SE1CY15 Differentiation and Integration Part B

Size: px
Start display at page:

Download "SE1CY15 Differentiation and Integration Part B"

Transcription

1 SECY5 Diffrniion nd Ingrion Pr B Diffrniion nd Ingrion 6 Prof Richrd Michll Tody w will sr o look mor ypicl signls including ponnils, logrihms nd hyprbolics Som of his cn b found in h rcommndd books Crof 67-9; Jms -, 5-57 Sroud 86-9,,95-57; Singh -5,66,6; Don forg o nd h uorils o g prcic Also, r suppor is vilbl from hp:// cnr nd hp:// p RJM /9/5 Prof Richrd Michll 5 Eponnil, Logrihm, Hyprbolic W m ponnils in lcur, in h RC circui hough hy cn b sn in mny sysms. Th currn dcyd smoohly ponnilly. In his lcur w will look h ponnil funcion, is diffrnil nd is ingrl. Logrihm is invrs ponnil w will considr i nd som pplicions Hyprbolic funcions r combinions of ponnils, so hs oo will b considrd. p RJM /9/5 Prof Richrd Michll 5 On Eponnils In lcur w rgud h vriion of I nd V Eponnils Formlly Funcion: p() or whr ~.788 is ; ~.78; - ~.7; ; - / I K.7K V E.6E TRC T W quod h quion for I E I RC R E V + I R, so V E I R V E - E RC L s look formlly E E Hnc RC, I.7 ; V E - E.6E R R As -, Ep() so dos slop Ep() so is slop As +, Ep() so dos slop d(p()) Suggss p() p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Mor on Eponnils Ep(- - ) ; Slop - Ep() ; Slop is - Ep(- ) ; Slop d(p(-)) So -p(-) Ep(- ) ; Slop Ep(*) ; Slop is Ep( ) ; Slop d(p()) So p() So for Eponnils d n From rsuls, gnrlis: n n n Thrfor n + c n Rmmbr for h RC Circui E I RC V E - E dv RC Also I C R RC dv de de RC E - - E RC RC RC dv E RC E C C RC I RC R p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

2 SECY5 Diffrniion nd Ingrion Pr B In Clss Ercis For h RC circui, E 5V, R Ω nd C.F 5 Thus I..5 V I Find n prssion for V, givn h V whn s V * c A, -5 + c; so c 5 So V c Logrihm Invrs of Eponnil If y hn log y or ln(y) is log o bs Log o bs log usd in informion hory, for insnc Log ofn usd for sound : dcibls * log (volg) If log (y) hn y Ruls log( * b) log () + log (b) log ( n ) n * log () So log (/b) log ( * b - ) log() log(b) log () s for insnc log b(x) To chng bs : logx log b () p7 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Diffrnil of Logrihm Diffrnil of is sy, bu wh of is invrs ln? W find i using n rick, nmly ln(y) So y p() d(ln(y)) dy d(p()) p() y dy dy No, iniilly h rsul is funcion of, bu w cn hn chng i o on of y. Considr lso: Diffrnil of sin - Th diffrnil for sin - illusrs his furhr sin - () so sin() d(sin - ()) d d(sin()) cos() This is funcion of, should b funcion of. Bu s cos () + sin (), cos() ( - sin () ) d(sin - ()) So d - sin () - Similr mhods cn b usd for cos - nd n -. p9 RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 f - () y - f(y) dy If y sin - (), sin(y) Ingrion of sin - So sin - () y - sin(y) dy y + cos(y) y f(y) dy y f - () - f () Logrihmic Grphs A norml linrly scld grph hs s lik h following Th icks on h s r linr, hnc linr grph Answr should b funcion of : Shows grph of : y - y sin - (); cos(y) - sin (y) - So sin - () sin - () c Somims br for on/boh s o b logrihmic. Usd, for insnc, whn vribls ovr wid rng p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

3 SECY5 Diffrniion nd Ingrion Pr B Applicion Frquncy Rspons If inpu o RC circui is K sin(), oupu is K sin(-). K Gin nd Phs -n - ( CR) K + ( CR) Frquncy Rspons : how Gin nd Phs vry wih ω Plo Grphs : Gin vs ω nd Phs vrsus ω Rlvn vriion of Gin nd Phs rquirs h ω is from ~ /RC o /RC if RC. from. o rd/s Th following log scl is ppropri : ch powr of qul spc Rngs: RC., ω. o rd/s Gin from o + ( CR).9 9 Phs -n - ( CR): -n O o -n O So plo log(gin) vs log(ω) nd Phs vs log(ω) p RJM /9/5 Prof Richrd Michll 5 - p RJM /9/ Prof Richrd Michll 5 Approiming Gin Grph Gin + ( CR) If CR, Gin ; If CR, Gin ; + ( CR) CR For formr, grph is horizonl lin For lr, Plo log vs log( ); CR i Plo log( CR) - -log( ) log(cr) vs log( ) i. Plo srigh lin : grdin is -, offs log(cr) - Gin grph wih sympos Th srigh lins, sympos, m ω /RC - Gin hn is.77 - Gin grph srs on firs sympo nd movs wy vnully ouching scond sympo Approiming Frq Rspons lik his is powrful ool p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Th hyprbolic sin, cosin nd ngn funcions r: sinh cosh sinh nh cosh p7 RJM /9/5 Hyprbolic Funcions y sinh y cosh Prof Richrd Michll y nh p8 RJM /9/5 Applicions of Hyprbolics In som nurl nworks, h oupu of nuron is summion pssd o diffrnibl civion funcion If h oupu is o b.., f(z) + -z sigmoid(z) z - -z If h oupu is o b -.., f(z) nh(z) z + -z A cnry is chin hnging undr is own wigh. Lr w driv n prssion for i, in rms of uni wigh w nd nsion T T w y cosh w T Prof Richrd Michll 5 Prof Richrd Michll, 5

4 SECY5 Diffrniion nd Ingrion Pr B Diffrnils / Ingrls sinh cosh dsinh cosh( ) dcosh Cn show h sinh( ) Thus cosh sinh( ) c Thus sinh cosh( ) c Hyprbolic Idniis cosh sinh cosh sinh - - cosh sinh cosh() cosh p9 RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Summry Tody w hv lookd ponnils, logrihms nd hyprbolics funcions ofn usd in sysms W hv rgud grphiclly hir diffrnil Tuoril Wk 6 Qs, nd 6. Find h following diffrnils, d5-5 p(-) d.5*ln() d cosh(5) ) b) c) Th of p() is Th of ln() is Th of cosh() is p() / sinh() 6. Find h following ingrls, ) p(-.) b) -5p(-) c) cosh() Agin h invrs mns p(-) is - ½ p(-) + c N wk : chin rul nd ingrion by subsiuion. 6. ) Find h quion of h ngn o h grph givn by y - 5 p(-). b) Find h mn of f() from - o ; p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Tuoril Wk 6 Qs nd 5 6. Th volg V in RC circui is givn by h following whn h inpu volg is. ; V dv ) Find dv b) Show h V is soluion of h quion. - V 6.5 Th phs shif of n RC circui is P -n -.5. dp Find. d Tuoril Wk 6 Q For h mss spring sysm blow, h cclrion d of h mss,, is givn by A, is vlociy is m/s nd is posiion is m. ) Find n prssion for posiion. d b) Show h 5 Oupu posiion, Spring, k (vlociy, v) Dshpo, F Objc, mss m p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

5 SECY5 Diffrniion nd Ingrion Pr B Tuoril -Wk 6 -Hins 6. Apply sndrd ruls 6. Dio 6. ) m dy/ ; c y() m b) Us sndrd ingrl for mns 6. ) srighforwrd b) show boh sids of quion qul. 6.5 Us invrs funcion no diff of n() is sc (). 6.6 ) Ingr, find consn, ingr, find consn b) vlu lf hnd sid of quion show is 5. Diffrniion nd Ingrion 7 Prof Richrd Michll Tody : Chin Rul nd Ingrion by subsiuion Som of his cn b found in h rcommndd books Crof 75-7,8-86; Jms 97,5-57,55-55 Sroud 8-87, 87-89; Singh 69-8, Don forg o nd h uorils o g prcic Also, r suppor is vilbl from hp:// cnr nd hp:// p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Chin Rul Why Nd From ls wo wks w sblishd grphiclly h d - n d - d, - nd gnrlisd: n n n Thrfor n + c n dsin() dsin() cos() nd cos() d d dsin( ) In gnrl sin( ) d W will n considr h chin rul which cn formlly confirm hs, nd hn h quivln for ingrion. Th Chin Rul for sin(ω) sin(ω) simpl g of funcion dfind by wo funcions: f(z) z g() For sin (ω), z ω, nd sin (z). For diffrnil of wih rspc o us chin rul: So, for sin(ω), dz dz d sin(z) cos(z) dz dz dsin( ) Hnc cos(z) cos( ) dz d( ) p7 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 p9 RJM /9/5 Empl for RC Circui V 5 5 p(-/): find I dv/ To diffrni p(-/), l z -/ nd p(z) dz dp(z) d(-/) dz dz dv d5 Thus 5 * -.*p( - ) p( - ) If you fl confidn (coms wih prcic), jus wri p(z) * -/ - -.*p( ) d 5p - dv d5 - -*- p - p - Prof Richrd Michll 5 p RJM /9/5 Sigmoid in Nurl Nworks Cybrniciss nd Compur Sciniss us nurl ns. In som nworks nuron s oupu is givn by sigmoid O -z {z is wighd sum of nuron inpus} For lrning, w nd o know h diffrnil of O wr z -z L +, so - -z dz - do - O, so -z + do do - -z -z So - dz dz + -z -z + Prof Richrd Michll 5 Prof Richrd Michll, 5 5

6 SECY5 Diffrniion nd Ingrion Pr B Anohr Empl Th gin of sysm, G, s funcion of ngulr frquncy ω, is G ( -. ω ).ω dg Find h hr vlus of such h dω L G so z ( -. ω ). ω z Simplify : z -.ω.ω. ω -.6ω.ω dz -. ω. ω d z -.6ω.ω dg G z so - z dz Coninud dz -. ω. ω d dg dg dz d dz d dg -.ω.ω - z -.ω. ω d z Wn ω whr his is zro nd numror only i.. -.ω. ω or ω(-.. ω ) or ω or.. ω i.. ω 8 So rquird rsul is ω or ω 8 rd/s p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 A Rld Tchniqu Find grdin poin,y on circl dfind by y r - Wn dy/; could k squr roo + crry on s norml. Esir wy : diffrni boh sids wih rspc o. dr- RHS: - - dy dy dy dy LHS: y dy dy So y r No nd o hv rsul wih no y Ercis You r o find how h volum of sphr (V / π r ) chngs wih im if r is 5 5 -/. dv dr dv Find, nd hnc dr Answr dv r r dr dr 5 -/ -/ dv dv dr r 5 5 dr -/ -/ -/ p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Ingrion Using Subsiuion This is rld o h chin rul usd in diffrniion. L's pply o sin( ) Simplify by subsiuing ω, nd hn ingr sin( ) sin() Bu mus ingr f() wr As,, so Thus sin( ) sin() -cos() * c Bu w inrocd o hlp us, nswr should hv sin( ) cos c Applicion - Roo Mn Squr Mn of on cycl of sin( ) sin( ) - cos( ) - - No usful msur, so ofn us roo mn squr or rms vlu of signl. rms sin( ) sin ( ) rms Looks wkwrd : us rig idniy sin () ½ ( cos()) b f() b- p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 6

7 SECY5 Diffrniion nd Ingrion Pr B RMS of Sinusoid Som mor mpls of subsiuion rms sin ( ) sin () ½ ( cos()) sin(ω + ) : L ω + ; / ω rms -cos() sin( ) sin() -cos() -cos( ) + c + c - sin( ) - sin( ) sin() ; - ; -; - so ln() c ln( ) + c p7 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Dfini Ingrls nd Subsiuion Bwr of limis : rmmbr 5 f() mns ingr f() nd vlu o 5 Cn us subsiuion bu mus chng limis ccordingly w us 5+7, so 5 or (5 7) 5 limis 5*+77 nd 5* (5 7) Ingrion by Pril Frcions A chniqu o simplify ingrls o ons w cn solv. Th vlociy v of flling objc im found using. Find s funcion of v, hn v(). - v v fcoriss s ( v) nd ( + v) W solv h bov by rorgnising s follows A B + A nd B consns - v + v Hnc -Aln( - v) + Bln( + v) + c Wh r A nd B? p9 RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Finding A nd B nd hn A B + - v - v + v A( + v) B( - v) A( + v) + B( - v) + - v ( - v)( + v) ( - v)( + v) - v Numrors mus b qul A( + v) + B( - v) (A + B) + v(a - B) Equing cofficins: (A + B) (A - B) so A B nd A ln( - v) +.5 ln( + v) + c - v + v Compling Problm + v -.5 ln( - v) +.5 ln( + v) + c.5 ln + c - v Ok, bu wn v() no (v) + v + v - c.5 ln or ( - c) ln - v - v Tk p of boh sids ( - c) + v - v Ghr v rms ( - c) ( - v) + v ( - c) - v( + ( - c) ) ( - c) - v + ( - c) p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 7

8 SECY5 Diffrniion nd Ingrion Pr B p RJM /9/5 Summry Tody w inrocd h Chin rul for diffrniion nd som simpl Ingrion by subsiuion. Th Chin Rul llows us o show dsin(5-7) Subsiuion llows us o show h 9 cos(5-7) + c 5 ln(9-) + c Thr r mny mor wys of subsiuing som rlvn o Enginring Mhs r givn n wk Prof Richrd Michll 5 Tuoril Wk 7 Q, nd 7. Th currn i hrough diod in rms of volg V cross i is i.5( V ) Find h.c. rsisnc r which is dfind s r. di dv 7. In rlibiliy nginring, h disribuion funcion, F, for s of componns is givn by F df Find h dnsiy funcion. 7.. Th gin of mss-spring, s funcion of ω, is dg G. Find vlus of ω whr. ω -9ω +5 dω Clcul G ll hs vlus o find whr G m. p RJM /9/5 Prof Richrd Michll 5 Tuoril Wk 7 Q, 5 nd 6 7. Th posiion, s, of n objc moving in srigh lin is s 8. + Find s givn h s whn. 7.5 Th sinusoidl oupu of sysm is givn by O 5 sin ( -.) Find is mn vlu bwn nd Find is rms vlu bwn nd.5. Tuoril -Wk 7 -Hins 7. Us Chin rul o find di/dv 7. Agin us h chin rul 7. Agin h chin rul look for whr numror is rmmbr cn hv ngiv frquncis. 7. Us subsiuion 7.5 nd 6 Us sm subsiuion for boh mn nd rms rmmbr o chng limis nd o us rdins. p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Diffrniion nd Ingrion 8 Prof Richrd Michll Ingrion Mor Subsiuion W hv lookd using simpl subsiuion for indfini nd dfini ingrls Tody : Volums/Surfcs; Mor Subsiuion. Som of his cn b found in h rcommndd books Crof 87-8, 85-89; Jms Sroud 89-8,86-87,9-99; Singh 7-8,- Don forg o nd h uorils o g prcic Also, r suppor is vilbl from hp:// cnr nd hp:// p7 RJM /9/5 Prof Richrd Michll 5 Rvision Now w shll look mor chniqus nd pplicions rld o using subsiuion in ingrion Firs w will s som gomric pplicions, which will provid som usful mpls lr Sring wih volums of rvoluion which r nsions of rs undr curvs p8 RJM /9/5 cos sin Prof Richrd Michll 5 Prof Richrd Michll, 5 8

9 SECY5 Diffrniion nd Ingrion Pr B p9 RJM /9/5 Volums of Solids of Rvoluion y f(): f() r undr curv: sum rs of srips: b f() * b As, bcoms f() If f rod round is hv solid of rvoluion: volum found by summing volums of cylindrs, rdius y & wih δ b V y As : V y f() b Prof Richrd Michll 5 b Lnghs of Curvs nd Surfc Ars Lngh of pr, ssum srigh lin, so s +y s y ds dy Div by : s b dy Hnc lngh from o b is: s Surfc r, whn curv rod, found similrly s p5 RJM /9/5 Prof Richrd Michll 5 b dy S y Empl Lin Rod o Con y f() Ingrion of funcion * driviv Find surfc r whn y rod bou is...5 dy ;.5 S 9 ; V Hr h 'min' funcion is 9, funcion of, muliplid by k* bing mulipl of h driviv of dy ; 9 S 6 s Th chniqu is o mk h subsiuion So or so S 9 No rms (h min funcion s driviv) cncl p5 RJM /9/5 Prof Richrd Michll 5 p5 RJM /9/5 Prof Richrd Michll 5 Compling h Empl Ingrls of f () / f().5 Wn S 9 ; L, ; For o.5, o S NB could hv chngd o f() & usd limis: bov sir No, h sm subsiuion lso works whn ingring h diffrnil of funcion DIVIDED by h funcion sin( ) g n( ) cos( ) dz L z cos( ); sin( ) sin( ) n( ) dz dz sin( )z z ln(z) c - ln cos( ) c p5 RJM /9/5 Prof Richrd Michll 5 p5 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 9

10 SECY5 Diffrniion nd Ingrion Pr B Ercis Find h cnr of mss, C, of h smi-circulr lmin rdius : C my - y dy o m is mss pr uni r Us - y y or dy Whn y, ; whn y, dy -y y C m y -m y -y -m - -m m y Subsiuion Using Trigonomry Mos Mhs books covr ingrls lik Which dos no hv Enginring pplicion ( ) Hr h is wkwrd nd w subsiu o rmov i. cos - sin. L sin(), so cos() cos() cos() sin () cos() - + c sin + c Som Usful Subsiuions (ohrs my work) If n ingrl hs ( - ) + ( - ) ( + ) Try using sin() n () sc() sinh() p55 RJM /9/5 Prof Richrd Michll 5 p56 RJM /9/5 Prof Richrd Michll 5 Empl Forc F pplid o br, nsion l givn by: L F F l + L L n() so sc () d L F L F l sc () d sc () d + n () sc () L L F F - F - L l n n Ingrion solving Diff Eqns This is on pplicion of ingrion ss up n mpl g objc, posiion, cclring from iniil vlociy 5 + As RHS is funcion of, cn ingr boh sids wr 5 + Hnc c Somims w nd o invr h diff quion p57 RJM /9/5 Prof Richrd Michll 5 p58 RJM /9/5 Prof Richrd Michll 5 Applicion solving Diff Eqn dv E - V Th diffrnil quion for h RC circui: RC Bu RHS is funcion of V no : RC So w invr h quion nd g dv E - V RC Ingring boh sids wr V dv dv dv E - V RC Hnc dv E - V Rclling -ln ( - ) So -RC ln (E-V) + c - Coninud : Bu wn V s funcion of, so rrrng - c ln (E - V) -RC - c so -RC ln (E - V) E - V - c c - - Bu -RC RC * RC Ris boh sids o powr of - - so k RC E - V or V E - k RC - If V, E - k ; k E. Thus V E - E RC So -RC ln (E-V) + c c RC is consn, cll i k p59 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

11 SECY5 Diffrniion nd Ingrion Pr B Cnry: Cbl Hnging Own Wigh You r no pcd o rmmbr his, jus si bck nd pprci h pplicion of vrious chniqus. W will us gomric chniqus nd ohrs o dc diffrnil quions for his & hn solv by ingrion. A P, Horizonl posiion, Vricl posiion y; whn y A P nsion in cbl is T p, ngl θ p6 RJM /9/5 Horizonl nsion T Wigh of cbl pr uni lngh w Considr wh hppns P Prof Richrd Michll 5 Cnry Coninud If cbl no moving his forc quls vricl pr of T p So w * s T p sin(θ) A P lso, horiz componn is T p cos(θ) which mus qul T Tsin( p ) w*s Thus n( ) Tcos( p ) T Lngh of cbl, o P : dy s + A P forc down w * s dy Bu P is slop n( ) dy w*s w dy d y w dy * + T T or T p6 RJM /9/5 Prof Richrd Michll 5 Cnry Coninud d y w dy dy dz w uggh! Bu l z so z T T T T W cn solv by or dz dz w z w z dz T L z sinh() ; cosh(), so cosh() w + sinh () T T T cosh() + c sinh (z) + c w cosh() w w dy T dy Bu, z, so c, hnc sinh ( ) w Cnry Concludd T dy dy w Now sinh ( ), so sinh w T w T w y sinh cosh + c T w T Bu y whn T w* T T cosh + c + c; c - w T w w T w y cosh - w T N wk: diffrniion nd ingrion of proc p6 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Tuoril Wk 8 Q, nd 8. ) Find h volum of rvoluion of h solid formd whn y is rod bou h -is from o. b) A prbolic rflcor is formd by roing y bou h -is, from o. Find is surfc r. 8. An rofoil is dfind by y for - Find h r blow his funcion nd bov h -is. 8. Th vlociy v of flling objc is givn by g -.5v Show h v g(- -.5 ) if v Tuoril Wk 8 Q nd 5 8. Th vlociy v of flling objc is givn by v g(- -.5 ). Find h disnc droppd im. 8.5 Th figur shows wr in prismic chnnl, for which h wr high y is dfind in rms of horizonl posiion by h quion dy 6 Find n prssion for y if y whn.5: p65 RJM /9/5 Prof Richrd Michll 5 p66 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

12 SECY5 Diffrniion nd Ingrion Pr B Tuoril Wk 8 Q6 Er dp 8.6 Th logisic quion for populion P is P( - P).. ) Show h + dp P -P A b) Find P() if P im in h form P -B -c Tuoril -Wk 8 -Hins 8. Us rlvn formul nd ingr. 8. Is ingrl of squrroo us rig subsiuion. 8. Invr qn: find (v) -> v(). 8. Ingr. 8.5 Us rlvn hyprbolic subsiuion. 8.6 Invr qn, us Pril Frcions nd procd Diffrniion nd Ingrion 9 Prof Richrd Michll Tody : Diff nd In of Procs. Som of his cn b found in h rcommndd books Crof 79-7, 85-8 ; Jms 96-5, Sroud 79-8, 8-86; Singh 8-85, 88-96; Don forg o nd h uorils o g prcic Also, r suppor is vilbl from hp:// cnr nd hp:// p67 RJM /9/5 Prof Richrd Michll 5 p68 RJM /9/5 Prof Richrd Michll 5 Diffrniion of Proc Diffrniing Dmpd Sinusoid W cn diffrni h sum of wo (or mor) rms; nd w know h chin rul for mor complicd rms. N w will considr h proc of wo funcions. If h wo funcions r u nd v, hn w us h rul If drop mss, i oscills bu oscillions di ou - sin(b) d(uv) u + v Mss How dos chng?.g. Find vlociy of n objc wih posiion For : u so ; v - - so Thus vlociy is - ( * - + *) (6 - ) - u ; so - v sin(b); so b cos(b) d( - sin (b) - b cos(b) + sin(b) (- )) - b cos(b) - sin(b) p69 RJM /9/5 Prof Richrd Michll 5 p7 RJM /9/5 Prof Richrd Michll 5 Ercis If hr is considrbl fricion, h mss dos no oscill Thn is posiion vris by -. Find Answr - u ; so - v ; so d( - (- - )) ( - ) Diffrniion of Quoin Considr mchin wih grs, usd o driv is oupu, dfind in rms of n, h rio of on s o nohr. Hr h mchin cclrion is n n Suppos w wn o find how chngs wih n: d/dn. Hr w us h quoin rul, gin in rms of u nd v d u v v - u v (This cn b drivd from h of u * v - ) p7 RJM /9/5 Prof Richrd Michll 5 p7 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

13 SECY5 Diffrniion nd Ingrion Pr B n n u n + ; so n dn Using h Quoin Rul u v v 8 - n; so - dn d n 8-n (8 - n)n - (n + )(-) Thus dn (8 - n) 6n - n + n + + 6n - n (8 - n) (8 - n) d v - u v Quoin Rul for n(ω) dsin( ) dcos( ) cos( ) W know cos( ) & so - sin( ); d n( ) sin( ) wh of? n( ) L u sin( ); v cos( ) d(n( )) cos( )*( cos( )) - sin( )*(-sin( )) So cos ( ) cos ( ) + sin ( ) sc ( ) cos ( ) NB sc()/cos() p7 RJM /9/5 Prof Richrd Michll 5 p7 RJM /9/5 Prof Richrd Michll 5 Applicion : Min/M - Opimision A bry, inrnl rsisnc r, wih vribl lod R. Find R o mimis powr. V E R P R r + R Find dp/dr nd hn R so dp/dr u E R so E ; v (r + R) so (r + R) dr dr dp (r + R) E - E R*(r + R) dr (r + R) E (r + R)(r + R - R) E (r - R) (r + R) (r + R) Clrly, his is zro whn R r. Ingrion By Prs This is mhod for ingring proc of wo rms. Is nsion of mhod for diffrniing procs d(uv) u + v Ingring boh sids givs d(uv) uv u + v Which rrrngd givs u uv - v p75 RJM /9/5 Prof Richrd Michll 5 p76 RJM /9/5 Prof Richrd Michll 5 Ky o Using Ingrion By Prs u uv - v For ingring proc of wo funcions, u nd /. Th ky is o slc which funcion is u nd which /. Th im is o choos hs suibly so h h rm v is sir o solv hn u Considr Showing Effc of Wrong Choic If l u cos() & cos() -sin() nd v u uv - v So ingrl is cos() -cos () + sin() Dfini vrsion of ingrl: p p p u uv q - v q q This hs md mrs hrdr. p77 RJM /9/5 Prof Richrd Michll 5 p78 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

14 SECY5 Diffrniion nd Ingrion Pr B Bu wih righ choic Empl Mss Spring Sysm Agin Bu if u nd cos() cos() u uv - v Spring, k Dshpo, F Oupu posiion, (vlociy, v) Objc, mss m Typicl in conrol L m kg, F Nsm -, k Nm - nd v cos() sin() So cos() *sin() - *sin() sin() + cos() + c Shows why imporn o mk righ choic! Mss pulld, Spring ndd, forcd bck, opposd by fricion. Thn -* - * v Suppos v - -. Find if, im, m Scond rm sy, Us ingrion by prs for firs: p79 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Ingring - So o ingr - w choos u nd v rms snsibly L u nd - - Thn nd v - So u uv - v - - v - Compling Problm W now know Also - So v c - + c - - A, ; so - + c; c ; - Ension: vrify h nd v r soluions of - * - * v ( would nd o diffrni v o solv his problm ) p8 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Applicion Solving Diff Eqn dv Suppos w wn o solv + 5V 5 5 dv 5 5 If muliply by, g + 5V d(v 5 ) dv 5 5 Bu + V5 d(v 5 ) So or V 5 W us ingrion by prs o vlu 5 And hn divid by o find V: V 5 5 Compling Problm 5 For 5 5 : L u so ; so v. So c So V c -5 Thus V c Suppos V : A : -. + c; so c. Hnc V p8 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5

15 SECY5 Diffrniion nd Ingrion Pr B Mns Using Dfini Vrsion of Ingrl W quod rlir h sw() ~ sin() sin() sin() sin() T n n f() cos T T T T n b n f() sin T T T cos(n ) /n if n is odd - n -/n if n is vn should b L s do b n Finding b n for Swooh b n sin(n) { rmmbr n is consn } L u, nd sin(n) So ; nd v - cos(n) n So b n - cos(n) - - cos(n) π n n cos(n) + sin(n) n - n - p85 RJM /9/5 Prof Richrd Michll 5 p86 RJM /9/5 Prof Richrd Michll 5 Empl Coninud b n - cos(n) + sin(n) n - - n Bu, cos() cos(-); So cos(n) - is cos(n ) - - cos(-n ) cos(n ) Also sin() sin(-); sin(nπ) (n ingr) So sin(n) - is sin(n ) - sin(-n ) sin(n ) cos(n ) So b n * - * *cos(n ) - (s sd) n n You find n rm in uoril! Summry Hr w hv lookd h diffrnil nd ingrl of proc (or quoin rms) d(uv) u + v u uv - v d u v v - u v Th ky o ingrion is o choos u so scond ingrl is sir. For 5, wh is u nd wh is v? u 5; so v p87 RJM /9/5 Prof Richrd Michll 5 p88 RJM /9/5 Prof Richrd Michll 5 Tuoril Wk 9 Q Tuoril Wk 9 Q 9. In h mss-spring sysm blow, h posiion of h mss is givn by - ( sin() cos()) ) Show h im, h vlociy v is - m/s. d d b) Find nd hnc show h 5 Oupu posiion, Spring, k (vlociy, v) m kg; Objc, mss m F Ns/m; k 5 N/m Dshpo, F 9. For h mss-spring sysm, v, h mss' vlociy, is givn by v ) Find - b) Hnc find, h posiion of h mss, if, m. d d c) Find nd so show h 8 6 Spring, k Oupu posiion, (vlociy, v) m kg; Objc, mss m F 8 Ns/m; k 6 N/m Dshpo, F p89 RJM /9/5 Prof Richrd Michll 5 p9 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 5

16 SECY5 Diffrniion nd Ingrion Pr B p9 RJM /9/5 Tuoril Wk 9 Q 9. Diffrni h following using h quoin rul sin( ) ) f() sinc() [usd in informion hory] b) Th displcmn of dmpd vricl pnlum cos(5) p() c) Th volg in n lcronic circui V p(.) Prof Richrd Michll 5 Tuoril Wk 9 Q,5 nd 6 9. Th gin of n lcronic circui, in rms of ngulr frquncy is givn by G Find such h G is mimisd. 9.5 Find h n rm for h Fourir Sris of swooh. i. find n cos(n) { rcll n is consn } Find r A undr of K for > : K nd consn i.. solv A K - ; Nb s, so Er! p9 RJM /9/5 Prof Richrd Michll 5 Tuoril Wk 9 Hins 9. ) Find /, nd pu. Us diff of proc b) Us diff of proc nd hn show LHS RHS 9. ) Choos u nd / s pr mpls b) Srighforwrd c) Diff of proc hn show LHS RHS 9. Srighforwrd. 9. Us diff of quoin o find dg/dω, find ω whr his is zro nd vlu G hs vlus. 9.5 Us Ingrion by Prs 9.6 Dio Diffrniion nd Ingrion Prof Richrd Michll Numricl Diffrniion nd Ingrion Som of his cn b found in h rcommndd books Crof 89-8; Jms 6-, 79-; Sroud 67-68; Singh 6-9; Don forg o nd h uorils o g prcic Also, r suppor is vilbl from hp:// cnr nd hp:// p9 RJM /9/5 Prof Richrd Michll 5 p9 RJM /9/5 Prof Richrd Michll 5 Numricl Diffrniion If hv funcion, cn lmos lwys diffrni i. Bu if signl is jus numbrs, cn only diffrni by siming: clld numricl diffrniion. In conrol sysms, common conrollr is PID, i ks signl & rurns P * + I * ingrl() + D * diff() Suppos d vlus ims h pr (g f(), f(+h)) Givn rul for diffrniion Migh pc sim of diff f(+ ) - f() f'() lim f(+h) - f() f'() h Howvr As wn diffrnil, don jus us grdin bfor, rhr us grdin bfor nd fr. Us f(+h), f(-h) f'() f(+h) - f(-h) *h.g. siming f () for f() : h.. f(.9).6 f(). f(.). Mhod : (.-.)/.. Mhod : (.-.6)/.. p95 RJM /9/5 Prof Richrd Michll 5 p96 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 6

17 SECY5 Diffrniion nd Ingrion Pr B Why Avoid Numricl Diff Numricl Diffrniion should b voidd if possibl. This is cos i usully involvs dividing by smll numbr Th vlu bing dividd could hv rrors o poor msurmn or rounding rrors in rlir clculions. As dnominor <, hs rrors r mplifid. Suppos numror. bu should b : rror. Suppos lso, dnominor. Diffrnil simd s. /.. I should b /.. Thus rror of. mplifid so rror now.. Applicion : Smll Chngs A circulr pic of ml is o b copid, bu is rdius is mismsurd How do you find h rror in h r of h ml? For f(), if f is smll chng in f & smll chng in. df lim f For smll chngs, his cn b pproimd s df f So smll chng in f cn b simd by df f p97 RJM /9/5 Prof Richrd Michll 5 p98 RJM /9/5 Prof Richrd Michll 5 Applying o Circulr Disc Th r, A, is r, whr r is rdius. Th chng in r o smll chng in r is: da A r rr dr Suppos rdius ws msurd s., no, i.. r. Th rror in h r is: * *..68 Anohr mpl: h rror in volum of sphr whn rdius msurd s. whn i should hv bn. dv V r so r. Thus V *.. dr Why Us Numricl Ingrion Ofn hv funcion o b ingrd, for which n nlyicl funcion cn b found g cos() sin() + c For som funcions, subsiuion is ndd Howvr, for ohr funcions hr is no such soluion g p( ) Also, somims nginrs hv jus d vlus (from n primn sy), so no funcion o b ingrd Th soluion: pproim ingrion numriclly. Th concp cn lso b ndd for numricl soluion of diffrnil quions. p99 RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Bsic Concp If cn ingr f(), or don know f() nlyiclly, divid r ino srips, find r of ch nd sum. Rcngulr Ingrion Simpls (ls ccur) mhod; ssum ch srip rcngl Vrious wys of finding r of ch srip. Ech srip hs sm wih cll i h b Wn f() ( b 6 ) Ar of r'h rcngl wih * high h * f( r) 6 6 Ar of 7 srips: h *f( r) h * f( r) r r p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 7

18 SECY5 Diffrniion nd Ingrion Pr B Trpzoidl Ingrion Mor ccur ssum ch srip is rpzium in ffc pproim curv s srigh lins bwn poins Empl To s us funcion which hs is n nlyicl soluion so cn s how ccur h wo mhods r. ( b 6 ) Ar of r'h srip is h * f( r) + f( r+) Tol r is sum of hs If do his dircly coun f(n) wic, so br o do h * 5 6 f( ) + f( ) + f( r ) r 5 p Th corrc nswr is * p(.5) - p(.) 5.55 Firs, s h, so us vlus,,, nd 5. For h rcngulr mhod, h r is: * ( ) poor For h rpzoidl mhod, h r is: * (.5 * (. +.5 ) ) 5. ~ok p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Mking Srips Nrrowr You should pc br rsul if nrrowr srips usd Wih, h Rcngulr Trpzoidl Rc poor; Trp good wih h., or smllr Simpson s Rul Trpzium rul ssums srigh lin bwn djcn ps Simpson s ruls gos on sg furhr ; I uss n vn numbr of srips For firs hr djcn poins (nd hnc wo srips) find qudric funcion going hrough hm clcul r For poins,, 5 (i.. h following wo srips) find qudric funcion nd r c Sum ll hs rs..g p(/) for..5; us... nd...5 p5 RJM /9/5 Prof Richrd Michll 5 p6 RJM /9/5 Prof Richrd Michll 5 Finding Qudric Funcion Suppos hv hr vlus,, inrvls h, nd r rying o ingr f() knowing f( ), f( ) nd f( ). Us Lgrng Polynomils o find p() pssing hrough ps. Us shorhnd : f f( ), f f( ), f f( ). - - p() f f + f Bu - -h; - -h, c., so p() f - f + f h h h Simpson s Coninud For simpliciy, dfin r such h r * h whn, r So (r + ) * h whn, r - (r - ) * h whn, r + Thn Polynomil p() f - f + f h h h Bcoms p() (r-)*r*f - (r+)(r-)* f + (r+)*r*f W cn now ingr p() o g r. W no h h dr; p7 RJM /9/5 Prof Richrd Michll 5 p8 RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 8

19 SECY5 Diffrniion nd Ingrion Pr B Simpson s Finlly Thn rquird r bcoms p() r- r+ *r*f - (r+)(r-)* f + *r*f h dr h r - r * f - r -r * f + r + r * f - h f( ) + f( ) + f( ) { rcll f shor for f( ) } For n wo srips, r is h f( ) + f( ) + f( ) h m/ (m-)/ Ar is * f( ) + f( m) + * f( r-) + * f( r) r r Simpson s On Ep(/) Applying o p(/), whr h * ( + ) + * Th corrc nswr is * p(.5) - p(.) Hr, vn wih wid srips, nswr vry good. If h.5, Simpson s rul givs If h., nswr is p9 RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Summry W hv discussd numricl diffrniion (o b voidd if poss) nd numricl ingrion. Ths concps will b ndd n rm o considr numricl soluion of diffrnil quions. This concluds his sris of lcurs on diffrniion nd ingrion N rm, h clculus hm coninus, wih rvision nd nsion of h opics covrd, nd will lso considr h drivion nd soluion of diffrnil quions. Prof Richrd Michll 5 Tuoril Wk Q nd. Smll Chngs - find chng in ) surfc r of sphr whn is rdius chngs from o. m. [Surfc r r ] b) powr in circui whn currn chngs from ma o.99 ma, whn pssing hrough k rsisor. [If I is currn going hrough rsisor R, Powr I R] c) gin of RC circui whn ngulr frquncy flls by % from. rd/s; if R*C hn Gin G. For f sim is diffrnil, for h. f( h) - f(-h) using h formul f'(). Commn. *h p RJM /9/5 Prof Richrd Michll 5 Tuoril Wk Q nd Q 5. Evlu sin. nlyiclly. Compr rsuls wih Rcngulr Trpzoidl nd Simpson mhods whr h is.. Rvision Th volg cross h cpcior in RLC sris circui is V - - ( sin () + cos () ) ) Find h currn in h circui, bing I.5 dv b) Find h volg cross h in cor, bing V di L c) Vrify h I + V L + V Tuoril Wk Q5.5 Rvision d(5v. ) ) Epnd dv b) An RC circui is dscribd by 5 + V Show h V. -.. c) Us ingrion by prs o find. d) Hnc find V givn h V im. Hins Q, nd us mhods in his wk s nos Q nd 5 look bck in prvious lcurs p RJM /9/5 Prof Richrd Michll 5 p RJM /9/5 Prof Richrd Michll 5 Prof Richrd Michll, 5 9

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

3.4 Repeated Roots; Reduction of Order

3.4 Repeated Roots; Reduction of Order 3.4 Rpd Roos; Rducion of Ordr Rcll our nd ordr linr homognous ODE b c 0 whr, b nd c r consns. Assuming n xponnil soluion lds o chrcrisic quion: r r br c 0 Qudric formul or fcoring ilds wo soluions, r &

More information

Math 266, Practice Midterm Exam 2

Math 266, Practice Midterm Exam 2 Mh 66, Prcic Midrm Exm Nm: Ground Rul. Clculor i NOT llowd.. Show your work for vry problm unl ohrwi d (pril crdi r vilbl). 3. You my u on 4-by-6 indx crd, boh id. 4. Th bl of Lplc rnform i vilbl h l pg.

More information

Relation between Fourier Series and Transform

Relation between Fourier Series and Transform EE 37-3 8 Ch. II: Inro. o Sinls Lcur 5 Dr. Wih Abu-Al-Su Rlion bwn ourir Sris n Trnsform Th ourir Trnsform T is riv from h finiion of h ourir Sris S. Consir, for xmpl, h prioic complx sinl To wih prio

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8 STAT W 6 Discussion Fll 7..-.- If h momn-gnring funcion of X is M X ( ), Find h mn, vrinc, nd pmf of X.. Suppos discr rndom vribl X hs h following probbiliy disribuion: f ( ) 8 7, f ( ),,, 6, 8,. ( possibl

More information

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t Coninuous im ourir rnsform Rviw. or coninuous-im priodic signl x h ourir sris rprsnion is x x j, j 2 d wih priod, ourir rnsform Wh bou priodic signls? W willl considr n priodic signl s priodic signl wih

More information

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser Mr n FT Lcur 4CT.5 3CT.3-5,7,8 BME 333 Bimdicl Signls nd Sysms - J.Schssr 43 Highr Ordr Diffrniin d y d x, m b Y b X N n M m N M n n n m m n m n d m d n m Y n d f n [ n ] F d M m bm m X N n n n n n m p

More information

Section 2: The Z-Transform

Section 2: The Z-Transform Scion : h -rnsform Digil Conrol Scion : h -rnsform In linr discr-im conrol sysm linr diffrnc quion chrcriss h dynmics of h sysm. In ordr o drmin h sysm s rspons o givn inpu, such diffrnc quion mus b solvd.

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

The Laplace Transform

The Laplace Transform Th Lplc Trnform Dfiniion nd propri of Lplc Trnform, picwi coninuou funcion, h Lplc Trnform mhod of olving iniil vlu problm Th mhod of Lplc rnform i ym h rli on lgbr rhr hn clculu-bd mhod o olv linr diffrnil

More information

K x,y f x dx is called the integral transform of f(x). The function

K x,y f x dx is called the integral transform of f(x). The function APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013 Lcur #5 Conrol Sy Modlling Phyicl Sy Gr DC Moor Aoc.Prof. Hluk Görgün 0 Mrch 03 Conrol Sy Aoc. Prof. Hluk Görgün rnfr Funcion for Sy wih Gr Gr provid chnicl dvng o roionl y. Anyon who h riddn 0-pd bicycl

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C)

Name:... Batch:... TOPIC: II (C) 1 sec 3 2x - 3 sec 2x. 6 é ë. logtan x (A) log (tan x) (B) cot (log x) (C) log log (tan x) (D) tan (log x) cos x (C) Nm:... Bch:... TOPIC: II. ( + ) d cos ( ) co( ) n( ) ( ) n (D) non of hs. n sc d sc + sc é ësc sc ù û sc sc é ë ù û (D) non of hs. sc cosc d logn log (n ) co (log ) log log (n ) (D) n (log ). cos log(

More information

ELECTRIC VELOCITY SERVO REGULATION

ELECTRIC VELOCITY SERVO REGULATION ELECIC VELOCIY SEVO EGULAION Gorg W. Younkin, P.E. Lif FELLOW IEEE Indusril Conrols Consuling, Di. Bulls Ey Mrking, Inc. Fond du Lc, Wisconsin h prformnc of n lcricl lociy sro is msur of how wll h sro

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Lecture 21 : Graphene Bandstructure

Lecture 21 : Graphene Bandstructure Fundmnls of Nnolcronics Prof. Suprio D C 45 Purdu Univrsi Lcur : Grpn Bndsrucur Rf. Cpr 6. Nwor for Compuionl Nnocnolog Rviw of Rciprocl Lic :5 In ls clss w lrnd ow o consruc rciprocl lic. For D w v: Rl-Spc:

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES Digil Signl Procssing Digil Signl Procssing Prof. Nizmin AYDIN nydin@yildiz.du.r hp:www.yildiz.du.r~nydin Lcur Fourir rnsform Propris Licns Info for SPFirs Slids READING ASSIGNMENS his work rlsd undr Criv

More information

Average & instantaneous velocity and acceleration Motion with constant acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration Physics 7: Lecure Reminders Discussion nd Lb secions sr meeing ne week Fill ou Pink dd/drop form if you need o swich o differen secion h is FULL. Do i TODAY. Homework Ch. : 5, 7,, 3,, nd 6 Ch.: 6,, 3 Submission

More information

EEE 303: Signals and Linear Systems

EEE 303: Signals and Linear Systems 33: Sigls d Lir Sysms Orhogoliy bw wo sigls L us pproim fucio f () by fucio () ovr irvl : f ( ) = c( ); h rror i pproimio is, () = f() c () h rgy of rror sigl ovr h irvl [, ] is, { }{ } = f () c () d =

More information

Chapter 3. The Fourier Series

Chapter 3. The Fourier Series Chpr 3 h Fourir Sris Signls in h im nd Frquny Domin INC Signls nd Sysms Chpr 3 h Fourir Sris Eponnil Funion r j ros jsin ) INC Signls nd Sysms Chpr 3 h Fourir Sris Odd nd Evn Evn funion : Odd funion :

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA Final Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. Nm: UFI#: PHA 527 Finl Exm Fll 2008 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pls rnsfr h nswrs ono h bubbl sh. Pls fill in ll h informion ncssry o idnify yourslf. h procors

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Engine Thrust. From momentum conservation

Engine Thrust. From momentum conservation Airbrhing Propulsion -1 Airbrhing School o Arospc Enginring Propulsion Ovrviw w will b xmining numbr o irbrhing propulsion sysms rmjs, urbojs, urbons, urboprops Prormnc prmrs o compr hm, usul o din som

More information

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties Signl Procssing Firs Lcur 3 Fourir rnsform Propris READING ASSIGNMENS his Lcur: Chpr, Scs. -5 o -9 ls in Scion -9 Ohr Rding: Rciion: Chpr, Scs. - o -9 N Lcurs: Chpr Applicions 3/7/4 3, JH McCllln & RW

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

LAPLACE TRANSFORMS AND THEIR APPLICATIONS APACE TRANSFORMS AND THEIR APPICATIONS. INTRODUCTION Thi ubjc w nuncid fir by Englih Enginr Olivr Hviid (85 95) from oprionl mhod whil udying om lcricl nginring problm. Howvr, Hviid` rmn w no vry ymic

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35 MATH 5 PS # Summr 00.. Diffrnial Equaions and Soluions PS.# Show ha ()C #, 4, 7, 0, 4, 5 ( / ) is a gnral soluion of h diffrnial quaion. Us a compur or calculaor o skch h soluions for h givn valus of h

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218 Chper Moion long srigh line 9/9/05 Physics 8 Gols for Chper How o describe srigh line moion in erms of displcemen nd erge elociy. The mening of insnneous elociy nd speed. Aerge elociy/insnneous elociy

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is [STRAIGHT OBJECTIVE TYPE] l Q. Th vlu of h dfii igrl, cos d is + (si ) (si ) (si ) Q. Th vlu of h dfii igrl si d whr [, ] cos cos Q. Vlu of h dfii igrl ( si Q. L f () = d ( ) cos 7 ( ) )d d g b h ivrs

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall Siic 504 0. Aing Normliy Gry W. Ohlr School of Siic 33B For Hll 6-65-557 gry@.umn.u Mny procur um normliy. Som procur fll pr if h rn norml, whr ohr cn k lo of bu n kp going. In ihr c, i nic o know how

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DEFNTE NTEGRATON EXERCSE - CHECK YOUR GRASP. ( ) d [ ] d [ ] d d ƒ( ) ƒ '( ) [ ] [ ] 8 5. ( cos )( c)d 8 ( cos )( c)d + 8 ( cos )( c) d 8 ( cos )( c) d sic + cos 8 is lwys posiiv f() d ( > ) ms f() is

More information

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz STAT UIUC Pracic Problms #7 SOLUTIONS Spanov Dalpiaz Th following ar a numbr of pracic problms ha ma b hlpful for compling h homwor, and will lil b vr usful for suding for ams.. Considr wo coninuous random

More information

The Procedure Abstraction Part II: Symbol Tables and Activation Records

The Procedure Abstraction Part II: Symbol Tables and Activation Records Th Produr Absrion Pr II: Symbol Tbls nd Aivion Rords Th Produr s Nm Sp Why inrodu lxil soping? Provids ompil-im mhnism for binding vribls Ls h progrmmr inrodu lol nms How n h ompilr kp rk of ll hos nms?

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment.

PHA First Exam Fall On my honor, I have neither given nor received unauthorized aid in doing this assignment. PHA 527 Firs Exm Fll 20 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Qusion S/Poins I. 30 ps II. III. IV 20 ps 5 ps 5 ps V. 25 ps VI. VII. VIII. IX. 0 ps 0 ps 0 ps 35 ps

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

Chapter Direct Method of Interpolation

Chapter Direct Method of Interpolation Chper 5. Direc Mehod of Inerpolion Afer reding his chper, you should be ble o:. pply he direc mehod of inerpolion,. sole problems using he direc mehod of inerpolion, nd. use he direc mehod inerpolns o

More information

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q). INTEGRALS JOHN QUIGG Eercise. Le f : [, b] R be bounded, nd le P nd Q be priions of [, b]. Prove h if P Q hen U(P ) U(Q) nd L(P ) L(Q). Soluion: Le P = {,..., n }. Since Q is obined from P by dding finiely

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

PHA Second Exam. Fall 2007

PHA Second Exam. Fall 2007 PHA 527 Scond Exm Fll 2007 On my honor, I hv nihr givn nor rcivd unuhorizd id in doing his ssignmn. Nm Pu ll nswrs on h bubbl sh OAL /30 ps Qusion S I (ru or Fls) (5 poins) ru (A) or Fls (B). On h bubbl

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder

Major: All Engineering Majors. Authors: Autar Kaw, Luke Snyder Nolr Rgrsso Mjor: All Egrg Mjors Auhors: Aur Kw, Luk Sydr hp://urclhodsgusfdu Trsforg Nurcl Mhods Educo for STEM Udrgrdus 3/9/5 hp://urclhodsgusfdu Nolr Rgrsso hp://urclhodsgusfdu Nolr Rgrsso So populr

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Solutions to Problems from Chapter 2

Solutions to Problems from Chapter 2 Soluions o Problems rom Chper Problem. The signls u() :5sgn(), u () :5sgn(), nd u h () :5sgn() re ploed respecively in Figures.,b,c. Noe h u h () :5sgn() :5; 8 including, bu u () :5sgn() is undeined..5

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation INTERQUARTILE RANGE I cn clcul vribiliyinrquril Rng nd Mn Absolu Dviion 1. Wh is h grs common fcor of 27 nd 36?. b. c. d. 9 3 6 4. b. c. d.! 3. Us h grs common fcor o simplify h frcion!".!". b. c. d.

More information