### Notes on Kehoe Perri, Econometrica 2002

Notes on Kehoe Perr, Econometrca 2002 Jonathan Heathcote November 2nd 2005 There s nothng n these notes that s not n Kehoe Perr NBER Workng Paper 7820 or Kehoe and Perr Econometrca 2002. However, I have

### 1 Matrix representations of canonical matrices

1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

### APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

### princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

### Linear Regression Analysis: Terminology and Notation

ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

### Numerical Heat and Mass Transfer

Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

### 3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

### Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

### EEE 241: Linear Systems

EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

### Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

### Economics 101. Lecture 4 - Equilibrium and Efficiency

Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

### New Method for Solving Poisson Equation. on Irregular Domains

Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

### The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

### NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

### 1 Convex Optimization

Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

### The Minimum Universal Cost Flow in an Infeasible Flow Network

Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

### Feature Selection: Part 1

CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

### Time-Varying Systems and Computations Lecture 6

Tme-Varyng Systems and Computatons Lecture 6 Klaus Depold 14. Januar 2014 The Kalman Flter The Kalman estmaton flter attempts to estmate the actual state of an unknown dscrete dynamcal system, gven nosy

### LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

### Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

### College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

### Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

### 2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

### Foundations of Arithmetic

Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

### 4DVAR, according to the name, is a four-dimensional variational method.

4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

### Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

### CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

### Math 217 Fall 2013 Homework 2 Solutions

Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

### Linear Approximation with Regularization and Moving Least Squares

Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

### a b a In case b 0, a being divisible by b is the same as to say that

Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

### Implicit Integration Henyey Method

Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

### Numerical Transient Heat Conduction Experiment

Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

### Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

### A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

### COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

### BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

### Lab session: numerical simulations of sponateous polarization

Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

### STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

### Chapter 4: Root Finding

Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

### Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

### Canonical transformations

Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

### 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

### Hidden Markov Models

Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

### THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

### Supporting Information

Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

### ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

### Homework Notes Week 7

Homework Notes Week 7 Math 4 Sprng 4 #4 (a Complete the proof n example 5 that s an nner product (the Frobenus nner product on M n n (F In the example propertes (a and (d have already been verfed so we

### Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

### Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

### Maximal Margin Classifier

CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

### 1 GSW Iterative Techniques for y = Ax

1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

### Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

### CSCE 790S Background Results

CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

### ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

### Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

### PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

### Math1110 (Spring 2009) Prelim 3 - Solutions

Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

### Exercise Solutions to Real Analysis

xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

### Problem Set 9 Solutions

Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

### 1 The Sidrauski model

The Sdrausk model There are many ways to brng money nto the macroeconomc debate. Among the fundamental ssues n economcs the treatment of money s probably the LESS satsfactory and there s very lttle agreement

### Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

### Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning

Journal of Machne Learnng Research 00-9 Submtted /0; Publshed 7/ Erratum: A Generalzed Path Integral Control Approach to Renforcement Learnng Evangelos ATheodorou Jonas Buchl Stefan Schaal Department of

### The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

### Physics 5153 Classical Mechanics. Principle of Virtual Work-1

P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

### The Finite Element Method: A Short Introduction

Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

### = z 20 z n. (k 20) + 4 z k = 4

Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

### Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

### High resolution entropy stable scheme for shallow water equations

Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

### U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

### Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

### n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

### SEMI-LAGRANGIAN SCHEMES FOR LINEAR AND FULLY NON-LINEAR DIFFUSION EQUATIONS

SEMI-LAGRANGIAN SCHEMES FOR LINEAR AND FULLY NON-LINEAR DIFFUSION EQUATIONS KRISTIAN DEBRABANT AND ESPEN R. JAKOBSEN Abstract. For lnear and fully non-lnear dffuson equatons of Bellman-Isaacs type, we

### AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

AE/ME 339 Comptatonal Fld Dynamcs (CFD) Comptatonal Fld Dynamcs (AE/ME 339) Implct form of dfference eqaton In the prevos explct method, the solton at tme level n,,n, depended only on the known vales of,

### Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng