EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

Size: px
Start display at page:

Download "EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)"

Transcription

1 EE 545 POWER EECTRONICS I ecture #4: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

2 Objectives Overview of Discontinuous Conduction Mode Buck Converter Analysis (DCM) Simulation of Buck in DCM Boost and Buck Boost Converter Analysis (DCM) Voltage Conversion Ratio (M=Gain) Average Input and Output Currents Output Voltage Ripple via Charge approximation Boundary Between CCM and DCM Examples of Analysis and Design for Boost and Buck Boost Converters in CCM/DCM PSPICE Simulation Verification

3 DCM Buck Converter i min = 0 Means inductor current starts at zero (i (0)=0), and ends at zero (i (T)=0) For a certain inductor value, DCM occurs as load is low,, Io is small. Io<Io,critical - In DCM, Vo/Vin= M= f(d,t,r,) Vo/Vin= M= f(d,d ) and D = f(d,t,r,)

4 Intuitive Concepts (All other variables are constant) Smaller Smaller Io arger T arger inductor current slope arger inductor current ripple More likely to go to DCM Smaller inductor average current (DC value) More likely to go to DCM Extended switching period allows more time for I to reach zero arger inductor current ripple More likely to go to DCM 3

5 DCM Buck Analysis S Mode : S on, D off Inductor charges from zero Mode : S off, D on Inductor discharges to zero 0 DT DT D T D T T V = Vin Vo I (0)=0 Vin Vo Vo I() t t I() t ( tdt) I( DT) Mode 3: S off, D off Inductor current =0 V = -Vo V = 0 I() t 0 oad is supplied by output capacitance4

6 I (0) 0 I( DT ) Vin Vo DT Volt Second balance: (Vin-Vo)*DT - Vo*(D -D)T = 0 Vo D M Vin D I max -I o c -I o o Vin-Vo -Vo o DT D T T t 5

7 I avg, Vo Io R I ( DT ) DT T Vo ( ) D RDT Vin Vo M RDT M Area under curve T Vin Vo DDT o 6

8 Solve for M D M D RD T M M M RD T M RD T M M M M RD T RD T M 0 Find roots of M b b 4ac a DRT 8 M 4 D RT 7

9 8 n R T RT 8 4 n n D M D Power Electronics often uses gain curves for design. It is easier to use normalized (Unit less) parameters, such as:

10 Book corrections - Eq. 4.9 must be corrected to: I D 8 D Eq.4.9 n 3 n nmax 4 n D - The y-axis in fig must be labeled I nmax instead of M 9

11 DCM buck Output voltage ripple I max -I o I max Imax Io DT t t ( I max Io) DT t t I Q ( t t )( Imax Io ) ( Imax Io) DT Vc C I V c max max Vo ( ) D RDT Vin Vo ( Imax Io) Vo CRD I ( Vin Vo) max Triangles similarity i c -I o v o, where t t DT D T T Vin Vo I max DT 0 t

12 CCM Boost Converter Mode : S on Mode : Mode : Switch and diode voltage stress= Vo Mode : S off

13

14 Voltage gain (from mode ) (from mode ) Using the above two equations, or using volt-second balance

15

16 Min & Max inductor current min Critical inductor Converter enters DCM when inductor current reaches zero I I max I in I in I I find critical Io?

17 CCM Boost Output voltage ripple Use capacitor charge Q DTI V o c V V c find v c (t)? o DTV CR D RCf o

18 DCM Boost Converter () Vin i t t 0 DT Vin Vo i () t ( tdt) I ( DT) DT D T i () 0 t D T T

19 ( ) Vin I DT DT Using the above two equations, or using volt-second balance Vin DT ( Vin Vo)( D D) T 0 Vo D Vin D D from mode Vin Vo I( DT ) 0 ( DD) T I( DT) from mode i I v i D i c 0 V in (V o V in ) I (DT) I max I o DT D T I o T t t t I o

20 Solve for M I Davg, I ( DT ) ( D D ) T VinD( D ) Vo I o R T Vo R DD ( DT ) () Vin M D D ( D D) M D D D ( M ) DM D DM ( M ) () Substitute eq. in eq. M D n n RT D T

21 DCM boost output voltage ripple I I I ( D D) T t DT t max max o DT ( I max Io)( D D) T I max Q ( tdt )( Imax Io ) ( I max Io) ( D D) T Vc C I D I max DM ( M ) Vin DT max Triangles similarity I max i c I o I o v c V o t t

22 CCM Buck-Boost Converter Mode : S on Mode : Mode : Mode : S off 0 DT DT T Note that buck-boost is an inverting converter (output is negative) Switch and diode voltage stress= Vin + Vo

23 3

24 (from mode ) (from mode ) Using the above two equations, or using volt-second balance M> M< M= 3 M( D) D 4

25 - D : D 5

26 Min & Max inductor current Critical inductor Converter enters DCM when inductor current reaches zero find critical Io? 6

27 CCM Buck-Boost Output voltage ripple Use capacitor charge Q DTI V o c V V c find v c (t)? o DTV CR D RCf o 7

28 DCM Buck-Boost Converter Mode : S off Mode : 0 DT Mode : Mode 3: i () t 0 i () t I c o Mode : S on Mode 3: S & D off DT D T D T T Switch and diode voltage stress= Vin + Vo 8

29 ( ) Vin I DT DT from mode Vo I( DT ) 0 ( DD) T I( DT) from mode Using the above two equations, or using volt-second balance Vin DT Vo( D D) T 0 Vo D Vin D D 9

30 Solve for M I Davg, I ( DT ) ( D D ) T VinD( D ) Vo I o R T Vo R DD ( DT ) () Vin D M D D ( D D) M D DM D( M) D D( ) () M Substitute eq. in eq. M D n n RT D T 0

31 DCM Buck-Boost output voltage ripple I I I ( D D) T t DT t max max o DT ( I max Io)( D D) T I max Q ( tdt )( Imax Io ) ( I max Io) ( D D) T Vc C I D I max D( ) M Vin DT max Triangles similarity I max i c I o I o v c V o t t

32 Buck Converter Analysis: ipes Examples for Buck DCM DC/DC-Converter Basic Topologies Buck-Converter - () Buck-Converter - () Buck-Converter - (3) Buck-Converter: Start-Up with Constant Duty Cycle

33 Buck Converter Analysis: Simulation Verification Example-Buck DCM

34 Buck Converter Analysis: Simulation Verification Example-Buck DCM

35 Buck Converter Analysis: Simulation Verification Example-Buck DCM

36 Buck Converter Analysis: Simulation Verification Example-Buck DCM

37 Buck Converter Analysis: Simulation Verification Example-Buck DCM

38 Buck Converter Analysis: Simulation Verification Example-Buck DCM 0V.0V 0V.0V -0V 5.0A V(:,:) 9.880m,6.4896u) SE>> 0V.0A V(Gate).5A (9.894m,5.685m) 0A SE>> -.0A (9.890m,3.006) ms ms 9.95ms I() Time -.0A 9.89ms 9.90ms 9.9ms 9.9ms 9.93ms I(Cf) Time

39 Buck Converter Analysis: Simulation Verification Example-Buck DCM 6V 5V 4V 0V (0.000,4.048) 5V SE>> V.50A V(Road:) SE>> 0V.0A V(Road:).5A.0A.00A 9.89ms 9.90ms 9.9ms 9.9ms 9.93ms I(Road) Time 0A 0Hz 40KHz 80KHz 8KHz I(Road) Frequency

40 Example 4.-BuckBoost Consider a buck-boost converter with the following values: Vo=V, Pout=5W, Vin=0V and ƒ=00khz. (a) Design the above converter so that it will operate in ccm (b) Repeat part (a) for dcm, (c) Find the maximum inductor current under both ccm and dcm (d) If the load resistance increases by 50% (i.e. the load current changes.08a to.39a) determine the mode of operation for the two converters and then the maximum inductor current (e) Sketch the new inductor currents derived from part (e.)

41 Example 4.-BuckBoost V o := V in := 0 P o := 5 f := T s := f (a) For CCM R := V o P o R = 5.76 crit := R T s ( D) 0 D D D :=.375 T s = 0 5 D T s = solve, D.375 float, 3 crit = Chose higher than crit for CCM :=. 0 3 Note-This is an arbitrary assignment that puts us into CCM mode. Since in CCM M is independent of, we do not effect the conversion ratio so long as >crit. The value of chosen does effect ripple current in the inductor though.

42 Example 4.-BuckBoost (b) For DCM Chose to less than crit := τ n := R T s M D τ n τ n = D := 0 τ n D = 0.5 M D D D solve, D 3

43 Example 4.-BuckBoost (c) For CCM :=. 0 3 D :=.375 i max D V in V in D T s D V in := R ( D) + i min := R ( D) V in D T s i max = i min =.958 (c) For DCM := D :=.5 i max := V in i max = 0 D T s

44 Example 4.-BuckBoost (d) Assume load resistance increase by 50% Assume Vo remains at V and Po Changes R := D :=.375 R = 8.64 crit := R T s ( D) crit = P := V o R P = With at.mh, we are still in CCM for our original CCM design :=. 0 3 D :=.375 i max D V in V in D T s D V in := R ( D) + i min := R ( D) V in D T s i max =.597 i min =.847

45 Example 4.-BuckBoost For our original DCM design, reducing the load current moves us deeper into DCM (b) For DCM Chose to less than crit := D R M τ n := T τ s n τ n = D := 0 τ n M D D D D = 0.04 solve, D i max := V in i max = 8.65 D T s

46 Example 4.-BuckBoost Simulation CCM Original (R=5.76)

47 Example 4.-BuckBoost Simulation CCM Original (R=5.76) 0V 4.0A -5V 3.6A -0V 3.A -5V -0V 0s 5ms 0ms 5ms V(Output) Time 4.0.8A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time ms 4.985ms 4.990ms 4.995ms V(Gate) -I() Time

48 Example 4.-BuckBoost Simulation DCM Original (R=5.76)

49 Example 4.-BuckBoost Simulation DCM Original (R=5.76) 0V -5V 8 4-0V 0-5V 0s 5ms 0ms 5ms V(Output) Time ms 4.985ms 4.990ms 4.995ms -I() V(Gate) Time

50 Example 4.-BuckBoost Simulation CCM New (R=8.64)

51 Example 4.-BuckBoost Simulation CCM New (R=8.64) 0V.6A -5V.4A -0V.A -5V.0A -0V 0s 5ms 0ms 5ms V(Output) Time.8A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time

52 Example 4.-BuckBoost Simulation DCM New (R=8.64)

53 Example 4.-BuckBoost Simulation DCM New (R=8.64) 5V 0A 0V 5A -5V -0V 0A -5V 0s 5ms 0ms 5ms V(Output) Time -5A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Sampled-data response: i L /i c Sampled-data transfer function : î L (s) î c (s) = (1 ) 1 e st

More information

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center (CoPEC) University of Colorado, Boulder 80309-0425 http://ece-www.colorado.edu/~pwrelect

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

Converter System Modeling via MATLAB/Simulink

Converter System Modeling via MATLAB/Simulink Converter System Modeling via MATLAB/Simulink A powerful environment for system modeling and simulation MATLAB: programming and scripting environment Simulink: block diagram modeling environment that runs

More information

Power Electronics

Power Electronics Prof. Dr. Ing. Joachim Böcker Power Electronics 3.09.06 Last Name: Student Number: First Name: Study Program: Professional Examination Performance Proof Task: (Credits) (0) (0) 3 (0) 4 (0) Total (80) Mark

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

Generalized Analysis for ZCS

Generalized Analysis for ZCS Generalized Analysis for ZCS The QRC cells (ZCS and ZS) analysis, including the switching waveforms, can be generalized, and then applies to each converter. nstead of analyzing each QRC cell (L-type ZCS,

More information

Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode

Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode Vadood Hajbani, Mahdi Salimi 2 Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran. Email:

More information

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling Teaching of SwitchMode Power Electronics Using BuildingBlock pproach, ssisted by PSpice Modeling [, 2] Ned Mohan Email: mohan@ece.umn.edu Department of ECE University of Minnesota Minneapolis, MN 55455

More information

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models ETUE 44 Averaged Switch Models II and anonical ircuit Models A Additional Averaged ossless Switch Models 1 Single Transformer ircuits a buck b boost 2 Double ascade Transformer Models: a Buck Boost b Flyback

More information

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 12 - Non-isolated DC-DC Buck Converter ecture 12 - Non-iolated DC-DC Buck Converter Step-Down or Buck converter deliver DC power from a higher voltage DC level ( d ) to a lower load voltage o. d o ene ref + o v c Controller Figure 12.1 The

More information

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve ISPACS2017 Paper 2017 ID 21 Nov. 9 NQ-L5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36

More information

Chapter 7 DC-DC Switch-Mode Converters

Chapter 7 DC-DC Switch-Mode Converters Chapter 7 DC-DC Switch-Mode Converters dc-dc converters for switch-mode dc power supplies and dc-motor drives 7-1 Block Diagram of DC-DC Converters Functional block diagram 7-2 Stepping Down a DC Voltage

More information

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM.

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM. ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By Julie J. Lee

More information

Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous conduction modes

Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous conduction modes Sādhanā Vol. 40, Part 7, October 2015, pp. 2045 2072. c Indian Academy of Sciences Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous

More information

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A. ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified

More information

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings ecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings 1 2 D 1 i v 1 v 1s + v C o R v 2 v 2s d 1 2 T 1 T 2 D 2 Figure 17.1 v c (

More information

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU Project Components MC34063 or equivalent Bread Board PSpice Software OrCAD designer Lite version http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice More Details on the Introduction CONVERTER

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Predrag Pejović and Marija Glišić Abstract In this paper, analysis of a buck converter operated applying a peak limiting current

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

ECE1750, Spring 2018 Week Buck Converter

ECE1750, Spring 2018 Week Buck Converter ECE1750, Sprg 018 Week 5 Buck Converter 1 Objective to efficiently reduce DC voltage The DC equivalent of an AC transformer I I + + DC DC Buck Converter ossless objective: P = P, which means that I = I

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 1.. Averaged switch modeling with the simple approximation i 1 (t) i (t) i (t) v g (t) v 1 (t)

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Objective of Part II! Develop tools for modeling, analysis, and design of converter control systems!

More information

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012 San Jose State University Department of Electrical Engineering Exam Solution EE 98-MIT 6.x Fall 1 losed Book, losed Notes, and no electronic devices. Instructions: There are six problems. Interpretation

More information

Regulated DC-DC Converter

Regulated DC-DC Converter Regulated DC-DC Converter Zabir Ahmed Lecturer, BUET Jewel Mohajan Lecturer, BUET M A Awal Graduate Research Assistant NSF FREEDM Systems Center NC State University Former Lecturer, BUET 1 Problem Statement

More information

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS: Closed book. No work needs to be shown for multiple-choice questions. 1. A charge of +4.0 C is placed at the origin. A charge of 3.0 C

More information

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

Examination paper for TFY4185 Measurement Technique/ Måleteknikk Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August

More information

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features W, Miniature SIP, Single & Dual Output DC/DC s Key Features Efficiency up to % 000 Isolation MTBF >,000,000 Hours Low Cost Input,, and Output 3.3,,9,,,{,{9,{ and { Temperature Performance -0] to +] UL

More information

Modeling Buck Converter by Using Fourier Analysis

Modeling Buck Converter by Using Fourier Analysis PIERS ONLINE, VOL. 6, NO. 8, 2010 705 Modeling Buck Converter by Using Fourier Analysis Mao Zhang 1, Weiping Zhang 2, and Zheng Zhang 2 1 School of Computing, Engineering and Physical Sciences, University

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits. Overview. Hani Mehrpouyan, Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview

More information

EE40 Midterm Review Prof. Nathan Cheung

EE40 Midterm Review Prof. Nathan Cheung EE40 Midterm Review Prof. Nathan Cheung 10/29/2009 Slide 1 I feel I know the topics but I cannot solve the problems Now what? Slide 2 R L C Properties Slide 3 Ideal Voltage Source *Current depends d on

More information

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer Maria Carmela Di Piazza Gianpaolo Vitale Photovoltaic Sources Modeling and Emulation ^ Springer Part I 1 From the Nuclear Fusion to the Radiated Energy on the Earth... 3 1.1 Inside the Universe 3 1.2 The

More information

On backstepping controller Design in buck/boost DC-DC Converter

On backstepping controller Design in buck/boost DC-DC Converter International Conference on Electrical, Electronics and Civil Engineering (ICEECE'2) Pattaya Dec. 2 On backstepping controller Design in buck/boost DC-DC Converter Adel Zakipour, MahdiSalimi Abstract-In

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

Topic 4. The CMOS Inverter

Topic 4. The CMOS Inverter Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk Topic 4-1 Noise in Digital Integrated

More information

Designing an LLC Resonant Half-Bridge Power Converter

Designing an LLC Resonant Half-Bridge Power Converter Topic 3 Designing an LLC Resonant Half-Bridge Power Converter Hong Huang Agenda. Introduction Brief review Advantages 2. Design Prerequisites Configuration Operation Modeling Voltage gain function 3. Design

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

More information

7.3 State Space Averaging!

7.3 State Space Averaging! 7.3 State Space Averaging! A formal method for deriving the small-signal ac equations of a switching converter! Equivalent to the modeling method of the previous sections! Uses the state-space matrix description

More information

The Pennsylvania State University. The Graduate School. Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS

The Pennsylvania State University. The Graduate School. Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS The Pennsylvania State University The Graduate School Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS AS DISCRETE-TIME PIECEWISE AFFINE SYSTEMS A Thesis in Electrical Engineering by

More information

I R TECHNICAL RESEARCH REPORT. Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters. by C.-C. Fang T.R.

I R TECHNICAL RESEARCH REPORT. Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters. by C.-C. Fang T.R. TECHNICAL RESEARCH REPORT Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters by C.-C. Fang T.R. 99-6 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies and

More information

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450 ECE2262 Electric Circuits Chapter 1: Basic Concepts Overview of the material discussed in ENG 1450 1 Circuit Analysis 2 Lab -ECE 2262 3 LN - ECE 2262 Basic Quantities: Current, Voltage, Energy, Power The

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

Averaged dynamics of a coupled-inductor boost converter under sliding mode control using a piecewise linear complementarity model

Averaged dynamics of a coupled-inductor boost converter under sliding mode control using a piecewise linear complementarity model IMA Journal of Applied Mathematics (5) Page of doi:.93/imamat/dri7 Averaged dynamics of a coupledinductor boost converter under sliding mode control using a piecewise linear complementarity model NILIANA

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features MAU Series W, Miniature SIP, Single & DC/DC s Key Features Efficiency up to 0 Isolation MTBF >,000,000 Hours Low Cost Input,, and Output 3.3,,9,,,{,{9,{ and { Temperature Performance -0 to UL 9V-0 Package

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Overview Review on Laplace transform Learn about transfer

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

Electronic Power Conversion

Electronic Power Conversion Electronic Power Conersion Switch Moe DC-DC Conerters with Isolation Challenge the future Switch moe c-c conerters Frequent requirements: regulate output isolation (safety) multiple outputs Solutions:

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2007 Quiz #2 25 April 2007 Name: There are 20 pages in this quiz, including

More information

MAU200 Series. 1W, High Isolation SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

MAU200 Series. 1W, High Isolation SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features Component Distributors, Inc. ~ www.cdiweb.com ~ sales@cdiweb.com ~ -0--33 W, High Isolation SIP, Single & DC/DC s Key Features Efficiency up to 00 Isolation MTBF >,000,000 Hours Low Cost Input, and Output

More information

Solution to Tutorial 5 Isolated DC-DC Converters & Inverters

Solution to Tutorial 5 Isolated DC-DC Converters & Inverters ELEC464 University of New South Wales School of Electrical Engineering & Telecommunications Solution to Tutorial 5 Isolated DC-DC Converters & Inverters. i D O d T The maximum value of L m which will ensure

More information

HighpowerfactorforwardAC-DC converter with low storage capacitor voltage stress

HighpowerfactorforwardAC-DC converter with low storage capacitor voltage stress HAIT Journal of Science and Engineering B, Volume 2, Issues 3-4, pp. 305-326 Copyright C 2005 Holon Academic Institute of Technology HighpowerfactorforwardAC-DC converter with low storage capacitor voltage

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

EE221 - Practice for the Midterm Exam

EE221 - Practice for the Midterm Exam EE1 - Practice for the Midterm Exam 1. Consider this circuit and corresponding plot of the inductor current: Determine the values of L, R 1 and R : L = H, R 1 = Ω and R = Ω. Hint: Use the plot to determine

More information

OPAMPs I: The Ideal Case

OPAMPs I: The Ideal Case I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,

More information

THE MULTI INPUT-MULTI OUTPUT STATE SPACE AVERAGE MODEL OF KY BUCK-BOOST CONVERTER INCLUDING ALL

THE MULTI INPUT-MULTI OUTPUT STATE SPACE AVERAGE MODEL OF KY BUCK-BOOST CONVERTER INCLUDING ALL THE MUTI INPUT-MUTI OUTPUT STATE SPACE AVERAGE MODE OF KY BUCK-BOOST CONVERTER INCUDING A OF THE SYSTEM PARAMETERS Mohammad Reza Modabbernia 1, Seyedeh Shia Nejati 2 & Fatemeh Kohani Khoshkbijari 3 1 Electrical

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory Lab 4 RC Circuits Name Partner s Name I. Introduction/Theory Consider a circuit such as that in Figure 1, in which a potential difference is applied to the series combination of a resistor and a capacitor.

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Distributing Tomorrow s Technologies For Today s Designs Toll-Free:

Distributing Tomorrow s Technologies For Today s Designs Toll-Free: 2W, Ultra-High Isolation DIP, Single & DC/DC s Key Features Low Cost 6 Isolation MTBF > 6, Hours Short Circuit Protection Input, and 24 Output,, 1, {, { and {1 Regulated Outputs Low Isolation Capacitance

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies 1 Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies Bijan Zahedi, Student Member, IEEE, and Lars E. Norum, Senior Member, IEEE Abstract-- This paper performs a modeling

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response

ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response ECE 241L Fundamentals of Electrical Engineering Experiment 5 Transient Response NAME PARTNER A. Objectives: I. Learn how to use the function generator and oscilloscope II. Measure step response of RC and

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

Unified Steady-state Computer Aided Model For Soft-switching DC-DC Converters

Unified Steady-state Computer Aided Model For Soft-switching DC-DC Converters University of Central Florida Electronic Theses and Dissertations asters Thesis (Open Access) Unified Steadystate Computer Aided odel For Softswitching DCDC Converters 26 Wisam AlHoor University of Central

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Lecture 7: September 19th, The following slides were derived from those prepared by Professor Oldham for EE40 in Fall 01. Version Date 9/19/01

Lecture 7: September 19th, The following slides were derived from those prepared by Professor Oldham for EE40 in Fall 01. Version Date 9/19/01 EES Intro. electronics for S Fall Lecture 7: September 9th, Lecture 7: 9/9/ A.. Neureuther Version Date 9/9/ harging and Discharging of ircuits (Transients) A) Mathematical Method B) EE Easy Method ) Logic

More information

Exercise 2: Power Factor

Exercise 2: Power Factor Power in AC Circuits AC 2 Fundamentals Exercise 2: Power Factor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power factor of ac circuits by using standard

More information

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response Capacitor Transient and Steady State Response Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented

More information

The Usage of the Digital Controller in Regulating Boost Converter

The Usage of the Digital Controller in Regulating Boost Converter Circuits and Systems, 205, 6, 268-279 Published Online December 205 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/0.4236/cs.205.62027 The Usage of the Digital Controller in Regulating Boost

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

Switched Capacitor DC/DC Marx Converter Loss Models Advanced Power Electronics Final Project FT08

Switched Capacitor DC/DC Marx Converter Loss Models Advanced Power Electronics Final Project FT08 Switched Capacitor DC/DC Marx Converter Loss Models 6.987 Advanced Power Electronics Final Project FT08 July 14, 2010 John J. Cooley Massachusetts Institute of Technology 1 Introduction The primary goal

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs

Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs Ruoyu Hou, Juncheng Lu, and Di Chen GaN Systems Inc. 1 Agenda 1. Introduction 2. E qoss loss mechanism

More information

MOS Amplifiers Dr. Lynn Fuller Webpage:

MOS Amplifiers Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information