Geology 607: Advanced Physical Hydrology

Size: px
Start display at page:

Download "Geology 607: Advanced Physical Hydrology"

Transcription

1 Gology 67: Avnc Physicl Hyrology Lcur Nos for Fll 7 Insrucor: Mski Hyshi offic: ES 78, phon: , -mil: hyshi@uclgry.c xooks: Jury, W.A. n Horon, R., 4. Soil physics, 6 h iion. John Wily & Sons. Brusr, W., 5. Hyrology: n inroucion. Cmrig Univrsiy Prss. Dingmn, S.L., 5. Physicl hyrology, 3 n iion. Wvln Prss. McCun, R.H., 5. Hyrologic nlysis n sign, 3 r iion. Prson Eucion. CHAPER : WAERSHED AS A LEAKY RESERVOIR. Bsic Concps Hyrogrph is im-sris plo of srm ischrg, Q m 3 s - Somims Q is normliz y h rsh r A m. R = Q /A R is runoff m s - or mor commonly in mm y - Srm hyrogrph ingrs complx hyrologicl procsss, in priculr: Hillslop procsss Chnnl procsss Rliv impornc of incrss ih h siz of rsh s Fig..5 in Dingmn.. Hyrogrph Sprion riionlly, physicl hyrology s vlop for o purposs: Pricion of floo mgniu n iming Dsign n oprion of r supply rsrvoirs Much of rly ffors r m ors h nlysis of high flo uring sorm n sno ml vns. Qusion: Givn n moun n iming of rin, ho much of i ill com ou o srms, n ho fs? o nsr his usion, on oul hv o spr h flo rsuling from sorm r inpu from h sflo.

2 A numr of grphicl mhos hv n us o spr sflo from sorm flo s McCun, p No h ll of hs mhos r rirry ihou rl physicl sis. Shoul rgr s convnin ficion. Consn slop mhos McCun, p.495 ssum h h s flo componn linrly incrss uring n vn. homork ssignmn # his n similr concps r ily ccp y nginring hyrologiss; hir vliiy s rrly usion unil h rly 97s. hn rvoluion hppn mor on his lr. oy i is ccp y mos scinific hyrologiss h h sorm flo componn conins lrg frcion of pr-vn r, hich is prsumly push ou y vn r..3 Sorm Runoff Volum On cn sim h runoff volum y ingring h sorm flo componn from o in h figur ov. Dno i Wff, ffciv r inpu P in Dingmn, p In gnrl, i is much smllr hn h ol r inpu y rin or sno ml = W Exmpl: W = prcipiion rsh r h rio Wff/W is ofn cll runoff rio. Why is Wff/W <<.? - Iniil srcion: cnopy inrcpion, prssion sorg, c. - N o ovrcom soil moisur fici. - h r conriuing runoff is smllr hn h gross ring r riv from igil lvion mol DEM. Mor on h conriuing r lr. In h folloing nlysis, ssum h Wff is knon. Ho?

3 3 hr r numr of mhos o sim Wff from prcipiion inpu s Dingmn, p. 54. Agin, hs r ll convnin ficion. W ill us h rionl mho Fig. -49 in Dingmn: = p CR : im vrying ffciv r inpu p: rinfll innsiy msur CR: mpiricl cofficin, CR = Wff / W = ol sorm runoff / ol prcipiion his mho is oprionlly vry simpl, u i ill proly ovrsim rly in h sorm, n unrsim lr in h sorm. Why?.4 Inpu-Oupu Rspons Funcion Approch In his pproch, rsh is consir lck ox h proucs srm hyrogrph in rspons o ffciv r inpu Dingmn, p Whil his os no giv us much insigh ino hyrologicl procsss, i os srv som usful purposs: I hlps us xmin h hyrologicl flux in uniiv mnnr. Shp of h rspons funcion rvls som insighs ino rsh chrcrisics. 3 Whn clir, i cn us for priciv purposs. 4 I provis us ih moivion for furhr suy. h rspons funcion is lso cll rnsfr funcion or krnl funcion in h lirur. Mny forms of rnsfr funcions hv n propos, u ill xmin h simpls of ll. Linr rsrvoir or nk mol s Dingmn, p.47. Bsic concp is h: h sysm is simpl nk ih n oul. h ouflo r is proporionl o h volum of r in h nk.

4 4 Mhmicl Inrlu M. Mss Blnc Concp n Diffrnil Euions In h simpl rsrvoir: inpu - oupu = r of sorg chng V ΔV = volum chng, Δ = im inrvl Whn k Δ n ΔV o infinisimlly smll vlus: V V lim hrfor,, V V From our sic ssumpion i.. is proporionl o V: V hr / is proporionliy consn. hs imnsion of im hy?, n is cll rspons im of h sysm. h mss lnc uion cn rin s: No h hr is only on inpnn vril,, in his sysm, so n orinry riviv is us on h righ hn si. Also, is no pnn on. Such n uion is cll linr orinry iffrnil uion ODE of firs orr. h uion oul non-linr, if or r pnn on. M. chnius for Solving Firs-Orr Orinry Diffrnil Euions Suppos yx, funcion of x, hich sisfis: y N x, y M x, y M- x Whr Mx,y n Nx,y r ny funcion of x n y..g. Mx,y = 3x + xy Nx,y = x + y

5 5 All firs orr orinry iffrnil uions, linr or non-linr, cn rin in his form. Suppos spcil cs, hr Ny is only pnn on y, n Mx only pnn on x: y i.. N y M x x In his cs, cn spr h vrils: Nyy + Mxx = M- hn ingr oh sis: N y y M x x C hr C is n ingrion consn. No h h symol M x x is cll infini ingrl or ni-riviv; i is h invrs oprion of iffrniion. By finiion, x M x x M x h ingrion consn ns o rmin using n iniil coniion, such s: y = y hn x = x Alrnivly, cn ingr M- mploying h iniil coniion y y N x x M h Grk symols r cll ummy vrils of ingrion. Sinc h uppr limis of ingrls r h vrils of inrs x n y, i is ssnil h ummy vrils us for ingrion. x No h, gin y finiion, M M x x y n N N y x x y Exmpl: y Ky rx ih h coniion y = y x = M-3 x hr K n r r consn.

6 6 If inify K s hyrulic conuciviy n r s r-l rchrg flux, M-3 is h Dupui-Forchhimr uion scriing h sy-s grounr flo in r-l uifr. is h isnc from h ring ivi. o solv M-3, firs spr y n x: Kyy + rxx = Ingr h ov from, y o x,y: K y r x y K y y y y r K x r x For gnrl css of Mx,y n Nx,y, n o us mor vnc mhos, hich r yon h scop of his cours. M.3 Firs-Orr Linr Orinry Diffrnil Euion h mos gnrl form of firs-orr linr orinry iffrnil uion is: y P x y Q x M-4 x I cn shon h homork ssignmn, h gnrl soluion o M-4 is givn y: Px Px Px y Q x C M-5 Px hr is shor-hn noion for xp[ P x x] n C is n ingrion consn o rmin using h iniil coniion. Px rprsns h propry of h sysm n Qx rprsns h forcing, oh of hich r inpnn of y, hich is h sysm s s vril. For priculr prolm ih prscri Px n Qx, M-5 cn vlu nlyiclly for simpl funcions, or numriclly for complx or iscr funcions. No: h ckgroun informion on M.3 cn foun in mos inroucory xooks on ppli iffrnil uions, for xmpl Spigl, M.R. 98. Appli iffrnil uions, 3r iion, Prnic-Hll, pp A copy of h rlvn pgs is vill on h cours si.

7 7.5 Linr Rsrvoir Rspons Funcion As iscuss in pg 4, h ODE scriing simpl linr rsrvoir is givn y s Dingmn, p. 47: - hr is im-vrying inpu funcion [L 3 - ] is oupu flux from h rsrvoir [L 3 - ] is sysm rspons im [] No h h imnsion of h uion [L 3 - ] is h sm in oh h lf hn si LHS n righ hn si RHS. imnsionl homogniy his is n imporn ruirmn for corrc uions rprsning physicl sysm. o solv -, r-ri i s - n impos h iniil coniion: = = -3 Euion - is firs orr linr orinry iffrnil uion, for hich h soluion cn foun using M-5. W inify: P Q P P Q Susiuing hs ino M-5 yils: C o rmin h ingrion consn C, ri h ingrl s fini ingrl. C No h h ummy vril mus us s h ingring vril, cus pprs s h uppr oun of h ingrl.

8 8 Sing = in h ov givs: = C hrfor, C = from h iniil coniion -3. Noing h in h ling rm is consn ih rspc o, cn mov i ino h ingrl: hrfor, -4 Euion -4 sisfis oh - n -3 W hv foun h soluion! h soluion cn rin s: u hr u his yp of ingrl is cll h convoluion ingrl. is h ummy vril of ingrion. is commonly rfrr o s inpu or forcing funcion. u is rfrr o s rspons or rnsfr or krnl funcion. In mnnr of spking, rplc h lck ox in pg 3 y u. W sill o no kno h is in h ox, u kno ho i mhmiclly rspons o n xrnl forcing. For spcil cs hr = consn, cn ri E. -4 s: -5 For h nlysis of sorm flo lon, usully hv spr h sflo i.. iniil flo for h ons of h sorm = hrfor, h sorm flo porion of h hyrogrph is givn y: -6

9 9 in hich, kps incrsing s long s h inpu = is hr. For sorm lsing for urion pk, h mximum flo is: pk pk shor-hn noion pk [ xp{ }] long-hn noion h rcssion pr of h hyrogrph > pk is givn y sing = n = pk in E. -5: pk -7 pk No h h rcssion ill plo s srigh lin on smi-log grph cus: pk ln ln pk pk log log pk.33 No h: ln.33 n lnx = ln logx In h xponnil rcssion hyrogrph, rmins posiiv for, u i coms ngligily smll for lrg. Ho lrg is lrg nough o cll ngligil? I is rirry, u Dingmn p. 47 suggss / pk =. s cuoff; i.. pk. pk = ln. or pk h urion of h sorm il is proporionl o h sysm rspons im. R Dingmn pg for ohr propris of Es. -6 n -7 s ll s hir finiions.

10 .6 Uni Hyrogrph Suppos sorm vn ih consn inpu r n urion. For rsh chrcriz y h linr rsrvoir rspons uions -6 n -7, cn gnr sorm hyrogrph rsuling from his vn. From uions -6 n -7, i is clr h h shp i.. mporl isriuion of h hyrogrph is inpnn of. h mgniu of is proporionl o. If kno h sysm rspons for uni moun of inpu, hn cn clcul h sysm rspons for ohr mouns of rin. riionlly, h uni moun of inpu is fin y on inch = 5.4 mm of inpu isriu uniformly ovr. For xmpl, h figur o h righ shos hypohicl sorm in hich 5.4 mm of inpu is uniformly isriu ovr -hr prio. Hyrogrphs for non-uniform r inpu cn uil from ing h conriuion rsuling from ch hr of r inpu s h figur lo. lso s McCun pp o o his compuion on compur, n n i u i ni hr i is h r inpu im i un i is h uni hyrogrph vlu im n i lrgr h n i, smllr h vlu -9 Dils of h numricl lgorihm r scri in McCun pp In his clss, ill us MALAB funcion o vlu E. -9. homork ssignmn Rcll from pg, hn =, h ouflo from linr rsrvoir ih inpu is:

11 u - hr u is h rspons funcion. I cn shon h Es. -9 n - r uivln. E. -9 is h iscr vrsion of h coninuous convoluion ingrl -. h concp of uni hyrogrph is hlpful for unrsning h physicl mning of convoluion. Imporn unrlying ssumpions for Es. -9 n - r: - h rspons funcion or uni hyrogrph is inpnn of h siz or urion of sorm i.. h sysm is linr - h rsh chrcrisics o no chng ih im. i.. h sysm is sionry hs ssumpions r rrly sisfi in h rl rsh. Why? s Dingmn pp hrfor, h us of Es. -9 n - ruirs cuion. Es. -6 n -7 r jus on xmpl of simpl rspons funcion or uni hyrogrph. s McCun pp for mor complx forms of uni hyrogrphs..7 Rspons o Prioic Oscillion of W s spcil cs of E. -4 ih consn r inpu in pg 8. Anohr spcil cs is prioic oscillion of..g. iurnl sno/glcir ml inpu iurnl ngiv inpu y vpornspirion Assum h = + cos hr: [L 3 - ] n [L 3 - ] r consns [ - ] is h ngulr fruncy of oscillion; p [] is h prio of oscillion,.g. 4 hr p Susiuing his ino E. -4 n sing =,

12 cos cos Noing h sin cos sin cos cos hrfor, sin cos sin cos Noing h is ngligil for >>, sin cos - I cn shon homork ssignmn h E. - is uivln o cos p hr n p - Euion - inics h: hs smllr mpliu hn mping fcor = / p hs phs lg of, compr o pk of is ly y p / hs cn us o xrc h informion rgring sysm rspons im from h osrvion of prioic oscillion in.

13 mor on his lr, hn iscuss Fourir rnsform n hrmonic nlysis. 3

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

A Production Inventory Model for Different Classes of Demands with Constant Production Rate Considering the Product s Shelf-Life Finite

A Production Inventory Model for Different Classes of Demands with Constant Production Rate Considering the Product s Shelf-Life Finite nrnionl Confrnc on Mchnicl nusril n Mrils Enginring 5 CMME5 - Dcmbr 5 RUE Rjshhi Bnglsh. Ppr D: E-6 A Proucion nvnory Mol for Diffrn Clsss of Dmns wih Consn Proucion R Consiring h Prouc s Shlf-Lif Fini

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

FIRST SEMESTER BACHELOR IN BUSINESS ADMINISTRATION COURSE: 03 Business Mathematics BLOCK-3

FIRST SEMESTER BACHELOR IN BUSINESS ADMINISTRATION COURSE: 03 Business Mathematics BLOCK-3 BBA (S) 0-0 KRISHNA KANTA HANDIQUI STATE OPEN UNIVERSITY Pgon,Rnig, Guwi - 78 07 FIRST SEMESTER BACHELOR IN BUSINESS ADMINISTRATION COURSE: 0 Businss Mmics BLOCK- CONTENTS UNIT 6 : LOGARITHM UNIT 7 : BINOMIAL

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

Global Solutions of the SKT Model in Population Dynamics

Global Solutions of the SKT Model in Population Dynamics Volm 7 No 7 499-5 ISSN: 3-88 rin rion; ISSN: 34-3395 on-lin rion rl: h://ijm ijm Glol Solion of h SK Mol in Polion Dnmi Rizg Hor n Mo Soilh USH El li Ezzor lgir lgri rizg@gmilom USH El li Ezzor lgir lgri

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Chahrazed L Journal of Scientific and Engineering Research, 2018, 5(4): and

Chahrazed L Journal of Scientific and Engineering Research, 2018, 5(4): and vilbl onlin www.jsr.com Journl of cinific n nginring srch 8 54:- srch ricl N: 94-6 CODNU: JB Mhmicl nlysis of wo pimic mols wih mporry immuniy Li Chhrz Dprmn of Mhmics Fculy of xc scincs Univrsiy frrs

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

SE1CY15 Differentiation and Integration Part B

SE1CY15 Differentiation and Integration Part B SECY5 Diffrniion nd Ingrion Pr B Diffrniion nd Ingrion 6 Prof Richrd Michll Tody w will sr o look mor ypicl signls including ponnils, logrihms nd hyprbolics Som of his cn b found in h rcommndd books Crof

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Mathematical Solution of Transport of Pollutant in Unsaturated Porous Media with Retardation Factor

Mathematical Solution of Transport of Pollutant in Unsaturated Porous Media with Retardation Factor nrnionl Journl of Ali Enginring Rsrch SSN 973-56 Volum 3 Numbr (8). - Rsrch ni Publicions. h:.riublicion.com Mhmicl Soluion of Trnsor of Pollun in Unsur Porous Mi ih Rrion Fcor Prvn Kumr M rmn of Mhmics

More information

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI#: PHA 527 Finl Exm Fll 2008 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pls rnsfr h nswrs ono h bubbl sh. Pls fill in ll h informion ncssry o idnify yourslf. h procors

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk Y M D B D K P S V P U D hi p r ub g rup ck l yu cn 7 r, f r i y un civi i u ir r ub c fr ll y u n rgncy i un pg 3-9 bg i pr hich. ff c cn b ll p i f h grup r b n n c rk ivii ru gh g r! i pck? i i rup civ

More information

Bicomplex Version of Laplace Transform

Bicomplex Version of Laplace Transform Annd Kumr l. / Inrnionl Journl of Enginring nd Tchnology Vol.,, 5- Bicomplx Vrsion of Lplc Trnsform * Mr. Annd Kumr, Mr. Prvindr Kumr *Dprmn of Applid Scinc, Roork Enginring Mngmn Tchnology Insiu, Shmli

More information

UNSTEADY HEAT TRANSFER

UNSTEADY HEAT TRANSFER UNSADY HA RANSFR Mny h rnsfr problms rquir h undrsnding of h ompl im hisory of h mprur vriion. For mpl, in mllurgy, h h ring pross n b onrolld o dirly ff h hrrisis of h prossd mrils. Annling (slo ool)

More information

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Second Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. UFI: PHA 527 Scond Exm Fll 2006 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pu ll nswrs on h bubbl sh OAL /60 ps UFI: Qusion S I (ru or Fls) (25 poins) ru (A) or Fls (B).

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties Signl Procssing Firs Lcur 3 Fourir rnsform Propris READING ASSIGNMENS his Lcur: Chpr, Scs. -5 o -9 ls in Scion -9 Ohr Rding: Rciion: Chpr, Scs. - o -9 N Lcurs: Chpr Applicions 3/7/4 3, JH McCllln & RW

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

PHA Final Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Final Exam. Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: PHA 5127 Finl Exm Fll 2012 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pls rnsfr h nswrs ono h bubbl sh. Th qusion numbr rfrs o h numbr on h bubbl sh. Pls fill in ll

More information

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. PHA 527 Firs Exm Fll 20 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Qusion S/Poins I. 30 ps II. III. IV 20 ps 5 ps 5 ps V. 25 ps VI. VII. VIII. IX. 0 ps 0 ps 0 ps 35 ps

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

A Tutorial of The Context Tree Weighting Method: Basic Properties

A Tutorial of The Context Tree Weighting Method: Basic Properties A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d

More information

LGOVNATDEFUSAAD

LGOVNATDEFUSAAD ECONOMETRIC PROBLEMS WITH TIME-SERIES DATA Sionriy: A sris is sid o covrinc sionry if is mn nd covrincs r unffcd y chng of im origin Qusion : Do you hink h following sris r sionry? Log Rl Nionl Dfnc Expndiurs

More information

Air Filter 90-AF30 to 90-AF60

Air Filter 90-AF30 to 90-AF60 Ai il -A o -A6 Ho o Od A /Smi-sndd: Sl on h fo o. /Smi-sndd symol: Whn mo hn on spifiion is uid, indi in lphnumi od. Exmpl) -A-- Sis ompil ih sondy is Mil siion Smi-sndd Thd yp Po siz Mouning lo diion

More information

Oscillator design using two-port describing functions

Oscillator design using two-port describing functions Oscillor sign ug wo-por scriing funcions G. Mészáros, J. Lvánszky n. Brcli, Fllow, EEE Asrc Our gol is o show h h scriing funcion concp is usful for oscillor sign. Dscriing funcions hv n x for h cs of

More information

Introduction to Fourier Transform

Introduction to Fourier Transform EE354 Signals and Sysms Inroducion o Fourir ransform Yao Wang Polychnic Univrsiy Som slids includd ar xracd from lcur prsnaions prpard y McClllan and Schafr Licns Info for SPFirs Slids his work rlasd undr

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2] RUTH 1 Elimlk g ln M 1-2 I in im n ln Irl i n *king. Tr r lr rul ln. Ty r ug. Tr n r l in Ju u r g min. Elimlk mn y in n Blm in Ju. H i nm Nmi. S n Elimlk 2 *n. Tir nm r Mln n Kilin. Ty r ll rm Er mily.

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Key. Section I 5. B 6. C. Section II 22. D 23. C 24. A 25. D 26. B 27. D 28. D 29. D 30. C 31. A 32. A 33. A 34. C 35. C PEARSON.

Key. Section I 5. B 6. C. Section II 22. D 23. C 24. A 25. D 26. B 27. D 28. D 29. D 30. C 31. A 32. A 33. A 34. C 35. C PEARSON. K Scion I. D. D. D. 5. B 6. 7. 8.. D. Scion II. B. B. D. 5. D 6. 7. B 8.. D.. B. D.. 5. B 6. 7. 8. B. B. B. B Scion Ι Gnrl piu Soluions for qusions n :. D.. 5. D 6. B 7. D 8. D. Probbili (h sum no bing

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information