TREATISE OF PLANE GEOMETRY THROUGH GEOMETRIC ALGEBRA 189

Size: px
Start display at page:

Download "TREATISE OF PLANE GEOMETRY THROUGH GEOMETRIC ALGEBRA 189"

Transcription

1 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 89 Hr lso, th ictors r orint pln surcs inicting th irction o plns in th psuo-euclin spc. s or, ctors n ictors r irnt things. This ct hs n princ lso phsicists: in th Minkowski s spc, th lctromgntic il is ictor whil th ttrpotntil is ctor. On th othr hn, th orint r is, o cours, ictor. s critrion to istinguish oth kin o mgnitus on lso uss th rrsl o coorints, which chngs th sns o ctors whil ls ictors inrint. Two ctors r si to orthogonl i thir innr prouct nishs: w w 0 So th outr prouct is th prouct th orthogonl componnt n th innr prouct is th prouct th proportionl componnt: w w w w Th prouct o two ictors ils ttrnion. Th rl n ictor prts cn sprt s th smmtric n ntismmtric prouct. Sinc: n th smmtric prouct is rl numr whos ngti lu will not hr with th smol, whrs th ntismmtric prouct, not hr with th smol, is lso ictor: w w ( w w ) w w w ( w w ) w w w ( w w ) ( w w ) ( w w ) Th outr prouct o thr ctors hs th sm prssion s or Euclin gomtr n this is nturl outcom o th tnsion thor: th prouct u w is th orint olum gnrt th surc rprsnt th ictor u whn it is trnslt prllll long th sgmnt w: u w u u u z z w w w z Finll, lt us s how th prouct o thr ctors u, n w is. Th ctor cn rsol into componnt coplnr with u n n nothr componnt prpniculr to th pln u-:

2 90 RMON GONZLEZ LVET u w u w u w Now lt us nls th prmutti proprt. In oth Euclin n hprolic plns w oun u w w u 0. In th psuo-euclin spc th prmutti proprt coms: ( u w w u) u w w u u w w u u w u w u w I tk th sm lgric hirrchis s in th ormr chptr: ll th rig proucts must oprt or th gomtric prouct, conntion qut to th ct tht in mn lgric situtions, th rig proucts must lop in sums o gomtric proucts. Th hproloi o two shts ccoring to Hilrt (Grunlgn r Gomtri, nhng V) th complt Lochsk s pln cnnot rprsnt smooth surc with constnt curtur s propos ltrmi. ut this rsult onl concrns surcs in th Euclin spc. Th surc whos points r plc t i istnc rom th origin in psuo- Euclin spc (th two-sht hproloi) is th surc srch Hilrt which rliss th Lochsk s gomtr. It is known tht it hs chrctristic istnc lik th rius o th sphr. Sinc ll th sphrs r similr, w n onl stu th unitr sphr. Likwis, ll th hproloil surcs z r r similr Figur 5. n th hproloi with unit rius (igur 5.): z whr (,, z) r rtsin lthough not Euclin coorints, suics to stu th whol Lochsk s gomtr. Th rr will in complt stu o th hproloil surc in Fr, Fountions o Euclin n Non-Euclin Gomtr, chp. VII. Th Wirstrss mol. For m, rtsin coorints r orthogonl coorints in lt spc (with null curtur), inpnntl o th Euclin or psuo-euclin ntur o th spc. Lins n plns (linr rltions twn rtsin coorints) cn lws rwn in oth spcs, lthough th psuo-euclin orthogonlit is not shown s right ngl, n th psuo-euclin istnc is not th iw lngth. Th incompltnss o rtsin coorints ws lr criticis Liniz in lttr to Hugns in 679 proposing nw gomtric clculus: «r prmirmnt j puis primr pritmnt pr c clcul tout l ntur ou éinition l igur (c qu l lgèr n it jmis, cr isnt qu q. st l qution u crcl, il

3 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 9 Th ct tht th hproloil surc owns th Lochsk s gomtr will int through th irnt projctions hr riw. I w ollow th sm orr s in th ormr chptr, w shoul irstl l with th Lochskin trigonomtr. Howr, th concpt o rc lngth on th hproloi is much lss intuiti thn on th sphr. Thror w must s th concpt n trmintion o th rc lngth or stuing th hproloil trigonomtr. Th cntrl projction (ltrmi isk) In this projction th cntr o th hproloi is th cntr o projction. Thus, w projct r point on th uppr sht o th hproloi z into nothr point on th pln z tking th origin 0, 0, z 0 s cntr o projction (igur 5.). Lt u n rtsin coorints on th pln z, which touchs th hproloi in th rt. similr tringls : u z z From whr w otin: u u u z u Th irntil o th rc lngth upon th hproloi is: s s z z ( ) u u u ( u ) ( u ) which is th ngti lu o th usul mtric o th Lochsk s surc in th ltrmi isk. Th ngti sign inicts tht th rc lngth is comprl with lngths in th - pln. Th whol uppr sht o th hproloi is projct insi th ltrmi s circl u with unit rius. Howr, i w projct th on-sht hproloi z into th pln z w in th sm mtric ut positi, wht inicts th lngths ing comprl to thos msur on th z-is. ll th uppr hl o th on-sht hproloi is projct outsi th circl o unit rius, giing ris to nw gomtr not stui up till now. ut pliqur pr l igur c qu c st t.» (Josp Mnl Prr, Gomtric lgr rsus numricl crtsinism in F. rck, R. lngh, H. Srrs, lior lgrs n Thir pplictions in Mthmticl Phsics). Now to consir tht th lgs o oth right ngl tringls r horizontl n rticl, n thror prpniculr is nough or th uction. Notwithstning, in psuo-euclin spc on must us th lgric inition o similitu: tringl with sis n is irctl similr to tringl with sis c n i n onl i c. This conition implis tht oth quotints o th moulus r qul n oth rgumnts lso.

4 9 RMON GONZLEZ LVET Lt us consir pln pssing through th origin o coorints (cntrl pln). Its intrsction with th two-sht hproloi is th hprol trmin th qutions sstm: z z, rl W srch th Frnt's trihron. irntition w in linr irntil qutions sstm : z z z whr n cn isolt: z z z z Thn th irntil o th rc lngth o this hprol is: s z z z z n its squr: s z ( ) z Now w otin th unitr ctor t tngnt to th hprol: t s s z s ( z) ( z ) ( ) Osr tht t n s h imginr componnts sinc pln onl cuts th twosht hproloi i >. nw, th gomtric ctor cn tkn with rl componnts, lthough thn its moulus is. Th riti o th tngnt ctor with rspct to th rc lngth is not onl proportionl ut qul to th norml ctor n o th hprol: t t n ( z ) κ s s cus th position ctor o r point on th two sht hproloi hs unitr moulus. Hnc th curtur κ o th hprol is constnt n qul to. ll th hprols ing intrsctions o th hproloi with plns pssing through th origin n gin point on th hproloi h th sm rius o curtur r:

5 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 9 t r s ( z ) Two consquncs r uc rom this ct: irstl thir common rius o curtur is prpniculr to th surc, n sconl, ths hprols r gosics o th hproloi. cus ll th hprols li on plns pssing through th origin, thir cntrl projctions r stright lins. In othr wors, r gosic hprol is projct into sgmnt on th ltrmi isk. Tking s qution o th lin: k u l with k n l constnt, th sustitution in s gis 4 : s u ( k ) k l k l u l u intgrtion w rri t th ollowing primiti: s u rg tgh ( k ) k k l l const log k l u k l u k k k k l l const Th lin k u l cuts th ltrmi s circl u t th points n whos coorints r th solution o th sstm o th qutions: k u l u u k l k k l u k l k k l Thus th primiti m rwrittn: s log u u u u const Figur 5. Thn, th rc lngth twn two points n on this gosic hprol is th irnc o this primiti twn oth points: s s log ( u u )( u u ) ( u u )( u u ) log ( ) 4 s si or, th rc lngth s on th two-sht hproloi hs imginr lus. I m sorr th inconninc o tht rr ccustom to tk rl lus. Howr th cohrnc o ll th gomtric lgr orc to tk ccount o th imginr unit. This lso plins wh Lochsk oun th hproloil trigonomtr choosing imginr lus or th sis in th sphricl trigonomtr.

6 94 RMON GONZLEZ LVET tht is, th hl o th logrithm o th cross rtio o th our points (igur 5.) on th ltrmi isk. Howr it is mor ntgous to writ it using cosins inst o tngnts mns o th trigonomtric intit: tgh tgh tgh tgh cosh s s s s s s tr rmoing k n l using th qution o th lin in th primiti, w rri t: cosh u u u u s s whr th prssion is rl or ll th points on th hproloi, whos projctions li on th ltrmi isk u. This prssion is quilnt to writ: ( ) ( ) ( ) ( ) cosh u u u u s s Sinc th ctor u is proportionl to th position ctor, w h: ( ) ( ) ( ) ( ) ( ) cos cosh z z z z s s s s which is th pct prssion to clcult ngls twn ctors in th psuo- Euclin spc. This rsult must commnt in mor til. Not tht r pir o ctors going rom th origin to th two-sht hproloi lws li on cntrl pln hing hprolic ntur, sinc it cuts th con 0 z o ctors with zro lngth. cus o this, th ngl msur on this pln is hprolic. hproloil tringl is th rgion o th hproloi oun thr gosic hprols. Th lngth o si o th tringl cn clcult intgrtion o th rc lngth o th hprol ccoring to th lst rsult. On th othr hn, th ngl o rt o hproloil tringl is th ngl twn th tngnt ctors o th hprols o ch si t th rt: ( )( ) ( )( ) ( )( ) cos ' ' ' ' z ' z z ' z t' t α ' ' ' '

7 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 95 Not tht r pir o tngnt ctors li on pln o Euclin ntur, pln prlll to cntrl pln not cutting th con o zro lngth. So th ngls msur on this pln r circulr. W rri t th sm conclusion proing tht th solut lu o th cosin (n lso its squr) is lssr thn th unit: ( ' ' ) ( ) ( ' ' ) < Th nomintor is positi (lthough oth squrs r ngti cus > ) n it cn pss to th right hn si o th inqulit without chnging th sns. Rmoing th nomintor n tr simpliiction: ' ' ' ' ' ' ' ' < n rrnging trms w in n quilnt inqulit: ' ' ' ' < ' ' ' ' ( ' ) ( ' ) < ( ' ' ) Just this is th conition or th istnc o th intrsction point whr two cntrl plns n th hproloi mt s I shll show now. Th plns with qutions z n ' ' z r projct into th lins u n ' u ' on th ltrmi isk. Thn th point o intrsction o oth plns n th hproloil surc is projct into th point on th ltrmi isk gin th sstm o qutions: u ' u ' whos solution is: ' u ' ' ' ' ' This point lis insi th ltrmi circl (n th point o intrsction o th hproloi n oth plns ists) i n onl i: u ( ' ) ( ' ) ( ' ' ) < which is th conition o otin. Not tht th prssion or th ngl twn gosic hprols coincis with th ngl twn th ictors o th plns contining ths hprols: cosα ( ) ( ' ' ) ' '

8 96 RMON GONZLEZ LVET It is not surprising rsult, cus it hppns likwis or th sphr: th ngl twn two mimum circls is th ngl twn th cntrl plns contining thm. Th plns pssing through th origin onl cut th two-sht hproloi i >. Ths plns lso cut th con o zro lngth z 0 so th r hprolic n th ngls msur on thm r hprolic rgumnts. On th othr hn, th plns with < o not cut th hproloi nithr th con n h Euclin ntur. In th Lochskin trigonomtr, th plns contining th sis o hproloil tringl r lws hprolic, whil th plns touching th hproloi n contining th ngls twn sis r lws Euclin, n hnc th ngls r circulr. Rsuming, rl moulus o ictor (0< ) inicts n Euclin pln n imginr moulus (0> ) hprolic pln. Now w lr h ll th ormuls to uc th hproloil trigonomtr. Hproloil (Lochskin) trigonomtr Th Lochskin trigonomtr is th stu o th trigonomtric rltions or th sis n ngls o gosic tringls on two-sht hprolois in th psuo- Euclin spc. W will tk or conninc th hproloi with unit rius z, lthough th trigonomtric intitis r qull li or hproloi with n rius. onsir thr points, n on th unitr hproloi (igur 5.). Thn. Th ngls orm ch pir o sis will not α, β n γ, n th rl lu o th sis rspctil opposit to ths ngls will smolis, n c rspctil. Figur 5. Thn is th rl lu o th rc o th gosic hprol pssing through th points n, tht is, th hprolic ngl twn ths ctors: sinh s si o, th plns intrscting th hproloi h imginr moulus. So w must ii th psuosclr imginr unit, which is lso th olum lmnt. In this qulit th hprolic sin is tkn positi n lso. α is th circulr ngl twn th sis n c o th tringl, tht is, th ngl twn th plns pssing through th origin, n, n th origin, n rspctil. Sinc th irction o pln is gin its ictor, which cn otin through th outr prouct, w h:

9 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 97 sin α ( ) ( ) whr th minus sign is u to th imginr moulus o th outr proucts o th nomintors. Now w writ th proucts o th numrtor using th gomtric prouct: sin α ( )( ) ( )( ) 8 sin α 8 W trct th ctor s common ctor t th lt, ut without writing it cus : sin α 8 ppling th prmutti proprt to th suitl pirs o proucts, w h: sin α 6 8 sinc th olum is psuosclr, which commuts with ll th lmnts o th lgr. Now th lw o sins or hproloil tringls ollows: sin α sin β sin γ sinh sinh sinh c (I) Lt us s th lw o cosins. Sinc thn: cosα ( ) ( ) ( ) ( ) sinh sinh c cosα 8 8 sinh c sinh (( )( ) ( )( ) ) ( ) Now tking into ccount tht:

10 98 RMON GONZLEZ LVET ut lso: ( )( ) 4 ( )( ) 4 n ing th n trms, w in: sinh sinh c cos α 8 ( 8 ) Etrcting common ctors n using, w m writ: sinh sinh c cos α 8 ( 8 ( ) ( ) ) sinh sinh c cos α cosh c cosh cosh cosh cosh cosh c sinh sinh c cos α (II) which is th lw o cosins or sis. Th sustitution o cosh c mns o th lw o cosins gis: cosh cosh cosh ( cosh cosh sinh sinh cos γ ) sinh sinh c cosα ( cosh ) cosh sinh sinh cos γ sinh sinh c cosα n th simpliiction o sinh : cosh sinh cosh sinh cos γ sinh c cosα Th sustitution o sinh c sinh sin γ / sin α ils: sinh sin γ cosα cosh sinh cosh sinh cos γ sin α iiing sinh : coth sinh cosh cos γ sin γ cotα (III) Strogrphic projction (Poincré isk) Figur 5.4 W projct th hproloil surc into th pln z 0 (igur 5.4) tking s cntr o projction th lowr pol (0, 0, ). Th uppr sht is projct insi th circl o unit rius whil th lowr sht is projct outsi. Lt u n th

11 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 99 rtsin coorints o th projction pln. similr tringls w h: z u z whr (,, z) r th coorints o point on th hproloi. Using its qution z, on rris t: u u rom whr th irntil o th rc lngth is otin: s z z u u 4 ( u ) ( u ) Th gosic hprols r intrsction o th hproloi with cntrl plns hing th qution: z Figur 5.5 Th sustitution th strogrphic coorints ils: ( u ) ( ) which is th qution o circl cntr t (, ) with rius r. Tht is, th gosic hprols on th hproloi r shown s circls in th strogrphic projction (igur 5.5). Th cntrl plns cutting th two-sht hproloi ulil >, so tht th rius is rl n th cntrs o ths circls r lws plc outsi th Poincré isk. Th ngl α twn two circls is otin through: r cosα r' r r' ( O O' ) ' ' ' ' Just this is th ngl twn two gosic hprols (twn th tngnt ctors t n t ) oun o. Thror, th strogrphic projction (Poincré isk) is conorml projction o th hproloil surc. On th othr hn, th gosic circls r lws orthogonl to th Poincré's circl u ( r', O' (0, 0) ) cus: r cosα O r 0

12 00 RMON GONZLEZ LVET Th irntil o r is sil otin through th moulus o th irntil ictor: ( ) ( z) ( z ) 4 u ( u ) Whn oing n inrsion o th Poincré isk cntr t point ling on th limit circl, nothr projction o th Lochsk's gomtr is otin: th Poincré s hl pln. Hr th gosics r smicircls orthogonl to th s lin o th hl pln. Sinc th inrsion is conorml trnsormtion, th uppr hl pln is lso conorml projction o th hproloi. Th igur 5.6 ispls th projction o hproloil tringl n its sis in th Poincré s uppr hl pln. Figur 5.6 zimuthl quilnt projction This projction prsrs th r n is similr to th zimuthl quilnt projction o th sphr usull us in th polr mps o th Erth. Th irntil o th r in th psuo-euclin spc is ictor whos squr is: ( ) ( z) ( z ) Th sustitution o th hproloi qution: z z z z ils: ( ) z Er zimuthl projction hs pln coorints u n proportionl to n, ing th proportionlit constnt onl unction o z: u () z () z Thn irntition o ths qulitis n sustitution o z, which is linr comintion o n w rri t: u z z '

13 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 0 Intiing oth r irntils w in th ollowing irntil qution: z z ' z I introuc th uilir unction g : g z g' z z Rwriting th qution with irntils, w rri t n ct irntil: z z z 0 g z ( g ) z g 0 ( z const) g () z () z z ( z const) z Nt to th pol n u r coincint n lso n. Thn (), which implis th intgrtion constnt n thn 5 : ( z ) () z z z u z z Wirstrss coorints n clinricl quiistnt projction Ths r st o coorints similr to th sphricl coorints, ut on th hproloi surc in th psuo-euclin spc. For hproloi with unit rius, th Wirstrss coorints r: Figur 5.7 sinhψ cosϕ sinhψ sin ϕ z coshψ Thn th irntil o rc lngth is: 5 s comprison in th cntrl projction (z) /z whil or th strogrphic projction (z) / (z ).

14 0 RMON GONZLEZ LVET s ( coshψ cosϕ ψ sinhψ sinϕ ϕ ) ( coshψ sinϕ ψ sinhψ cosϕ ϕ ) sinhψ ψ Introucing th unitr ctors n ψ ϕ s: ψ coshψ cosϕ coshψ sinϕ sinh ψ sin ϕ cosϕ ϕ th irntil o rc lngth in hproloil coorints coms: s ψ sinhψ ϕ s ( ψ sinh ψ ϕ ) ψ ϕ Not tht ψ n ϕ r orthogonl ctors, sinc thir innr prouct is zro. t ψ 0, s onl pns on ψ, so tht thr is pol. Thn ψ is th rc lngth rom th pol to th gin point on th hproloi surc (igur 5.7), whil ϕ is th rc lngth or th qutor, th prlll trmin sinhψ n ψ log( ). Th mriins (ϕ constnt) r gosics, whil th prllls (ψ constnt) incluing th qutor r not gosics cus thir plns o not pss through th origin o coorints. In th clinricl projctions, th hproloi is projct onto clinr pssing through its qutor, whos is is th z is. Th chrt is th Euclin mp otin unrolling th clinr 6. Using ϕ n ψ s th coorints u n o th chrt, th hproloi surc is projct into rctngl with π with n ininit hight. Th r on this chrt is: sinhψ ϕ ψ sinh u This projction is quiistnt or th mriins (ϕ constnt) n or th qutor (ψ log( )). linricl conorml projction I w wish to prsr th ngls twn curs, w must nlrg th mriins th sm mount s th prllls r nlrg in clinricl projction, tht is ctor /sinh ψ: ψ sinhψ ψ log tgh Th irntil o rc lngth n r r: 6 Er pln tngnt to th two-sht hproloi hs Euclin ntur. So th Lochsk s surc cn onl projct onto Euclin chrt, n th clinr o projction is not hprolic n os not long proprl to th psuo-euclin spc.

15 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 0 ( ψ sinh ψ ϕ ) sinh ( u ) 4 p( ) ( p( ) ) ( u ) s ψ 4 p( ) ( p( ) ) sinhψ ϕ ψ u linricl quilnt projction I w wish to prsr r, w must shortn th mriins in th sm mount s th prllls r nlrg in th clinricl projction, wht ils: sinhψ ψ coshψ s ( ψ sinh ψ ) ( ) u ϕ sinh ψ ϕ ψ u which clrl ispls th quilnc o th projction. Osr tht cosh ψ mns th hproloi is projct ollowing plns prpniculr to th clinr o projction (igur 5.8). Figur 5.8 onic projctions Ths projctions r m into con surc tngnt to th hproloi. Hr to tk th con z 0 is th most nturl choic, lthough s or, th con o projction hs Euclin ntur n os not long proprl to th psuo-euclin spc, whr it shoul th con o zro lngth. Th con surc unroll is circulr sctor. In conic projction prlll is shown s circl with zro istortion. Th chrctristic prmtr o conic projction is th constnt o th con n cos θ 0, ing θ 0 th Euclin ngl o inclintion o th gnrtri o th con. Th rltion with th hprolic ngl ψ 0 o th prlll touching th con (which is rprsnt without istortion in th projction) n θ 0 is: n cosθ 0 tgh ψ 0

16 04 RMON GONZLEZ LVET Sinc th grticul o th conic projctions is ril, is mor connint to us th rius r n th ngl χ : ( ψ ) ψ r χ n ϕ Th irntils o rc lngth n r or conic projction r: r sinh ψ ( ) [ ( )] s ψ sinh ψ ϕ χ ψ n sinhψ sinh ψ ϕ ψ r χ n ( ψ ) Lt us s s or th thr spcil css: quiistnt, conorml n quilnt projctions. Th irntil o r or polr coorints r, χ is r r χ. I th projction is quilnt, w must inti oth to in: sinhψ ψ n ( ψ ) ( ψ ) ( ψ ) ψ cosh n n r ψ sinh n s n n r 4 n r n r 4 r χ I th projction is quiistnt, th mriins h zro istortion so ψ r / n n: s n r sinh r n χ I th projction is conorml thn s r r χ so: sinh ψ s n r ( r r χ ) Thn w sol th irntil qution: ψ sinhψ r n r with th ounr conition tghψ 0 r0 to in th conorml projction:

17 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 05 r tghψ 0 n ψ tgh ψ 0 tgh On th congrunc o gosic tringls Two gosic tringls on th hproloi hing th sm ngls lso h th sm sis n r si to congrunt. This ollows immitl rom th rottions in th psuo-euclin spc, which r prss mns o ttrnions in th sm w s qutrnions r us in th rottions o Euclin spc. Howr, this lls out o th scop o this ook n will not trt. Th rr must prci, in spit o his Euclin s 7, tht ll th points on th hproloi r quilnt cus th curtur is lws th unit n th surc is lws prpniculr to th rius. So th pol (rt o th hproloi) is not n spcil point, n n othr point m chosn s nw pol proi tht th nw is r otin rom th ol ons through rottion. ommnt out th nms o th non-euclin gomtr Finll it is pprnt tht th irnt kins o non-euclin gomtr h n otn misnm. Th Lochskin surc ws improprl cll th hprolic pln in contriction with th ct tht it hs constnt curtur n thror is not lt. rtinl, in th Lochsk s gomtr th hprolic unctions r wil us, ut in th sm w s th circulr unctions work in th sphricl trigonomtr, s Lochsk himsl show. In th psuo-euclin pln th gomtr o th hprol is proprl rlis, th hprolic unctions ing lso in thr. Thus th psuo-euclin pln shoul nm proprl th hprolic pln, whil th Lochsk s gomtr might ltrntil cll hproloil gomtr. Th pln mols o th Lochsk s gomtr (ltrmi isk, Poincré isk n hl pln, tc.) must unrstoo s pln projctions o th hproloi in th psuo-euclin spc, which is its propr spc, n thn th Lochskin trigonomtr m cll hproloil trigonomtr. On th othr hn, th spc-tim ws th irst phsicl iscor o psuo- Euclin pln, ut on no ns to ppl to rltiit cus, s th lctor hs iw in this ook, oth signturs o th mtrics (Euclin n psuo-euclin) r inclu in th pln gomtric lgr n lso in th lgrs o highr imnsions. Erciss 5.. ccoring to th Lochsk s iom o prlllism, t lst two prlll lins pss through n trior point o gin lin. Th two lins pproching gin lin t 7 In ct, s r not Euclin ut r prct cmr whr imgs r projct on sphricl surc. Th principls o projction r likwis pplicl to th psuo-euclin spc. Our min ccustom to th orinr spc (w lrn its Euclin proprtis in th irst rs o our li) cis us whn w wish prci th psuo-euclin spc.

18 06 RMON GONZLEZ LVET th ininit r cll «prlll lins» whil thos not cutting n not pproching it r cll «ultrprlll» or «irgnt lins». Lochsk in th ngl o prlllism Π(s) s th ngl which orms th lin prlll to gin lin with its prpniculr, which is unction o th istnc s twn th intrsctions on th prpniculr. Pro tht Π(s) rctg(p(s)) using th strogrphic projction. 5.. Fin th quilnt o th Pthgorn thorm in th Lochskin gomtr tking right ngl tringl. Figur circl is in s th cur which is th intrsction o th hproloi with pln not pssing through th origin with slop lss thn th unit. Show tht: ) Th cur otin is n llips. ) Th istnc rom point tht w cll th cntr to r point o this llips is constnt, n m cll th rius o th circl. c) This llips is projct s circl in th strogrphic projction horoccl is th intrsction o th hproloi n pln with unit slop ( ). Show tht th horoccls r projct s circls touching th limit circl in th strogrphic projction. Fin th cntr o horoccl. 5.5 ) Show tht th irntil o r in th ltrmi projction is: u ( u ) / ) intgrting pro tht th r twn two lins orming n ngl ϕ n th common prlll lin (igur 5.0-) is qul to π ϕ. c) Pro tht th r o r tringl (igur 5.0-) is qul to its ngulr ct π α β γ. Figur Us th zimuthl conorml projction to show tht th r o circl (hproloil sgmnt) with rius ψ is qul to π (cosh ψ ). This rsult is nlogous to th r o sphricl sgmnt π ( cos θ ).

19 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER SOLUTIONS OF THE PROPOSE EXERISES. Th ctors n thir oprtions. Lt, th irnt sis o th prlllogrm n c, oth igonls. Thn: c c ( ) ( ) which r th sum o th squrs o th our sis o th prlllogrm.. ( ) ( ) ( ) ( ) Lt us pro tht c ( c ) : 4 c ( ) ( c c ) c c c c c c c c ( c c ) ( c c ) ( c c ) 4 ( c ) In th sm w th intit c ( c ) is pro..4 Using th intit o th prious rcis w h: c c c ( c ) ( c ) ( c ) ( c c c ) ( c c c c c c ) 0 0 whr th summns r simplii tking into ccount th prmutti proprt..5 Lt us not th componnts proportionl n prpniculr to th ctor with n. Thn using th ct tht orthogonl ctors nticommut n thos with th sm irction commut, w h:

20 08 RMON GONZLEZ LVET c ( ) ( c c ) ( ) ( c c ) ( ) ( c c ) ( c c c c ) ( c c c c ) ( c c ) ( ) c.6 Lt,, c th sis o tringl n h th ltitu corrsponing to th s. Thn th ltitu iis th tringl in two right tringls whr th Pthgorn thorm m ppli: h c h Isolting th ltitu s unction o th sis w otin: h ( c ) 4 Thn th squr o th r o th tringl is: h 4 4 ( c ) c c c 6 6 Introucing th smiprimtr s ( c ) w in: s ( s ) ( s ) ( s c ). s o ctors or th pln. rw, or mpl, two ctors o th irst qurnt n mrk u, u, n on th rtsin is. Thn clcult th r o th prlllogrm rom th rs o th rctngls: ( u ) ( u ) u u u u u. Th r o tringl is th hl o th r o th prlllogrm orm n two sis. Thror: ( 5 ) ( ) ( 9 0 ). c ( ) ( ) ( c c ) [ ( ) ] ( c c ) ( c c c c ) ( c c c c )

21 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 09 ( c c ) [ ( ) ] ( c c ) ( ) ( ) c.4 u ( ) ( 4 ) 6 7 u 5 α(u, ).570º'6".5 For this s w h: cos π/ sin π/ ppling th originl initions o th moulus o ctor on ins: u ( ) u 5 ( 4 ) u ( ) ( 4 ) u 548 u cos α u u sin α ± u α(u, ) 0.685º 4' 5" orint with th sns rom to. Whn n r not prpniculr, n hs not th mning o pur r ut th outr prouct with n r o. lso osr tht u u..6 In orr to in th componnts o or th nw s {u, u }, w must rsol th ctor into linr comintion o u n u. c u c u c u ( ) ( 5) 5 u u 6 c u ( 5) ( ) u u 7 so in th nw s (6, 7).. Th compl numrs. z t ( ) ( ) 6 ( 6 ) 8 4

22 0 RMON GONZLEZ LVET. Er compl numr z cn writtn s prouct o two ctors n, its moulus ing th prouct o th mouli o oth ctors: z z z z z*. Th qution 4 0 is sol trction o th ourth roots: 4,, 4.4 Pssing to th polr orm w h: ( ) n ( ) n π / 4 π / 4 n n n π / 4 n π/4 n n n π/4 n π/4 π Thror th rgumnts must qul cpt or k tims π: nπ 4 nπ n π π k π π k π n 4 k 4.5 Th thr cuic roots o r 8 π / 4, 8 π /, 8 9 π /..6 Using th ormul o th qution o scon gr w in: z, z..7 W suppos tht th compl nltic tnsion hs rl prt o th orm: sin K() with K(0) ppling th irst uch-rimnn conition, w in th imginr prt o : cos K( ) cos K( ) ppling th scon uch-rimnn conition: sin K' ( ) sin K( ) w rri t irntil qution or K() whos solution is th hprolic cosin: K' ( ) K( ) K(0) K() cosh Hnc th nlticl tnsion o th sin is:

23 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER sin( ) sin cosh cos sinh Th nlticl tnsions o th trigonomtric unctions m lso otin rom th ponntil unction. In th cs o th cosin, w h: ( )( cos sin ) p( ) ( cos sin ) p( z) p( z) p cos z cos z cos cosh sin sinh.8 Lt us clcult som ritis t z 0: () z ( p( z) ) log (0) log p () ( z) ' z ' () p( z) p() z p () () z '' z '' () ( p() z ) () z p() z ( p() z ) p( z) ( p() z ) 0 0 ''' ''' () IV () z p() z ( p() z ) p( z) 4 p(z) ( p() z ) ( p() z ) 6p( z) ( p() z ) 4 IV () 0 8 Hnc th Tlor sris is: 4 z z z () z log is irgnt. This is th singulrit nrst th origin. Thror th rius o conrgnc o th sris is π. Osr tht ( π ) log( 0).9 Sprting rctions: () z z z 8 6 ( z ) 6 ( z 4) n loping th scon rction:

24 RMON GONZLEZ LVET 6 z z 4 6 z z n n w in: () ( ) ( z ) z n 6 z 6 ( ) n 0 z 6 z 6... This Lurn sris is conrgnt in th nnulus 0 < z < 6, which contins th rquir nnulus < z < 4..0 Tking into ccount tht ( )..., th unction in th sris is: () z ( ) n n n 4 z 4 z 4 z ( ) Now w s tht t z /4 th unction hs pol. Thror th rius o conrgnc o this sris (cntr t z ) is /4 ( ) /4.. From th succssi ritis o th sins clcult t z 0, on otins th Tlor sris or sin z: sin z z z! 5 z... 5! n 0 ( ) n z n ( n )! so th Lurn sris or th gin unction is: sin z z n z z z! z! 5! n n ( ) 0 ( n ) Sinc th pol z 0 is th uniqu singulrit (s tht th nlticl tnsion o th rl sin in th rcis.7 hs no singulritis), th nnulus o conrgnc is 0< z <.. I (z) is nltic thn th riti t ch point is uniqu n w cn writ or two irnt irctions z n z :... z '(z) z '(z) ccoring to th rltionship twn th compl n ctoril plns, w cn multipl t th lt in orr to turn th compl irntils into ctors: z z Now lt us clcult th gomtric prouct o th ctor irntils: z '(z) z (z) z z [ (z)]* '(z) '(z) z z

25 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER Sinc '(z) is rl, oth gomtric proucts h th sm rgumnt, α(, ) α(z, z ), n hnc th trnsormtion is conorml. 4. Trnsormtions o ctors 4. I is th irction ctor o th rlction, th ctor ' rlct o with rspct to this irction is gin : ' I '' is otin rom ' rottion through n ngl α, n z is unitr compl numr with rgumnt α / thn: '' z ' z α α z cos sin Joining oth qutions: '' z z c c Tht is, on otins rlction with rspct nothr irction with ctor c z, th prouct o th irction ctor o th initil rlction n th compl numr with hl rgumnt. 4. Lt w'' th trnsorm ctor o w two conscuti rlctions with rspct irnt irctions u n : w'' w' u w u Thn w cn writ: w'' z w z z u z ing compl numr so tht it is quilnt to rottion with n ngl qul to th oul o tht orm oth irction ctors. 4. I th prouct o ch trnsorm ctor ' th initil ctor is qul to compl numr z (' n lws orm constnt ngl) thn: ' z ' z z* z z z z z ( z z ) which rprsnts n inrsion with rius z ollow rottion with n ngl qul to th oul o th rgumnt o z. s th lgr shows, oth lmntl trnsormtions commut.

26 4 RMON GONZLEZ LVET 5. Points n stright lins 5. I,, n r loct ollowing this orr on th primtr o th prlllogrm, thn : (, 5) (4, ) (, 4) (0, ) Th r is: ( 7 ) ( ) Th Eulr s thorm: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) This prouct onl nishs i, n r collinr. On th othr hn w s tht th prouct is th orint r o th tringl. 5. ) Th r o th tringl is th outr prouct o two sis: (4, 4) (, ) ( 4, ) (, ) ( ) sin 60 o 4 ) Th istnc rom to is th lngth o th ctor, tc: ( ) cos π/ 8 ( ) 4 ( ) 4 6 (, ) 8 (, ) 4 (, ) 5.4 si o th trpzoi is ctoril sum o th othr thr sis: ( ) whr th ct tht n ctors with th sm irction n contrr sns hs

27 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 5 n tkn into ccount. rrnging trms: ( ) Without loss o gnrlit w will suppos tht > : Sinc th ngl is th supplmnt o th ngl orm th ctors n, w h: ( ) cos whnc w otin th ngl : cos ( ) Th trpzoi cn onl ist or th rng < cos <, tht is: ( ) > > > ( ) 5.5 R ( p q ) O p P q Q RP ( p q ) OP q QP RP PQ ( p q ) OP PQ whnc it ollows tht: r RPQ ( p q ) r OPQ 5.6 Th irction ctor o th stright lin r is : (5, 4) (, ) (, 6) (, ) Th istnc rom th point to th lin r is: (, r) ( ) ( ) 0 0 Th ngl twn th ctors n is uc mns o th sin n cosin: cos 0 α sin α Thror, α π/. Th ngl twn two lins is lws compris rom π/ to π/

28 6 RMON GONZLEZ LVET cus rottion o π roun th intrsction point os not ltr th lins. Whn th ngl cs ths ounris, ou m or sutrct π. 5.7 ) Thr points, E, F r lign i th r linrl pnnt, tht is, i th trminnt o th coorints nishs. E F ( ) O P Q ( ) O P Q E E E ( ) O P Q F F F E F E F E F E F E F 0 whr th rcntric coorint sstm is gin th origin O n points P, Q (or mpl th rtsin sstm is trmin O (0, 0), P (, 0) n Q (0, )). Th trnsorm points ', E' n F' h th sm coorints prss or th s O', P' n Q'. Thn th trminnt is ctl th sm, so tht it nishs n th trnsorm points r lign. Thror n stright lin is trnsorm into nothr stright lin. ) Lt O', P' n Q' th trnsorm points o O, P n Q th gin init: O' ( o,o ) P' ( p, p ) Q' ( q, q ) n consir n point R with coorints (, ): R (, ) ( ) O P Q Thn R', th trnsorm point o R, is: R' ( ) O' P' Q' ( ) ( o, o ) ( p, p ) ( q, q ) ( ( p o ) (q o ) o, ( p o ) ( q - o ) o ) ( ', ' ) whr w s tht th coorints ' n ' o R' r linr unctions o th coorints o R: ' ( p o ) ( q o ) o ' ( p o ) ( q - o ) o In mtri orm: ' p ' p o o q q o o o o cus r linr (n non gnrt) mpping o coorints cn writtn in this

29 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 7 rgulr mtri orm, now w s tht it is lws n init. c) Lt us consir n thr non lign points,, n thir coorints: ( ) Q P O ( ) Q P O ( ) Q P O In mtri orm: Q P O crtin point is prss with coorints whthr or { O, P, Q } or {,, }: ( ) ( ) Q P O c c In mtri orm: ( ) ( ) c c Q P O ( ) ( ) c c which ls to th ollowing sstm o qutions: ( ) ( ) c c c c n init os not chng th coorints, o,, n, ut onl th point s - {O', P', Q'} inst o {O, P, Q}-. Thror th solution o th sstm o qutions or n c is th sm. Thn w cn writ: ( ) ' c ' ' c ' ) I th points, E, F n G r th conscuti rtics in prlllogrm thn: E GF G E F

30 8 RMON GONZLEZ LVET Th init prsrs th coorints prss in n s {, E, F}. Thn th trnsorm points orm lso prlllogrm: G' ' E' F' 'E' G'F' ) For n thr lign points, E, F th singl rtio r is: E F r E r F E ( r ) r F Th rtio r is coorint within th stright lin F n it is not chng th init: E' ( r ) ' r F' 'E' 'F' r 5.8 This rcis is th ul o th prolm. Thn I h copi n pst it chnging th wors or corrct unrstning. ) Thr lins, E, F r concurrnt i th r linrl pnnt, tht is, i th trminnt o th ul coorints nishs: E F ( ) O P Q ( ) O P Q E E E ( ) O P Q F F F E F E F E F E F E F 0 whr th ul coorint sstm is gin th lins O, P n Q. For mpl, th rtsin sstm is trmin O [0, 0] (lin 0), P [, 0] (lin 0) n Q [0, ] (lin 0). Th trnsorm lins ', E' n F' h th sm coorints prss or th s O', P' n Q'. Thn th trminnt lso nishs n th trnsorm lins r concurrnt. Thror n pncil o lins is trnsorm into nothr pncil o lins. ) Lt O', P' n Q' th trnsorm lins o O, P n Q th gin trnsormtion: O' [ o,o ] P' [ p, p ] Q' [ q, q ] n consir n lin R with ul coorints [, ]: R [, ] ( ) O P Q Thn R', th trnsorm lin o R, is: R' ( ) O' P' Q' ( ) [ o, o ] [ p, p ] [ q, q ] [ ( p o ) (q o ) o, ( p o ) ( q o ) o ] [ ', ' ]

31 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 9 whr w s tht th coorints ' n ' o R' r linr unctions o th coorints o R: ' ( p o ) ( q o ) o ' ( p o ) ( q - o ) o In mtri orm: ' ' o o o q o p o q o p cus n linr mpping (non gnrt) o ul coorints cn writtn in this rgulr mtri orm, now w s tht it is lws n init. c) Lt us consir n thr non concurrnt lins,, n thir coorints: ( ) Q P O ( ) Q P O ( ) Q P O In mtri orm: Q P O crtin lin is prss with ul coorints whthr or {O, P, Q } or {,, }: ( ) ( ) Q P O c c In mtri orm: [ ] [ ] c c Q P O [ ] [ ] c c

32 0 RMON GONZLEZ LVET which ls to th ollowing sstm o qutions: ( c) ( c) c c n init os not chng th coorints, o,, n, ut onl th lins s -{O', P', Q'} inst o {O, P, Q}-. Thror th solution o th sstm o qutions or n c is th sm. Thn w cn writ: Figur 6. ( c) ' ' c ' ' ) Th init mps prlll points into prlll points (points lign with th point (/, /), point t th ininit in th ul pln). I th lins, E, F n G r th conscuti rtics in ul prlllogrm (igur 6.) thn: E GF G E F Whr E is th ul ctor o th intrsction point o th lins n E, n GF th ul ctor o th intrsction point o G n F. Oiousl, th points EF n G r lso prlll cus rom th ormr qulit it ollows: EF G Th init prsrs th coorints prss in n s {, E, F}. Thn th trnsorm lins orm lso ul prlllogrm: G' ' E' F' 'E' G'F' ) For n thr concurrnt lins, E, F th singl ul rtio r is: E F r E r F E ( r ) r F Th rtio r is coorint within th pncil o lins F n it is not chng th init: E' ( r ) ' r F' 'E' 'F' r ) Lt us consir our concurrnt lins,, n with th ollowing ul coorints prss in th lins s {O, P, Q}: [, ] [, ] [, ] [, ]

33 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER Thn th irction ctor o th lin is: ( ) Q P O ut th irction ctors o th s ulils: 0 Q P O Thn: ( ) ( ) Q P n nlogousl: ( ) ( ) Q P ( ) ( ) Q P ( ) ( ) Q P Th outr prouct is: ( ) ( ) ( ) Q P Thn th cross rtio onl pns on th ul coorints ut not on th irction o th s ctors (s chptr 0): ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Hnc it rmins inrint unr n init. Ech outr prouct cn writtn s n outr prouct o ul ctors otin sutrction o th coorints o ch lin n th ininit lin: L L,, whr L L is th ul ctor going rom th lin L t th ininit to th lin, tc. Thn w cn writ this usul ormul or th cross rtio o our lins:

34 RMON GONZLEZ LVET ( ) L L L L L L L L This rcis links with th sction Projcti cross rtio in th chptr To otin th ul coorints o th irst lin, sol th intit: ' ( ) ' c' ' ' 0 c' 0 c [0, /] For th scon lin: ' ( ) ' c' ' ' 4 c' c [4/9, /9] 9 oth lins r lign in th ul pln with th lin t th ininit (whos ul coorints r [/, /]) sinc th trminnt o th coorints nishs: / / 9 / 0 4 / 9 / / / 9 / 0 Thror th r prlll (this is lso triil rom th gnrl qutions). 5.0 Th point (, ) is th intrsction o th lins 0 n 0, whos ul coorints r: 0 [/5, /5] 0 [/, 0] Th irnc o ul coorints gis ul irction ctor or th point: [/, 0] [/5, /5] [/0, 4/0] n hnc w otin th ul continuous n gnrl qutions or th point: / c 4 4 c Th point (, ) is th intrsction o th lins 0 n 0, whos ul coorints r:

35 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 0 [4/0, /0] 0 [/4, /4] Th irnc o ul coorints gis ul irction ctor or th point: w [/4, /4] [4/0, /0] [ /0, 4/0] n hnc w otin th ul continuous n gnrl qutions or th point: / 4 / 4 c c 5 Not tht oth ul irction ctors n w r proportionl n th points r prlll in ul sns. Hnc th points r lign with th cntroi (/, /) o th coorint sstm. 6. ngls n lmntl trigonomtr 6. Lt, n c th sis o tringl tkn nticlockwis. Thn: c 0 c c ( ) c cos(π γ ) cos γ (lw o cosins) Th r s o tringl is th hl o th outr prouct o n pir o sis: s c c sin(π γ ) c sin(π α) c sin(π β ) sinγ sinα sinβ (lw o sins) c From hr on quickl otins: sin α sinβ sinα sinα sinβ sinβ iiing oth qutions n introucing th intitis or th ition n sutrction o sins w rri t:

36 4 RMON GONZLEZ LVET α β α β sin cos sinα sinβ sinα sinβ α β α β cos sin α β tg α β tg (lw o tngnts) 6. Lt us sustitut th irst cosin th hl ngl intit n conrt th ition o th two lst cosins into prouct: α β β α β γ α cos( α β ) cos( β γ ) cos( γ α ) cos cos cos Lt us trct common ctor n conrt th ition o cosins into prouct: α β cos α β α γ cos cos β α β α γ γ β cos cos cos α β β γ γ α cos cos cos Th intit or th sins is pro in similr w. 6. Using th Moir s intit: cos4α ( cosα α ) 4 sin 4α sin tr loping th right hn si w in: sin 4α 4 cos α sinα 4 cosα sin α cos 4α cos 4 α 6 cos α sin α sin 4 α n iiing oth intitis: tg 4 4 tgα 4 tg α 6 tg α tg α α Lt α, β n γ th ngls o th tringl P with rtics, n P rspctil. Th ngl γ mrcing th rc is constnt or n point P on th rc. th lw o sins w h: P P sinα sinβ P sinγ

37 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 5 Th sum o oth chors is: P P P sin α sinβ sinγ onrting th sum o sins into prouct w in: P α β α β sin cos P P P sinγ π sin γ α β cos sinγ Sinc γ is constnt, th mimum is ttin or cos(α / β /), tht is, whn th tringl P is isoscls n P is th mipoint o th rc. 6.5 From th sin thorm w h: c α β α β α β sin cos cos sinα sinβ sinγ γ γ γ sin cos sin Following th sm w, w lso h: c α β α β α β cos sin sin sinα sinβ sinγ γ γ γ sin cos cos 6.6 Tk s th s o th tringl n rw th ltitu. It iis in two sgmnts which r th projctions o th sis n c on : cosγ c sinβ n so orth. 6.7 From th oul ngl intitis w h: cosα cos α sin α sin α cos α From th lst two prssions th hl-ngl intitis ollow: α sin ± cosα α cosα cos ± Mking th quotint:

38 6 RMON GONZLEZ LVET tgα ± cosα cosα sinα cosα sinα cosα 7. Similritis n singl rtio 7. First t ll rw th tringl n s tht th homologous rtics r: P ( 0, 0 ) P' ( 4, ) Q (, 0 ) Q' (, 0 ) R ( 0, ) R' ( 5, ) PQ QR RP P'Q' Q'R' R'P' r P'Q' PQ Q'R' QR R'P' RP 5 π / 4 Th siz rtio is r 5π/4. n th ngl twn th irctions o homologous sis is 7. Lt right tringl ing th right ngl. Th ltitu cutting th s in splits in two right ngl tringls: n. In orr to simpli I introuc th ollowing nottion: c c Th tringls n r oppositl similr cus th ngl is common n th othr on is right ngl. Hnc: ( c )* c c Th tringls n r lso oppositl similr, cus th ngl is common n th othr on is right ngl. Hnc: ( c ) ( c )* c c ( c ) Summing oth rsults th Pthgorn thorm is otin: c ( c ) c c 7. First t ll w must s tht th tringls M n M r oppositl similr. Firstl, th shr th ngl M. Sconl, th ngls M n M r qul cus th mrc th sm rc. In ct, th limiting cs o th ngl whn mos to is th ngl M. Finll th ngl M is qul to th ngl M cus th sum o th ngls o tringl is π. Th opposit similrit implis: M M M M

39 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 7 M M M M Multipling oth prssions w otin: M M M M Lt Q th intrsction point o th sgmnts P n. Th tringl PQ is irctl similr to th tringl P n oppositl similr to th tringl Q: P Q P Q P P Q P P Q P P Q P P Q P P Summing oth prssions: Q Q ( P P ) P Th thr sis o th tringl r qul; thror: P P P 7.5 Lt us irstl clcult th homotht rtio k, which is th quotint o homologous sis n th similrit rtio o oth tringls: '' k Sconl w clcult th cntr o th homotht isoltion rom: O' O k O' O O ( k ) ' ( k ) O Sinc th sgmnt ' is known, this qution llows us to clcult th cntr O : O ' ( k ) ' ( '' ) 7.6 rw th lin pssing through P n th cntr o th circl. This tn imtr cuts th circl in th points R n R'. S tht th ngls R'RQ n QQ'R' r supplmntr cus th intrcpt opposit rcs o th circl. Thn th ngls PRQ n R'Q'P r qul. Thror th tringl QRP n R'Q'P r oppositl similr n w h: Figur 6. PR PQ PR' PQ' PQ PQ' PR PR' Sinc PR n PR' r trmin P n th circl, th prouct PQ PQ' (th powr o P) is constnt inpnntl o th lin PQQ'. 7.7 Th isctor o th ngl iis th tringl c in two tringls, which r

40 8 RMON GONZLEZ LVET oiousl not similr! Howr w m ppl th lw o sins to oth tringls to in: m sin sin m n sin sin n Th ngls n n m r supplmntr n sin n sin m. On th othr hn, th ngls n r qul cus o th ngl isctor. Thror it ollows tht: m n 8. Proprtis o th tringls 8. Lt, n th rtics o th gin tringl with nticlockwis position. Lt S, T n U th rtics o th thr quiltrl tringls rwn or th sis, n rspctil. Lt P, Q n R th cntrs o th tringls S, T n U rspctil. Th si U is otin rom through rottion o π/: U t with π t π / cos π sin R is / o th ltitu o th quiltrl tringls U ; thror is / o th igonl o th prlllogrm orm n U: U R ( t) Th sm rgumnt pplis to th othr quiltrl tringls: Q ( t) P ( t) From whr P, Q n R s unctions o, n r otin: P ( t) Q ( t) R ( t) Lt us clcult th ctor PQ: ( )( t) PQ Q P Introucing th cntroi: G PQ G ( t ) G G t nlogousl:

41 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 9 QR G G t RP G G z Now w ppl rottion o π/ to PQ in orr to otin QR: PQ t ( G G t ) t G t G t Sinc t is thir root o th unit ( t t 0) thn: PQ t G t G G t G t G t G t G G t GG G G t G G t QR Through th sm w w in: QR t RP RP t PQ Thror P, Q n R orm n quiltrl tringl with cntr in G, th cntroi o th tringl : P Q R ( t ) G 8. Th sustitution o th cntroi G o th tringl gis: PG ( ) P P P ( ) P P ( ) ( P) ( P) ( P) ( ) ( ) ( ) P P P P P P [ ] ( ) 8. ) Lt us clcult th r o th tringl G: G [ ( ) c ] [ ( c ) c ] ( c ) G Th proo is nlogous or th tringls G n G. ) Lt us lop PG ollowing th sm w s in th rcis 8.:

42 0 RMON GONZLEZ LVET PG [P ( c ) ] P P ( c ) ( c ) ( c ) P P P c P c c c ( P ) ( P ) c ( P ) ( ) ( ) c ( c ) c c P P c P ( c ) ( c ) c ( ) c c P P c P ( ) c ( ) c ( ) P P c P c c Th Liniz s thorm is prticulr cs o th pollonius lost thorm or c /. 8.4 Lt us consir th rtics,, n orr clockwis on th primtr. Sinc P is turn π/, Q is turn π/, tc, w h: z cos π/ sin π/ P z Q z R z S z PR QS ( P R ) ( Q S ) [ ( ) z ] [ ( ) z ] [ ( ) z ] [ ( ) z ] [ ( ) z ] [ ( ) z ] [ ( ) z ] [ ( ) z ] Th innr prouct o two ctors turn th sm ngl is qul to tht o ths ctors or th rottion. W us this ct or th irst prouct. lso w must lop th othr proucts in gomtric proucts n prmut ctors n th compl numr z: PR QS ( ) ( ) ( z z * ) Thror PR QS 0. Th sttmnt ) is pro through n nlogous w.

43 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 8.5 Th min is th sgmnt going rom rt to th mipoint o th opposit si: m I E is th intrsction point o th isctor o with th lin prlll to th isctor o, thn th ollowing qulit hols: E whr, r rl. rrnging trms w otin ctoril qulit: Th linr composition ils tr simpliiction: In th sm w, i is th intrsction o th isctor o with th lin prlll to th isctor o w h: c whr c n r rl. rrnging trms: c tr simpliiction w otin: Now w clcult th ctor E:

44 RMON GONZLEZ LVET E E Thn th irction o th lin E is gin th ctor : Whn th ctor hs th irction, th scon summn nishs, n th tringl coms isoscls. 8.7 Lt us inict th sis o th tringl with, n c in th ollowing orm: c Suppos without loss o gnrlit tht P lis on th si n Q on th si. Hnc: P k ( k ) P k k Q l ( l ) Q l l whr k n l r rl n 0 < k, l <. Now th sgmnt PQ is otin: PQ k l Sinc th r o th tringl PQ must th hl o th r o th tringl, it ollows tht: P Q ( k ) ( l ) k l Th sustitution into PQ gis: PQ k k ) I u is th ctor o th gin irction, PQ is prpniculr whn PQ u 0 which rsults in: k u 0 k whnc on otins:

45 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER k u u PQ u u u u In this cs th solutions onl ist whn u n u h irnt signs. Howr w cn lso choos th point P (or Q) ling on th nothr si c, wht gis n nlogous solution contining th innr prouct c u. Not tht i u n u h th sm sign, thn c u h th opposit sign cus: c 0 c u u u wht wrrnts thr is lws solution. ) Lt us clcult th squr o PQ: PQ k 4k quting th riti to zro, on otins th lu o k or which PQ is minimum: k Thn w otin th sgmnt PQ n its lngth: PQ PQ c) Er point m writtn s linr comintion o th thr rtics o th tringl th sum o th coicints ing qul to th unit: R ( ) R whr ll th coicints r compris twn 0 n : 0 <,, < R R Now th point R must li on th sgmnt PQ, tht is, P, Q n R must lign. Thn th trminnt o thir coorints will nish: 0 k k 0 k k t k k ( P, Q, R) l 0 l 0 0

46 4 RMON GONZLEZ LVET k k 0 ± 8 k n 4 m 8 l k 4 Thr is onl solution or positi iscriminnt: > 8 Th limiting cur is n quiltrl hprol on th pln -. Sinc th tringl m otin through n init, th limiting cur or th tringl is lso hprol lthough not quiltrl. I th trms P n Q coul mo long th prolongtions o th sis o th tringl without limittions, this woul th uniqu conition. Howr in this prolm th point P must li twn n, n Q must li twn n. It mns th itionl conition: ± 8 < k < < l < < < 4 From th irst solution (root with sign ) w h: < 8 < 4 onl isting or >/4. For /4 < < / th lt hn si is ngti so tht th uniqu rstriction is th right hn si. squring it w otin: ( 4 ) 8 < 0 < or 4 < < For >/ th right hn si is highr thn so tht th uniqu rstriction is th lt hn si: ( ) < 8 < 0 or > For th scon solution (root with sign ) w h: < 8 < 4 onl isting or < /. For /4 < < / th right hn si is positi so tht th uniqu rstriction is th lt hn si: ( ) > 8 > 0 or < < 4 For < /4 oth mmrs r ngti n tr squring w h:

47 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 5 ( ) > 8 > ( 4 ) > 0 > or ll ths conitions r plott in th igur 6.. < 4 Figur 6. It is sil pro tht th limiting lins touch th hprol t th points (/4, /) n (/, /4). For oth tringls pint with light gr thr is uniqu solution. In th rgion pint with rk gr thr r two solutions, tht is, thr r two sgmnts pssing through th point R n iiing th tringl in two prts with qul r. mns o n init th plot in th igur 6. is trnsorm into n tringl (igur 6.4). Th init is linr trnsormtion o th coorints, which conrts th limiting lins into th mins o th tringl intrscting t th cntroi n th hprol into nothr non quiltrl hprol: Figur 6.4 Osr tht th mins ii th tringl in si tringls. I point R lis outsi th show tringls, w cn lws support th trms o th sgmnt PQ pssing

48 6 RMON GONZLEZ LVET through R in nothr pir o sis. This mns tht th iision o th tringl is lws possil proi o th suitl choic o th sis. On th othr hn, i w consir ll th possiilitis, th points nighouring th cntroi mit thr sgmnts. 9. ircls 9. ( M ) ( M ) ( M ) k M M ( ) k Introucing th cntroi G ( ) / : ( ) k M M G G 9 ( M G) k ( ) ( ) ( ) 9 k 9 GM r M runs on circumrnc with rius r cntr t th cntroi o th tringl whn k is highr thn th rithmtic mn o th squrs o th thr sis: k 9. Lt n th i points n P n point on th srch gomtric locus. I th rtio o istncs rom P to n is constnt it hols tht: P k P P k P with k ing rl positi numr P P k ( P P ) ( k ) P ( k ) P k P P ( k k ) k k k W inict O th prssion: O. ing O to oth mmrs w otin: k OP k ( k ) ( ) k k

49 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 7 OP k ( ) k ( k ) ( k ) Thror, th points P orm circumrnc cntr t O, which is point o th lin, with rius: OP k k 9. Lt us rw th circumrnc circumscri to th tringl (igur 6.5) n lt n point on this circumrnc. Lt P, Q n R th orthogonl projctions o P on th sis, n rspctil. Not tht th tringls P n R r similr cus o π R. Th similrit o oth tringls is writtn s: R P Figur 6.5 Th tringls Q n R r lso similr cus o th qulit o th inscri ngls : R Q Sinc th ngls R P n R Q, th isctor o th ngl Q is lso isctor o th ngl P n R, ing its irction ctor: R Q R Q P P Lt P', Q' n R' th rlct points o P, Q n R with rspct to th isctor: R' R Multipling w h: R' R R which is n pct rsult sinc th rlction o R with rspct th isctor o th ngl R ils lws point R' lign with n. nlogousl or n w in tht th points, n Q' r lign n lso th points, n P': Q' Q R Q R R

50 8 RMON GONZLEZ LVET P' P R P R R Now w s tht th points R', Q' n P' r th trnsorm o, n unr n inrsion with cntr : R' Q' P' Sinc lis on th circumrnc pssing through, n, th inrsion trnsorms thm into lign points n th rlction prsrs this lignmnt so tht P, Q n R r lign. 9.4 I m n n c thn: ( ) ( c) ( )( c c c ) m n c c c c c c 4 c c c c c c Tking into ccount tht ( c) thn: ( c) c c c c c so w m rwrit th ormr qulit: m n c c c c c c c W ppl th prmutti proprt to som trms: m n c c c c c c c c in orr to rri t ull smmtric prssion: m n c c c Now w prss th prouct o ch pir o ctors using th ponntil unction o thir ngl: m n c c ( p( ( π γ α ) ) p( ( π β δ ) )) ing th rgumnts o th ponntil, simpliing n tking into ccount tht α β γ δ π. m n c c cos ( α γ )

51 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER Lt, n th mipoints o th sis o n tringl PQR : Q R R P P Q Th cntr o th circumrncs R, P n Q will not s, E n F rspctil. Th circumrnc P is otin rom th circumscri circumrnc PQR mns o homotht with cntr P. Thn i O is th circumcntr o th tringl PQR, th cntr o th circumrnc P is loct t hl istnc rom R: P O E PQ OR E Q O F PQ OR F PQ EF Lt Z th intrsction o E with F. Thn: ( ) E ( )F Z rrnging trms w in: E F EF Th linr composition gis: EF F E F E EF E F EF Z E F F F E F E F E P Q R O 4 which is inrint unr cclic prmuttion o th rtics P, Q n R. Thn th lins E, F n intrsct in uniqu point Z. On th othr hn, th point Z lis on th Eulr s lin (igur 9.8): Figur 9.8 G O Z W must pro tht th inrsion chngs th singl rtio o thr r clos points its conjugt lu, cus th orinttion o th ngls is chng. Lt us consir n inrsion with cntr O n rius r n lt th points ', ', ' th trnsorm o,, unr this inrsion. Thn: O' r O O' r O O' r O '' O' O' r (O O ) r O (O O) O

52 40 RMON GONZLEZ LVET r O O In th sm w: '' r O O Lt us clcult th singl rtio o th trnsorm points: ( ', ', ' ) '' '' O O O O O O ( O ) ( O ) Whn n com nr, n tn to zro n th singl rtio or th inrs points coms th conjugt lu o tht or th initil points: lim, ( ', ', ' ) O O (,, ) * 0. ross rtios n rlt trnsormtions 0. Lt quriltrl inscri in circl. W must pro th ollowing qulit: which is quilnt to: Now w inti ths quotints with cross rtios o our points,, n on circl: ( ) ( ) qulit tht lws hols cus i ( ) r thn: r r r Whn th points o not li on circl, th cross rtio is not th quotint o mouli ut compl numr: p[ ( ) ] p[ ( ) ] ccoring to th tringulr inqulit, th moulus o th sum o two compl numrs is lowr thn or qul to th sum o oth mouli:

53 TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 4 0. I,, n orm hrmonic rng thir cross rtio is : In orr to isolt w must writ s ition o n : ( ) ( ) ( ) ( ) 0. Th homogrph prsrs th cross rtio: '' '' '' '' which m rwrittn s: '' '' ( '' '' ) ( '' '' ) ( ) ( ) Whn n pproch to, th ctors,, '' n '' tn to zro. So th singl rtio o thr r clos points rmins constnt: lim '' '' lim,, n thror th ngl twn tngnt ctors o curs. So th homogrph is irctl conorml trnsormtion. 0.4 I F is point on th homolog is w must pro tht: { F, } { F, ' ' ' ' } s w h sn, point ' homologous o is otin through th qution: O' O [ r F ( FO ) ] whr O is th cntr o homolog, F point on th is, th irction ctor o th is n r th homolog rtio. Thn th ctor F' is: F' FO O' FO O [ r F ( FO ) ]

54 4 RMON GONZLEZ LVET [ FO ( r F ( FO ) ) O ] [ r F ( FO ) ] [ F r FO F ( FO ) ] [ r F ( FO ) ] nlogousl: F' [ F r FO F ( FO ) ] [ r F ( FO ) ] F' [ F r FO F ( FO ) ] [ r F ( FO ) ] F' [ F r FO F ( FO ) ] [ r F ( FO ) ] Th prouct o two outr proucts is rl numr so tht w must onl p ttntion to th orr o th irst loos ctors F n FO, tc: F' F' [ F F r ( F FO F FO F F ) ( FO ) ] [ r F ( FO ) ] [ r F ( FO ) ] Using th intit o th rcis.4, w h: F' F' [ F F r F F FO ( FO ) ] [ r F ( FO ) ] [ r F ( FO ) ] F F ( r ) [ r F ( FO ) ] [ r F ( FO ) ] In th projcti cross rtio ll th ctors cpt th irst outr prouct r simplii: F' F' F' F' F' F' F' F' F F F F F F F F 0.5 ) Lt us pro tht th spcil conorml trnsormtion is iti: OP' ( OP ) OP' OP OP'' ( OP' w ) ( OP w ) ) Lt us trct th ctor OP rom OP': OP' ( OP ) OP OP' OP ( OP ) Thn w h: O' O ( O ) O' O ( O ) O' O ( O ) O' O ( O )

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

6. ANGLES AND ELEMENTAL TRIGONOMETRY

6. ANGLES AND ELEMENTAL TRIGONOMETRY TRETISE OF PLNE GEOMETRY THROUGH GEOMETRI LGER 5 6. NGLES ND ELEMENTL TRIGONOMETRY Hr, th basic intitis of th lmntal trigonomtr ar uc in clos connction with basic gomtric facts, a vr usful point of viw

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1 Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

JEE Advnced Mths Assignment Onl One Correct Answer Tpe. The locus of the orthocenter of the tringle formed the lines (+P) P + P(+P) = 0, (+q) q+q(+q) = 0 nd = 0, where p q, is () hperol prol n ellipse

More information

64. A Conic Section from Five Elements.

64. A Conic Section from Five Elements. . onic Sction from Fiv Elmnts. To raw a conic sction of which fiv lmnts - points an tangnts - ar known. W consir th thr cass:. Fiv points ar known.. Four points an a tangnt lin ar known.. Thr points an

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium .65, MHD Thory of usion Systms Prof. ridrg Lctur 8: Effct of Vrticl ild on Tokmk Equilirium Toroidl orc lnc y Mns of Vrticl ild. Lt us riw why th rticl fild is imortnt. 3. or ry short tims, th cuum chmr

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Continuous Random Variables: Basics

Continuous Random Variables: Basics Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Lesson-5 ELLIPSE 2 1 = 0

Lesson-5 ELLIPSE 2 1 = 0 Lesson-5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for)

Schematic of a mixed flow reactor (both advection and dispersion must be accounted for) Cas stuy 6.1, R: Chapra an Canal, p. 769. Th quation scribin th concntration o any tracr in an lonat ractor is known as th avction-isprsion quation an may b writtn as: Schmatic o a mi low ractor (both

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac Mthmtics Riw. Sclr mthmticl ntity tht hs mgnitud only.g.: tmprtur T spd tim t dnsity ρ sclrs my constnt or my ril Lws of Algr for Sclrs: ys commutti ys ssociti (c) ()c ys distriuti (c) c Fith A. Morrison,

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Ellipse. 1. Defini t ions. FREE Download Study Package from website: 11 of 91CONIC SECTION

Ellipse. 1. Defini t ions. FREE Download Study Package from website:  11 of 91CONIC SECTION FREE Downlod Stud Pckge from wesite: www.tekoclsses.com. Defini t ions Ellipse It is locus of point which moves in such w tht the rtio of its distnce from fied point nd fied line (not psses through fied

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

8Algebraic UNCORRECTED SAMPLE PAGES. techniques. What you will learn. Australian curriculum. Chapter 8A 8B 8C 8D 8E 8F

8Algebraic UNCORRECTED SAMPLE PAGES. techniques. What you will learn. Australian curriculum. Chapter 8A 8B 8C 8D 8E 8F 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K Chptr Wht you will lrn 8Algri thniqus Epning inomil prouts Prt squrs n irn o prt squrs Ftorising lgri prssions Ftorising th irn o two squrs Ftoristion y grouping Ftorising

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C. MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &D) AND CALCULUS. TIME : hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.If th portion

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

MCQ For Geometry. Similarity

MCQ For Geometry. Similarity MQ For Gomtry Similrity. E F EA FB AE A EB B t G ) ) ) In right ngl tringl, if BD A thn BD AD D n Th ro of r of two imilr tringl i l to r of th ro of thir orrpg i. A ( ) B A A ( ) Q P l Propr of imilr

More information

x dx does exist, what does the answer look like? What does the answer to

x dx does exist, what does the answer look like? What does the answer to Review Guie or MAT Finl Em Prt II. Mony Decemer th 8:.m. 9:5.m. (or the 8:3.m. clss) :.m. :5.m. (or the :3.m. clss) Prt is worth 5% o your Finl Em gre. NO CALCULATORS re llowe on this portion o the Finl

More information