Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Size: px
Start display at page:

Download "Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000"

Transcription

1 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright on ths nots, pls s

2 Highr Mthmtics Unit Mthmtics Contnts Vctors 09 Vctors nd Sclrs 09 Componnts 09 Mgnitud 0 Equl Vctors Addition nd Subtrction of Vctors Multipliction by Sclr 7 Position Vctors 8 Bsis Vctors 9 Collinrity 0 Dividing Lins in Rtio 7 Th Sclr Product 9 Th Angl Btwn Vctors Prpndiculr Vctors Proprtis of th Sclr Product Furthr Clculus Diffrntiting sin nd cos Intgrting sin nd cos Th Chin Rul 7 Spcil Css of th Chin Rul 8 A Spcil Intgrl 9 Intgrting sin( + b) nd cos( + b) Eponntils nd Logrithms Eponntils Logrithms Lws of Logrithms Eponntils nd Logrithms to th Bs 9 Eponntil nd Logrithmic Equtions 0 Formul from Eprimntl Dt 7 Grph Trnsformtions Th Wv Eqution Eprssing pcos + qsin in th form kcos( ) Eprssing pcos + qsin in othr forms 7 Multipl Angls 8 Mimum nd Minimum Vlus 9 Solving Equtions 0 Sktching Grphs of y pcos + qsin - ii - HSN000

3 Highr Mthmtics Unit Mthmtics OUTCOME Vctors Vctors nd Sclrs A sclr is quntity with mgnitud (siz) only for mpl, n mount of mony or lngth of tim. Somtims siz lon is not nough to dscrib quntity for mpl, dirctions to th nrst shop. For this w nd to know mgnitud (i.. how fr), nd dirction. Quntitis with mgnitud nd dirction r clld vctors. A vctor is nmd ithr by using th lttrs t th nd of dirctd lin sgmnt (.g. AB ) or by using bold lttr (.g. u). You will s bold lttrs usd in printd tt, howvr w show this s u whn w writ it (i.. w undrlin th lttr). B Throughout ths nots, w will show vctors in bold s wll us undrlining thm (.g. u). Componnts A vctor my b rprsntd by its componnts. Ths dfin how to gt from on nd of th vctor to th othr. For mpl: is vctor in two dimnsions is vctor in thr dimnsions Th componnts r writtn in column, to void confusing vctors with coordints. Zro Vctors Any vctor with ll its componnts zro is clld zro vctor nd cn b writtn s 0,.g A u Pg 09 HSN000

4 Highr Mthmtics Unit Mthmtics Mgnitud Th mgnitud (lngth) of vctor is writtn s u or AB. It cn b clcultd s follows: EXAMPLES. Givn If PQ b thn PQ If PQ b thn PQ c u, find u. u ( ) + ( ) 9 units. Find th lngth of units Unit Vctors. + b + b + c Any vctor with mgnitud of on is clld unit vctor. For mpl: If 0 u thn So u is unit vctor. u unit Pg 0 HSN000

5 Highr Mthmtics Unit Mthmtics Equl Vctors Vctors with th sm mgnitud nd dirction r qul. For mpl, ll th vctors shown to th right r qul. If vctors r qul to ch othr, thn ll of thir componnts r qul, i.. b c d d If b thn d, b nd c f c f Th convrs is lso tru. Addition nd Subtrction of Vctors Considr th following vctors: b c Addition W cn construct + b s follows: b + b + b mns followd by b Similrly, w cn construct + b + c s follows: b + b + c c + b + c mns followd by b followd by c To dd vctors, w position thm nos-to-til. Thn th sum of th vctors is th vctor btwn th first til nd th lst nos. Pg HSN000

6 Highr Mthmtics Unit Mthmtics Subtrction Now considr w cn us vctor ddition to obtin b. This cn b writtn s + ( ) b. b, so if w first find b, b b is just b but in th opposit dirction. b b nd b hv th sm mgnitud, i.. b b. Thrfor w cn construct b b s follows: b b mns followd by b Using Componnts If w hv th componnts of vctors, thn things bcom much simplr. Th following ruls cn b usd for ddition nd subtrction. d + d b + b + c f c + f dd th componnts d d b b c f c f subtrct th componnts EXAMPLES. Givn u nd v, clcult u + v nd u v. 0 u + v + u v Pg HSN000

7 Highr Mthmtics Unit Mthmtics. Givn p nd p q Multipliction by Sclr q, clcult p q nd q + p. + + q p 9 9 A vctor u which is multiplid by sclr k will giv th rsult ku. This vctor will b k tims s long, i.. th mgnitud will b k u. For mpl: u u u u k If u b thn ku kb c kc Ech componnt is multiplid by th sclr. EXAMPLES. Givn v, find v. v 9 Pg HSN000

8 Highr Mthmtics Unit Mthmtics. Givn r, find r. r Ngtiv Vctors Th ngtiv of vctor is th vctor multiplid by. If w writ vctor s dirctd lin sgmnt AB, thn AB BA : 7 Position Vctors OA is clld position vctor of point A rltiv to th origin O, nd is writtn s. OB is clld th position vctor of point B, writtn b. z Givn P (, y, z ), th position vctor y P OP or p hs componnts y. z y O A b AB A B B To mov from point A to point B w cn mov bck long th vctor to th origin, nd long vctor b to point B. AB AO + OB OA + OB + b b B AB BA For th vctor joining ny two points P nd Q, PQ q p. A O p Pg HSN000

9 Highr Mthmtics Unit Mthmtics EXAMPLE R is th point (,, ) nd S is th point (,, ) From th coordints, RS s r 8 r nd s.. Find RS. Not Thr is no nd to writ this down 8 Bsis Vctors A vctor my lso b dfind in trms of th bsis vctors i, j nd k. Ths r thr mutully prpndiculr unit vctors (i.. thy r prpndiculr to ch othr). k i j Ths bsis vctors cn b writtn in componnt form s i 0, 0 0 j nd 0 0 k 0. Any vctor cn b writtn in bsis form using i, j nd k. For mpl: 0 0 v i j + k 0 0 Thr is no nd for th working bov if th following is usd: i + bj + ck b c Pg HSN000

10 Highr Mthmtics Unit Mthmtics 9 Collinrity In Stright Lins (Unit Outcom ), w lrnd tht points r collinr if thy li on th sm stright lin. not collinr not collinr collinr Th points A, B nd C in D spc r collinr if AB is prlll to BC, with B common point. Not tht w cnnot find grdints in thr dimnsions instd w us th fct tht vctors r prlll if thy r sclr multipls of th sm vctor. For mpl: u, v u So u nd v r prlll. 0 p 9, q 8 So p nd q r prlll. EXAMPLE A is th point (,, ), B( 8,, 9) nd C(,,7 ). Show tht A, B nd C r collinr. AB b BC c b BC AB, so AB nd BC r prlll nd sinc B is common point, A, B nd C r collinr. Pg HSN000

11 Highr Mthmtics Unit Mthmtics 0 Dividing Lins in Rtio Thr is simpl procss for finding th coordints of point which divids lin sgmnt in givn rtio. EXAMPLE. P is th point (,, ) nd R is th point ( 8,,9 ). Th point T divids PR in th rtio :. Find th coordints of T. Stp Mk sktch of th lin, showing th rtio in which th point divids th lin. Stp Using th sktch, qut th rtio of th two lins with th givn rtio. Stp Cross multiply, thn chng dirctd lin sgmnts to position vctors. Stp Rrrng to giv th position vctor of th unknown point. Stp From th position vctor, stt th coordints of th unknown point. R PT TR PT TR ( t p) ( r t ) T t p r t t + t r + p 8 t + 9 t t 0 t 7 So T is th point (,, 7 ). P Pg 7 HSN000

12 Highr Mthmtics Unit Mthmtics Using th Sction Formul Th prvious mthod cn b condnsd into formul s shown blow. If th point P divids th lin AB in th rtio m : n, thn: n + mb p n + m whr is, b nd p r th position vctors of A, B nd P. This is rfrrd to s th sction formul. It is not ncssry to know this, sinc th pproch plind bov will lwys work. EXAMPLE. P is th point (,, ) nd R is th point ( 8,,9 ). Th point T divids PR in th rtio :. Find th coordints of T. Th rtio is :, so lt m nd n, thn: n p + mr t n + m p + r [ ( ) + ( 8) ] ( ) + ( ) [ ( ) + ( 9) ] 7 So T is th point (,, 7 ). Not If you r confidnt with rithmtic, this stp cn b don mntlly Pg 8 HSN000

13 Highr Mthmtics Unit Mthmtics Th Sclr Product So fr w hv ddd nd subtrctd vctors nd multiplid vctor by sclr. Now w will considr th sclr product, which is form of vctor multipliction. Th sclr product is dfind s. b (somtims it is clld th dot product) nd cn b clcultd s follows:. b b cosθ whr θ is th ngl btwn th two vctors nd b. This is givn on th formul list. Th dfinition bov ssums tht th vctors nd b r positiond so tht thy both point wy from th ngl, or both point into th ngl. θ b θ b Howvr, if on vctor is pointing wy from th ngl, whil th othr points into th ngl θ b θ b w find tht. b b cosθ. EXAMPLE. Two vctors, nd b hv mgnituds 7 nd units rspctivly nd r t n ngl of 0 to ch othr s shown blow. b 0 Wht is th vlu of. b?. b b cosθ 7 cos 0 Pg 9 HSN000

14 Highr Mthmtics Unit Mthmtics Th Componnt Form of th Sclr Product Th sclr product cn lso b clcultd s follows:. b b + b + b whr This is givn on th formul list. nd b b b b EXAMPLES. Find p. q, givn tht p. q p q + p q + p q p nd ( ) + ( ) + ( ) + 9 q.. If A is th point (,, 9 ), B(,, ) nd C(,, ), clcult AB.AC. C(,, ) B(,, ) A (,, 9) W nd to us th position vctors of th points: AB b AC c 9 AB.AC (( ) ( ) ) + ( 0) + ( ) ( ) Pg 0 HSN000

15 Highr Mthmtics Unit Mthmtics Th Angl Btwn Vctors Th sclr product cn b rrrngd to giv th following qutions, both of which cn b usd to clcult θ, th ngl btwn th two vctors.. cosθ b b b + b + b b or cosθ Look bck to th formul for finding th sclr product, givn on th prvious two pgs. Notic tht th first qution is simply rrrngd form of th on which cn b usd to find th sclr product. Also notic tht th scond simply substituts. b for on of its quivlncs. Ths formul r not givn in th m but cn both b sily drivd from th formul on th prvious pgs (which r givn). EXAMPLES. Clcult th ngl θ btwn vctors p i + j k nd q i + j + k. p i + j k nd p q + p q + p q cosθ p q ( ) + ( ) + (( ) ) + + ( ) q i + j + k 0 θ cos 9 8. (to d. p.) (or. 98 rdins (to d. p.)) Pg HSN000

16 Highr Mthmtics Unit Mthmtics. K is th point (, 7, ), L(,, ) nd M(,, ). Find Strt with sktch: cosθ L(,, ) θ K (, 7, ) LK.LM LK LM LK k l 7 0 ( ) + ( 0 ) + ( ( ) ) + ( 0) + ( ) + + ( ) 0 8 M(,,) θ cos (to d. p.) (or. 8 rdins (to d. p.)) ɵ KLM. LM m l Pg HSN000

17 Highr Mthmtics Unit Mthmtics Prpndiculr Vctors If nd b r prpndiculr thn. b 0. This is bcus. b b cosθ b cos90 ( θ 90 sinc prpndiculr) 0 (sinc cos90 0) Convrsly, if. b 0 thn nd b r prpndiculr. EXAMPLES. Two vctors r dfind s i + j k nd b i + j + k. Show tht nd b r prpndiculr.. b b + b + b ( ) ( ) (( ) ) Sinc. b 0, nd b r prpndiculr.. PQ 7 nd RS nd RS whr is constnt. r prpndiculr, find th vlu of. Givn tht PQ PQ.RS 0 Sinc PQ nd RS r prpndiculr + ( ) Pg HSN000

18 Highr Mthmtics Unit Mthmtics Proprtis of th Sclr Product Som proprtis of th sclr product r s follows: EXAMPLE AMPLES. Clcult.( + ). b b.. b + c. b +. c (Epnding brckts). p q r whn p, r nd q nd th vctors r rrngd s shown in th digrm blow. p. q + r p. q + p. r p q cosθ + cos 0 + cos + + p r cosθ. In th digrm blow c nd b. p q r c 0 b 0 b c. Clcult.( + + ) ( + + ). b c. +. b +. c + b cosθ c cosθ + cos0 cos Rmmbr. c c cosθ sinc points into θ nd c points wy Pg HSN000

19 Highr Mthmtics Unit Mthmtics OUTCOME Furthr Clculus Diffrntiting sin nd cos Thr r two nw ruls which r usd to diffrntit prssions involving trigonomtric functions: d d d d ( sin ) cos ( cos ) sin EXAMPLES. Diffrntit y sin with rspct to. dy cos d. A function f is dfind by f ( ) sin cos for R. Find f π. f ( ) cos ( sin ) cos + sin f π cosπ + sinπ + + π π. Find th qution of th tngnt to th curv y sin whn At π : y sin π π So th point is, W lso nd th grdint t th point whr π : dy cos d At π, mtngnt cos π ( ) π. Pg HSN000

20 Highr Mthmtics Unit Mthmtics Now w hv th point π, nd th grdint m tngnt y b m ( π ) y y π y π + 0, so: Intgrting sin nd cos Sinc w know th drivtivs of sin nd cos, it follows tht th intgrls r: EXAMPLES cos d sin + c sin d cos + c. Find sin + cos d. sin + cos d cos + sin + c π. Find cos + sin d. 0 π 0 Not [ ] cos + sin d sin cos π π π [ ] ( ) ( ) [ ] 0 sin cos sin0 cos Not It is good prctic to rtionlis th dnomintor With trigonomtric drivtivs nd intgrls, w should lwys work in rdins. Pg HSN000

21 Highr Mthmtics Unit Mthmtics Th Chin Rul W hv not yt covrd how to diffrntit composit functions,.g. f g ( ). If th functions f nd g r dfind on suitbl domins, thn: EXAMPLE. If y cos( π ) d d +, find dy d. ( π ) ( π ) ( π ) y cos + dy sin + d sin + f ( g ( )) f g ( ) g [ ] n For prssions of th form f ( ), whr n is constnt, w cn us simplr vrsion of th chin rul: d d [ ] n n ( f ( )) n f ( ) f Sttd simply: th powr ( n ) multiplis to th front, th brckt stys th sm, th powr lowrs by on ( n ) nd vrything is multiplid by th drivtiv of th brckt ( f ( )). EXAMPLES. A function f is dfind on suitbl domin by f ( ) +. Find f ( ). + ( + ) f f + + ( ) ( ). Diffrntit ( )( ) y sin ( sin ) dy ( sin ) cos d 8sin cos y sin with rspct to. Not Th coms from d ( + d π ) Pg 7 HSN000

22 Highr Mthmtics Unit Mthmtics Spcil Css of th Chin Rul Th rul for diffrntiting n prssion of th form ( + b, whr, b nd n r constnts, is s follows: EXAMPLES d d n n b n b ( + ) ( + ). Diffrntit y ( + ) with rspct to.. If y ( + ) dy ( + ) d ( + ) y ( + ), find dy d. y ( + ) ( + ) dy ( + ) d ( + ) ( + ). A function f is dfind by f ( ) ( ) for R. Find f ( ). f ( ) ( ) ( ) f ( ) ( ) ( ) Th following ruls cn b usd to diffrntit trigonomtric functions. d d sin( + b) cos( + b) d cos( + b) sin( + b) Ths r givn in th m. EXAMPLE. Diffrntit y sin( 9 + π). dy 9cos( 9 + π) d d ) n Pg 8 HSN000

23 Highr Mthmtics Unit Mthmtics A Spcil Intgrl Th mthod for intgrting n prssion of th from ( + b is: ( + ) n+ n b ( + b) d + c whr 0 nd n ( n + ) Sttd simply: ris th powr ( n ) by on, divid by th nw powr multiplid by th drivtiv of th brckt ( ( n + )), dd c. EXAMPLES d.. Find ( + ) 7 ( ) 7 ( + ) + d + c 8 ( + ) c 8. Find ( + ) d.. Find ( + ) ( + ) d + c ( + ) + c 9 d + whr 9. ) n d + 9 ( + 9) ( + 9 ) ( + 9) + c c 0 d d c Pg 9 HSN000

24 Highr Mthmtics Unit Mthmtics. Evlut Not + d whr. 0 + d + d 0 0 ( + ) 9 0 ( + ) 0 ( ) + ( ( 0) + ) ( 8 ) (or 8. 8 to d. p.) For n prssion of th form ( + b : n n b n b d ( + ) ( + ) d ( + ) n+ n b + b d + c ( n + ) EXAMPLES. () Diffrntit y ( ) (b) Hnc, or othrwis, find () y ( ) ( ) dy ( )( ) d 0 ( ) ) n with rspct to. ( ) d. Pg 0 HSN000

25 Highr Mthmtics Unit Mthmtics (b) From prt () w know 0 d c ( ) ( ) +. So: 0 d + c ( ) ( ). () Diffrntit (b) Hnc, find () d + ( ) 0 c ( ) + c ( ) ( ) y ( ) ( ) ( ) y ( ) dy ( ) d d. whr c with rspct to. Not W could lso hv usd th spcil intgrl to obtin this nswr is som constnt (b) From prt () w know d + c. So: ( ) ( ) d + c ( ) ( ) d + c + c ( ) ( ) whr c is som constnt Not In this cs, th spcil intgrl cnnot b usd Pg HSN000

26 Highr Mthmtics Unit Mthmtics Intgrting sin( + b) nd cos( + b) Sinc w know th drivtivs of sin( + b) nd cos( b) tht th intgrls r: Ths r givn on th formul list. EXAMPLES. Find ( + ) sin d. cos + b d sin + b + c sin + b d cos + b + c sin + d cos + + c. Find cos ( + π ) d. ( π ) π cos + d sin + + c. Find th r nclosd b th grph of y sin( π ) th lins 0 nd π. y +, it follows +, th -is, nd y sin + π O π π ( + π ) d ( + π ) sin cos 0 cos( π π ( ) ) ( cos 0 π ) So th r is π 0 squr units Pg HSN000

27 Highr Mthmtics Unit Mthmtics d.. Find cos( ) ( ) ( ) sin( ) cos d sin + c + c. Find cos( ) + sin( ) d. cos( ) sin( ) sin( ) cos( ) + d + c Pg HSN000

28 Highr Mthmtics Unit Mthmtics OUTCOME Eponntils nd Logrithms Eponntils W hv lrdy mt ponntil functions in Unit Outcom. Rcll tht function in th form f ( ) is clld n ponntil function to th bs, whr > 0. If > thn th grph looks lik this: y y, > O (, ) This is somtims clld growth function If 0 < < thn th grph looks lik this: y y, 0 < < O (, ) This is somtims clld dcy function Rmmbr tht th grph of n ponntil function f ( ) lwys psss through ( 0, ) nd (, ) sinc: 0 f ( 0) f Pg HSN000

29 Highr Mthmtics Unit Mthmtics EXAMPLES. Th ottr popultion on n islnd incrss by % pr yr. How mny full yrs will it tk th popultion to doubl? Lt u 0 b th initil popultion. u u (% s dciml) 0 u u u u 0 0 u u u u u 0 0 n n u 0 For th popultion to doubl ftr n yrs, w rquir u u0. So th cofficint of u 0, which is n, must b t lst, i.. n. Try vlus of n until this is stisfid (strting with n sinc w know < ): If n, < If n, < If n, 8 < If n, 0 > Thrfor ftr yrs th popultion will doubl. On clcultor: n ANS. Th fficincy of mchin dcrss by % ch yr. Whn th fficincy drops blow 7%, th mchin nds to b srvicd. Aftr how mny yrs will th mchin nd srvicd? Lt u 0 b th initil fficincy. u 0 9 u (9% s dciml) u u u u n 0 9 n 0 u u u u u u Whn th fficincy drops blow 0 7u 0 (7% of th initil vlu) th mchin must b srvicd. So th mchin nds srvicd ftr n yrs if 0 9 n 0 7. Pg HSN000

30 Highr Mthmtics Unit Mthmtics Try vlus of n until this is stisfid: If n, > 0 7 If n, > 0 7 If n, > 0 7 If n, > 0 7 If n, < 0 7 Thrfor ftr yrs, th mchin will hv to b srvicd. Logrithms Hving prviously dfind wht logrithm is (s Unit Outcom ) w wnt to look in mor dtil t th proprtis of ths importnt functions. Th rltionship btwn logrithms nd ponntils is prssd s: y log whr, > 0. Hr, y is th powr of which givs. EXAMPLES. Writ in logrithmic form. log. Evlut log. Th powr of which givs is, so log Lws of Logrithms Thr r thr lws of logrithms which you must know. Rul y log + log y log y whr,, y > 0 If two logrithmic trms with th sm bs numbr ( bov) r bing ddd togthr, thn th trms cn b combind by multiplying th rgumnts ( nd y bov). EXAMPLE. Simplify log + log. log + log log log 8 Pg HSN000

31 Highr Mthmtics Unit Mthmtics Rul ( y ) log log y log whr,, y > 0 If logrithmic trm is bing subtrctd from nothr logrithmic trm with th sm bs numbr ( bov), thn th trms cn b combind by dividing th rgumnts ( nd y in this cs). Not tht th rgumnt which is bing tkn wy (y bov) pprs on th bottom of th frction whn th two trms r combind. EXAMPLE. Evlut log log. Rul log log log log (Sinc ) log n nlog whr, > 0. Th powr of th rgumnt (n bov) cn com to th front of th trm s multiplir, nd vic-vrs. EXAMPLE. Eprss log7 in th form log7. log 7 log7 log 9 7 Sqush, Split nd Fly Hr is simplr wy to rmmbr th lws of logrithms: If logrithmic trms, with th sm bs numbr, r bing ddd, th rgumnts r squshd togthr by multiplying thm If logrithmic trm is bing subtrctd from nothr, with th sm bs numbr, th rgumnts r split into frction Th powr of n rgumnt cn fly to th front of th log trm nd vicvrs. Pg 7 HSN000

32 Highr Mthmtics Unit Mthmtics Not Whn working with logrithms, th following fcts r usful: EXAMPLE log 0 sinc. Evlut log7 7 + log. log 7 + log + 7 Combining svrl log trms 0 log sinc Whn dding nd subtrcting svrl log trms in th form log b, thr is simpl wy to combin ll th trms in on stp. Multiply th rgumnts of th positiv log trms in th numrtor, Multiply th rgumnts of th ngtiv log trms in th dnomintor. EXAMPLES. Evlut log0 + log log log 0 + log log 0 log log. Evlut log + log. log + log log + log log + log 9 log 9 log log (Sinc ) rgumnts of positiv log trms rgumnts of ngtiv log trms log OR log + log log + log log + log ( ) ( ) log + log log log + log 0 + log log (Sinc log ) Pg 8 HSN000

33 Highr Mthmtics Unit Mthmtics Eponntils nd Logrithms to th Bs Th constnt is n importnt numbr in Mthmtics, prticulrly whn dling with rl-lif situtions. Its vlu is roughly (to 9 d.p.), nd is dfind s: n + s n n If you try vry lrg vlus of n on your clcultor, you will gt clos to th vlu of. Lik π, is n irrtionl numbr. Throughout this sction, w will us in prssions of th form:, which is clld n ponntil to th bs log, which is clld logrithm to th bs. This is lso known s th nturl logrithm of, nd is oftn writtn s ln (i.. ln log ). EXAMPLES. Writ down th vlu of log 8 log (to d.p.). Solv log 9. log 9 so (to d.p.).. Simplify log ( ) log ( ) prssing your nswr in th form + log b log c whr, b nd c r whol numbrs. log ( ) log ( ) log + log log log log + log + log log + log log + log log 7 On clcultor: ln 8 On clcultor: 9 OR log ( ) log ( ) log ( ) log ( ) ( ) log ( ) Rmmbr log 7 n n n b b log 7 log + log log 7 + log log 7 Pg 9 HSN000

34 Highr Mthmtics Unit Mthmtics Eponntil nd Logrithmic Equtions Mny mthmticl modls of rl-lif situtions us ponntils nd logrithms. It is importnt to bcom fmilir with using th lws of logrithms to hlp solv qutions. EXAMPLES. Solv log + log log 7 for > 0. log + log log 7 log log 7 7 (Sinc log log y y). Solv ( ) ( ) log + log for >. ( ) ( ) log + log log + + (Sinc log y y ) + ( ) + 8 log p + + log p 0 log p for p >.. Solv log ( p + ) + log ( p 0) log ( p) log ( p + )( p 0) log ( p) ( p + )( p 0) p p 0 p + p 0 p 0 p + 0 p 8 p 0 0 ( p )( p ) + 0 or p 0 p p Sinc w rquir p >, p is th solution. Pg 0 HSN000

35 Highr Mthmtics Unit Mthmtics Dling with Constnts Somtims it my b ncssry to writ constnts s logs, in ordr to solv qutions. EXAMPLE. Solv log 7 log + for > 0. Writ in logrithmic form: log (Sinc log ) log log 8 Us this in th qution: log 7 log + log 8 log 7 log OR log 7 log + log 7 log 7 log Convrting from log to ponntil form: Solving Equtions with unknown Eponnts If n unknown vlu (.g. ) is th powr of trm (.g. or 0 ), nd its vlu is to b clcultd, thn w must tk logs on both sids of th qution to llow it to b solvd. Th sm solution will b rchd using ny bs, but clcultors cn b usd for vluting logs to th bs nd 0. EXAMPLES. Solv 7. Tking log of both sids log log 7 log log 7 ( log ) log 7 9 (to d.p.) OR Tking log0 of both sids log log log log log0 7 log 0 9 (to d.p.) Pg HSN000

36 Highr Mthmtics Unit Mthmtics. Solv log log 0 ( + ) log log 0 log 0 + log (to d.p.) OR log log 0 ( + ) log log log0 0 + log (to d.p.) t 7. For th formul s ( t ) 00 : () Evlut s ( 0). 0 (b) Clcult th vlu of t whr s ( t ) s. () s ( 0) ( 0) (Sinc ) (b) Clcult th vlu of t whr s ( t ) s ( 0) 0 : log 0 00 t t 0 00 t log t log log ( ) t log (Sinc log ) t 0 (to d.p.) Formul from Eprimntl Dt Rsults from primnts oftn rlt to ponntil functions, ithr of th form b y or y b. It is oftn mor usful to hv this informtion s stright lin grph, bcus it is thn sir to find its qution. To obtin stright lin, th qutions must b writtn in th form y m + c. Th vlus of nd b cn thn b dtrmind from this qution. Pg HSN000

37 Highr Mthmtics Unit Mthmtics Equtions in th form y b EXAMPLE. Th rsults from n primnt wr notd s follows: Th rltionship btwn ths dt cn b writtn in th form y. Find th vlus of nd b, nd stt th formul for y in trms of. W nd to prss th qution in th form y m + c : y b log y log (tking logs of both sids) 0 0 log log log y log + log log y log + b log Compr to y m + c : b i.. log y b log + log b W cn find th grdint b, using two points on th lin: y y Using ( 70, ) nd ( 8, 0 ), b (to d.p.) log y 0 9 log + log. So y Now w cn work out by substituting point into this qution: Using ( 70, ), log0 log (to d.p.) b Thrfor y 0 9. Not Dpnding on th points usd, slightly diffrnt nswrs my b obtind. Pg HSN000

38 Highr Mthmtics Unit Mthmtics Equtions in th form y b EXAMPLE. Th rsults from n primnt wr notd s follows: Th rltionship btwn ths dt cn b writtn in th form y b. Find th vlus of nd b, nd stt th formul for y in trms of. W nd to prss th qution in th form y m + c : log y log b (tking logs of both sids) y b log y log + log b log y log + log b Compr to y m + c : i.. log y log b + log W cn find th grdint log b (nd hnc b), using two points on th lin: y y Using ( 0, 0 ) nd ( 80, ), log b So log y log. So b (to d.p.) (to d.p.) Now w cn work out log (nd hnc ) by substituting point into this qution: Using ( 0, 0 ), Thrfor y log y 0 78 log y 0 nd 0 so log log so 09 (to d.p.) (to d.p.) Pg HSN000

39 Highr Mthmtics Unit Mthmtics 7 Grph Trnsformtions Grph trnsformtions wr covrd in Unit Outcom Functions nd Grphs, but w cn now look in mor dtil t pplying trnsformtions to grphs of ponntil nd logrithmic functions. EXAMPLES. Shown blow is th grph of y f ( ) whr f ( ) log. y y f ( ) O ( 9,) () Stt th vlu of. (b) Sktch th grph of y f ( + ) +. () log 9 (sinc 9) (b) Th grph shifts two units to th lft, nd on unit upwrds: y ( 7,) O y f ( + ) +. Shown blow is prt of th grph of y log. y y log O (,) Sktch th grph of y log ( ) y y log ( ). log log O So rflct in th -is y log (, ) ( ) Pg HSN000

40 Highr Mthmtics Unit Mthmtics OUTCOME Th Wv Eqution Eprssing pcos + qsin in th form kcos( ) An prssion of th form p cos + q sin cn b writtn in th form k cos( ) whr: k sin k p + q nd tn k cos Th following mpl shows how to chiv this. EXAMPLES. Writ cos + sin in th form k cos( ) whr 0 0. Stp Epnd k cos( ) using th cos + sin compound ngl formul. k cos( ) Stp Rrrng to compr with p cos + q sin. Stp Compr th cofficints of cos nd sin with p cos + qsin. Stp Mrk th qudrnts on CAST digrm, ccording to th signs of k cos nd k sin. Stp Find k nd using th formul bov ( lis in th qudrnt mrkd twic in Stp ). Stp Stt p cos + q sin in th form k cos( ) using ths vlus. k cos cos + k sin sin k cos cos + k sin sin k cos k sin 80 S A T C k + 9 k sin tn k cos tn 7. (to d. p.) cos + sin cos 7. Pg HSN000

41 Highr Mthmtics Unit Mthmtics. Writ cos sin in th form k cos( ) whr 0 π. cos sin k cos( ) k cos k sin π S A T C π + π Hnc is in th fourth qudrnt. k cos cos + k sin sin k cos cos + k sin sin k + ( ) Hnc cos sin cos( 7).. Eprssing pcos + qsin in othr forms k sin tn k cos First qudrnt nswr is: tn 0. 0 (to d. p.) So π (to d. p.) An prssion in th form p cos + q sin cn lso b writtn in ny of th following forms using similr mthod. EXAMPLES k cos( + ) k sin( ) k sin( + ). Writ cos + sin in th form k sin( + ) whr 0 0. cos + sin k sin( + ) k cos k sin 80 S A T C Hnc is in th first qudrnt. k sin cos + k cos sin k cos sin + k sin cos k + Hnc cos + sin sin( +. ). k sin tn k cos So: tn. (to d. p.) Pg 7 HSN000

42 Highr Mthmtics Unit Mthmtics. Writ cos sin in th form k cos( + ) whr 0 π. cos sin k cos( + ) k cos k sin π S A T C π + π Hnc is in th first qudrnt. k cos cos k sin sin k cos cos k sin sin k + + Hnc cos sin cos( π ) Multipl Angls +. k sin tn k cos So: tn π Th sm mthod is usd with prssions of th form pcos( n) + qsin( n), whr n is constnt. EXAMPLE Writ cos + sin in th form k sin( + ) whr 0 0. cos + sin k sin( + ) k cos k sin 80 S A T C Hnc is in th first qudrnt. k sin cos + k cos sin k cos sin + k sin cos k + 9 Hnc cos + sin sin( +. ). k sin tn k cos So: tn. (to d. p.) Pg 8 HSN000

43 Highr Mthmtics Unit Mthmtics Mimum nd Minimum Vlus To work out th mimum or minimum vlus of p cos + qsin, w cn rwrit it s singl trigonomtric function,.g. k cos( ). Rcll tht th mimum vlu of th sin nd cosin functions is, nd thir minimum is. y y sin y y cos m. m. O EXAMPLE Writ sin + cos in th form k cos( ) whr 0 π nd stt: (i) th mimum vlu nd th vlu of 0 < π t which it occurs (ii) th minimum vlu nd th vlu of 0 < π t which it occurs. sin + cos k cos( ) k cos k sin π π S A T C π + π Hnc is in th first qudrnt. k cos cos + k sin sin k cos cos + k sin sin k ( ) + 7 O Hnc sin + cos 7 cos(. ). min. π min. k sin tn k cos So: tn ( ). (to d. p.) Th mimum vlu occurs whn: cos(. ). cos. 0. (to d. p.) Th minimum vlu occurs whn: cos(. ). cos ( ). π. 8 (to d. p.) Pg 9 HSN000

44 Highr Mthmtics Unit Mthmtics Solving Equtions Th wv qution cn b usd to hlp solv trigonomtric qutions involving both sin( n ) nd cos( n ) trm. EXAMPLES. Solv cos + sin whr 0 0. First, w writ cos + sin in th form k cos( ) : cos + sin k cos( ) k cos k sin 80 S A T C Hnc is in th first qudrnt. k cos cos + k sin sin k cos cos + k sin sin k + Hnc cos + sin cos(. ). Now w us this to hlp solv th qution: cos + sin cos(. ) cos(. ).. 9 or or or k sin tn k cos So: tn. (to d. p.) S A T C. cos. 9 (to d. p.) Pg 0 HSN000

45 Highr Mthmtics Unit Mthmtics. Solv cos + sin whr 0 π. First, w writ cos + sin in th form k cos( ) : cos + sin k cos( ) k cos k sin π S A T C π + π Hnc is in th first qudrnt. k cos cos + k sin sin k cos cos + k sin sin k + ( ) + 9 Hnc cos + sin cos( 0. 98). Now w us this to hlp solv th qution: k sin tn k cos So: tn (to d. p.) cos + sin π S A 0 < < π cos( 0. 98) cos( 0. 98) π + T C 0 < < π π cos ( ). 90 (to d. p.) or π. 90 or π or π + π. 90 or π + π or. 99 or 7. 7 or or. 97 or 8. or or. 988 or. 78 or. 0 Pg HSN000

46 Highr Mthmtics Unit Mthmtics Sktching Grphs of y pcos + qsin Eprssing pcos + q sin in th form k cos( ) nbls us to sktch th grph of y pcos + q sin. EXAMPLES. () Writ 7cos + sin in th form k cos( ), 0 0. (b) Hnc sktch th grph of y 7cos + sin for 0 0. () First, w writ 7 cos + sin in th form k cos( ) : 7 cos + sin k cos( ) k cos 7 k sin 80 S A T C Hnc is in th first qudrnt. k cos cos + k sin sin k cos cos + k sin sin k Hnc 7 cos + sin 8 cos( 0 ) k sin tn k cos So: (b) Now w cn sktch th grph of y 7cos + sin : y y 7 cos + sin 8 7 tn 7 0. (to d. p.) O Pg HSN000

47 Highr Mthmtics Unit Mthmtics. Sktch th grph of y sin + cos for 0 0. First, w writ sin + cos in th form k cos( ) : sin + cos k cos( ) k cos k sin 80 S A T C Hnc is in th first qudrnt. k cos cos + k sin sin k cos cos + k sin sin k + + Hnc sin + cos cos( 0 ). k sin tn k cos So: tn 0 Now w cn sktch th grph of y sin + cos : y y sin + cos O 0 0 Pg HSN000

48 Highr Mthmtics Unit Mthmtics. () Writ sin cos in th form k sin( ), 0 0. (b) Hnc sktch th grph of y sin cos +, 0 0. () sin cos k sin( ) k cos k sin 80 S A T C Hnc is in th first qudrnt. k sin cos + k cos sin k cos sin + k sin cos k + + Hnc sin cos sin(. ). (b) Now sktch th grph of y sin cos + sin(. ) + : y 8 y sin cos + k sin tn k cos So: ( ) tn. (to d. p.) O. 0 Pg HSN000

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

On the diagram below the displacement is represented by the directed line segment OA.

On the diagram below the displacement is represented by the directed line segment OA. Vectors Sclrs nd Vectors A vector is quntity tht hs mgnitude nd direction. One exmple of vector is velocity. The velocity of n oject is determined y the mgnitude(speed) nd direction of trvel. Other exmples

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4.

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4. Empl 6: Lt rprsnt th mss, in ponds, of rdioctiv lmnt whos hlf-lif is 4000 rs. If thr r 00 ponds of th lmnt in n inctiv min, how mch will still rmin in 000 rs? Eprss or nswr to or mor dciml plc ccrc. 4

More information

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac

temperature T speed v time t density ρ scalars may be constant or may be variable yes distributive a(b+c) = ab+ac Mthmtics Riw. Sclr mthmticl ntity tht hs mgnitud only.g.: tmprtur T spd tim t dnsity ρ sclrs my constnt or my ril Lws of Algr for Sclrs: ys commutti ys ssociti (c) ()c ys distriuti (c) c Fith A. Morrison,

More information

Logarithms. Logarithm is another word for an index or power. POWER. 2 is the power to which the base 10 must be raised to give 100.

Logarithms. Logarithm is another word for an index or power. POWER. 2 is the power to which the base 10 must be raised to give 100. Logrithms. Logrithm is nother word for n inde or power. THIS IS A POWER STATEMENT BASE POWER FOR EXAMPLE : We lred know tht; = NUMBER 10² = 100 This is the POWER Sttement OR 2 is the power to which the

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

St Andrew s Academy Mathematics Department Higher Mathematics

St Andrew s Academy Mathematics Department Higher Mathematics St Andrew s Academy Mathematics Department Higher Mathematics VECTORS hsn.uk.net Higher Mathematics Vectors Contents Vectors 1 1 Vectors and Scalars EF 1 Components EF 1 3 Magnitude EF 3 4 Equal Vectors

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

Sundials and Linear Algebra

Sundials and Linear Algebra Sundials and Linar Algbra M. Scot Swan July 2, 25 Most txts on crating sundials ar dirctd towards thos who ar solly intrstd in making and using sundials and usually assums minimal mathmatical background.

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Oppgavesett kap. 6 (1 av..)

Oppgavesett kap. 6 (1 av..) Oppgvstt kp. 6 (1 v..) hns.brnn@go.uio.no Problm 1 () Wht is homognous nucltion? Why dos Figur 6.2 in th book show tht w won't gt homognous nucltion in th tmosphr? ˆ Homognous nucltion crts cloud droplts

More information

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1 Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C. MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &D) AND CALCULUS. TIME : hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.If th portion

More information

The Theory of Small Reflections

The Theory of Small Reflections Jim Stils Th Univ. of Knss Dt. of EECS 4//9 Th Thory of Smll Rflctions /9 Th Thory of Smll Rflctions Rcll tht w nlyzd qurtr-wv trnsformr usg th multil rflction viw ot. V ( z) = + β ( z + ) V ( z) = = R

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Mathematics Higher Block 3 Practice Assessment A

Mathematics Higher Block 3 Practice Assessment A Mthemtics Higher Block 3 Prctice Assessment A Red crefully 1. Clcultors my be used. 2. Full credit will be given only where the solution contins pproprite working. 3. Answers obtined from reding from scle

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information